首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the interaction of two main cell types, epitheliocytes and fibroblasts, in a mixed culture. Heterotypic cells had a different cytoskeleton organization and expressed different cell adhesion molecules, cadherins. In spite of this, when the cells contacted in the mixed cultures, a heterophilic contact was formed and the actin cytoskeleton of an epitheliocyte at the site of contact was reorganized: the marginal actin bundle was decomposed and actin structures were formed in its place, that were typical for the fibroblast lamella. No changes were observed in the actin organization of the fibroblast. In architecture, the heterophilic adhesion contacts resembled the contacts between fibroblasts. Both heterophilic and homophilic contacts were transient, rather than constant structures. The formation of heterophilic contacts in mixed cultures can serve as a model of formation of a tissue system consisting of epithelium and mesenchyme.  相似文献   

2.
We studied the interaction of two main cell types, epitheliocytes and fibroblasts, in a mixed culture. Heterotypic cells had a different cytoskeleton organization and expressed different cell adhesion molecules, cadherins. In spite of this, when the cells contacted in the mixed cultures, a heterophilic contact was formed and the actin cytoskeleton of an epitheliocyte at the site of contact was reorganized: the marginal actin bundle was decomposed and actin structures were formed in its place, that were typical for the fibroblast lamella. No changes were observed in the actin organization of the fibroblast. In architecture, the heterophilic adhesion contacts resembled the contacts between fibroblasts. Both heterophilic and homophilic contacts were transient, rather than constant structures. The formation of heterophilic contacts in mixed cultures can serve as a model of formation of a tissue system consisting of epithelium and mesenchyme.  相似文献   

3.
Polymorphic adhesion molecules neurexin and neuroligin (NL) mediate asymmetric trans-synaptic adhesion, which is crucial for synapse development and function. It is not known whether or how individual synapse function is controlled by the interactions between variants and isoforms of these molecules with differing ectodomain regions. At a physiological concentration of Ca(2+), the ectodomain complex of neurexin-1 β isoform (Nrx1β) and NL1 spontaneously assembled into crystals of a lateral sheet-like superstructure topologically compatible with transcellular adhesion. Correlative light-electron microscopy confirmed extracellular sheet formation at the junctions between Nrx1β- and NL1-expressing non-neuronal cells, mimicking the close, parallel synaptic membrane apposition. The same NL1-expressing cells, however, did not form this higher-order architecture with cells expressing the much longer neurexin-1 α isoform, suggesting a functional discrimination mechanism between synaptic contacts made by different isoforms of neurexin variants.  相似文献   

4.
Neurexin-neuroligin signaling in synapse development   总被引:1,自引:0,他引:1  
Neurexins and neuroligins are emerging as central organizing molecules for excitatory glutamatergic and inhibitory GABAergic synapses in mammalian brain. They function as cell adhesion molecules, bridging the synaptic cleft. Remarkably, each partner can trigger formation of a hemisynapse: neuroligins trigger presynaptic differentiation and neurexins trigger postsynaptic differentiation. Recent protein interaction assays and cell culture studies indicate a selectivity of function conferred by alternative splicing in both partners. An insert at site 4 of beta-neurexins selectively promotes GABAergic synaptic function, whereas an insert at site B of neuroligin 1 selectively promotes glutamatergic synaptic function. Initial knockdown and knockout studies indicate that neurexins and neuroligins have an essential role in synaptic transmission, particularly at GABAergic synapses, but further studies are needed to assess the in vivo functions of these complex protein families.  相似文献   

5.
Chih B  Gollan L  Scheiffele P 《Neuron》2006,51(2):171-178
Formation of synapses requires specific cellular interactions that organize pre- and postsynaptic compartments. The neuroligin-neurexin complex mediates heterophilic adhesion and can trigger assembly of glutamatergic and GABAergic synapses in cultured hippocampal neurons. Both neuroligins and neurexins are encoded by multiple genes. Alternative splicing generates large numbers of isoforms, which may engage in selective axo-dendritic interactions. We explored whether alternative splicing of the postsynaptic neuroligins modifies their activity toward glutamatergic and GABAergic axons. We find that small extracellular splice insertions restrict the function of neuroligin-1 and -2 to glutamatergic and GABAergic contacts and alter interaction with presynaptic neurexins. The neuroligin isoforms associated with GABAergic contacts bind to neurexin-1alpha and a subset of neurexin-1betas. In turn, these neurexin isoforms induce GABAergic but not glutamatergic postsynaptic differentiation. Our findings suggest that alternative splicing plays a central role in regulating selective extracellular interactions through the neuroligin-neurexin complex at glutamatergic and GABAergic synapses.  相似文献   

6.
Synapses mediate communication between neurons, thus playing a fundamental role in information processing in the CNS. Neuroligins form a family of heterophilic synaptic cell adhesion molecules, and neuroligin 1 (NL1) has been shown to be involved in the formation of excitatory synapses and have been suggested to associate indirectly with NMDA receptors by common binding to PSD95. A mutation in neuroligin 3 (Arg451Cys-NL3, human sequence numbering) identified in autistic patients is associated with altered spine density and has reduced binding capacity for its presynaptic partner beta-neurexin. Here, we investigated the role of NL1 and the homologous NL1 mutation Arg473Cys-NL1 (R473C-NL1) in excitatory synaptic transmission and NMDA receptor distribution. We demonstrate that R473C-NL1, when expressed in cultured hippocampal neurons, can induce a dramatic increase in NMDA current amplitude and that this change is accompanied by NMDA receptor clustering in the postsynaptic cell.  相似文献   

7.
The formation of neuronal synapses is a finely organized process that involves the presynaptic assembly of the machinery responsible for neurotransmitter release and the postsynaptic recruitment of neurotransmitter receptors and scaffold proteins to the postsynaptic density (PSD). The molecular cues guiding the establishment of synaptic connections are now beginning to be identified. Recent evidences indicate that cell adhesion molecules (CAMs) participate prominently in the key steps of synapse formation, inducing trans-synaptic adhesion and promoting a precise alignment of pre- and postsynaptic terminals. This addendum describes a new mechanism of cell-cell interaction that combines features of both diffusible and membrane-bound synaptogenic factors. It particularly points out the key role played by GDNF triggering trans-homophilic binding between GFRα1 molecules and cell adhesion between GFRα1-expressing cells. In this model GFRα1 functions as a ligand-induced cell adhesion molecule (LICAM) to establish precise synaptic contacts and promote the assembly of presynaptic terminals. In this overview, I summarize the current concepts of synapse formation in the limelight of this new mechanism of ligand-induced cell adhesion.  相似文献   

8.
9.
We formulate a general analysis to determine the two-dimensional dissociation constant (2D Kd), and use this method to study the interaction of CD2-expressing T cells with glass-supported planar bilayers containing fluorescently labeled CD58, a CD2 counter-receptor. Both CD2 and CD58 are laterally mobile in their respective membranes. Adhesion is indicated by accumulation of CD2 and CD58 in the cell-bilayer contact area; adhesion molecule density and contact area size attain equilibrium within 40 min. The standard (Scatchard) analysis of solution-phase binding is not applicable to the case of laterally mobile adhesion molecules due to the dynamic nature of the interaction. We derive a new binding equation, B/F=[(Ntxf)/(KdxScell)]-[(Bxp)/Kd], where B and F are bound and free CD58 density in the contact area, respectively; Nt is CD2 molecule number per cell; f is CD2 fractional mobility; Scell is cell surface area; and p is the ratio of contact area at equilibrium to Scell. We use this analysis to determine that the 2D Kd for CD2-CD58 is 5.4-7.6 molecules/microm2. 2D Kd analysis provides a general and quantitative measure of the mechanisms regulating cell-cell adhesion.  相似文献   

10.
Latrophilin-1, -2, and -3 are adhesion-type G protein-coupled receptors that are auxiliary α-latrotoxin receptors, suggesting that they may have a synaptic function. Using pulldowns, we here identify teneurins, type II transmembrane proteins that are also candidate synaptic cell-adhesion molecules, as interactors for the lectin-like domain of latrophilins. We show that teneurin binds to latrophilins with nanomolar affinity and that this binding mediates cell adhesion, consistent with a role of teneurin binding to latrophilins in trans-synaptic interactions. All latrophilins are subject to alternative splicing at an N-terminal site; in latrophilin-1, this alternative splicing modulates teneurin binding but has no effect on binding of latrophilin-1 to another ligand, FLRT3. Addition to cultured neurons of soluble teneurin-binding fragments of latrophilin-1 decreased synapse density, suggesting that latrophilin binding to teneurin may directly or indirectly influence synapse formation and/or maintenance. These observations are potentially intriguing in view of the proposed role for Drosophila teneurins in determining synapse specificity. However, teneurins in Drosophila were suggested to act as homophilic cell-adhesion molecules, whereas our findings suggest a heterophilic interaction mechanism. Thus, we tested whether mammalian teneurins also are homophilic cell-adhesion molecules, in addition to binding to latrophilins as heterophilic cell-adhesion molecules. Strikingly, we find that although teneurins bind to each other in solution, homophilic teneurin-teneurin binding is unable to support stable cell adhesion, different from heterophilic teneurin-latrophilin binding. Thus, mammalian teneurins act as heterophilic cell-adhesion molecules that may be involved in trans-neuronal interaction processes such as synapse formation or maintenance.  相似文献   

11.
Reciprocal signals between the motor axon and myofiber induce structural and functional differentiation in the developing neuromuscular junction (NMJ). Elevation of presynaptic acetylcholine (ACh) release on nerve-muscle contact and the correlated increase in axonal-free calcium are triggered by unidentified membrane molecules. Restriction of axon growth to the developing NMJ and formation of active zones for ACh release in the presynaptic terminal may be induced by molecules in the synaptic basal lamina, such as S-laminin, heparin binding growth factors, and agrin. Acetylcholine receptor (AChR) synthesis by muscle cells may be increased by calcitonin gene-related peptide (CGRP), ascorbic acid, and AChR-inducing activity (ARIA)/heregulin, which is the best-established regulator. Heparin binding growth factors, proteases, adhesion molecules, and agrin all may be involved in the induction of AChR redistribution to form postsynaptic-like aggregates. However, the strongest case has been made for agrin's involvement. “Knockout” experiments have implicated agrin as a primary anterograde signal for postsynaptic differentiation and muscle-specific kinase (MuSK), as a putative agrin receptor. It is likely that both presynaptic and postsynaptic differentiation are induced by multiple molecular signals. Future research should reveal the physiological roles of different molecules, their interactions, and the identity of other molecular participants.  相似文献   

12.
13.
Neurexins and neuroligins are synaptic cell adhesion molecules. Neurexins are primary located on the presynaptic membrane, whereas neuroligins are strictly postsynaptic proteins. Since their discovery, the knowledge of neurexins and neuroligins has expanded, implicating them in various neuronal processes, including the differentiation, maturation, stabilization, and plasticity of both inhibitory and excitatory synapses. Here, we review the most recent results regarding the structure and function of these cell adhesion molecules.  相似文献   

14.
Neural cell adhesion molecules composed of immunoglobulin and fibronectin type III-like domains have been implicated in cell adhesion, neurite outgrowth, and fasciculation. Axonin-1 and Ng cell adhesion molecule (NgCAM), two molecules with predominantly axonal expression exhibit homophilic interactions across the extracellular space (axonin- 1/axonin-1 and NgCAM/NgCAM) and a heterophilic interaction (axonin-1–NgCAM) that occurs exclusively in the plane of the same membrane (cis-interaction). Using domain deletion mutants we localized the NgCAM homophilic binding in the Ig domains 1-4 whereas heterophilic binding to axonin-1 was localized in the Ig domains 2-4 and the third FnIII domain. The NgCAM–NgCAM interaction could be established simultaneously with the axonin-1–NgCAM interaction. In contrast, the axonin-1–NgCAM interaction excluded axonin-1/axonin-1 binding. These results and the examination of the coclustering of axonin-1 and NgCAM at cell contacts, suggest that intercellular contact is mediated by a symmetric axonin-12/NgCAM2 tetramer, in which homophilic NgCAM binding across the extracellular space occurs simultaneously with a cis-heterophilic interaction of axonin-1 and NgCAM. The enhanced neurite fasciculation after overexpression of NgCAM by adenoviral vectors indicates that NgCAM is the limiting component for the formation of the axonin-12/NgCAM2 complexes and, thus, neurite fasciculation in DRG neurons.  相似文献   

15.
粘附分子通过介导细胞间相互作用发挥其在发育、再生和突触修饰等方面的重要作用.神经细胞粘附分子CHL1(close homologue of L1)是近年发现的粘附分子,属于粘附分子免疫球蛋白超家族,集中表达于神经系统,通过亲异性作用(heterophilic interaction)介导细胞与细胞、细胞与胞外基质的相互作用,进而参与神经系统的发育、轴突的生长、迁移及导向等过程.  相似文献   

16.
The neural cell adhesion molecule axonin-1/TAG-1 mediates cell-cell interactions via homophilic and heterophilic contacts. It consists of six Ig and four fibronectin type III domains anchored to the membrane by glycosylphosphatidylinositol. The recently solved crystal structure indicates a module composed of the four N-terminal Ig domains as the contact site between trans-interacting axonin-1 molecules from apposed membranes. Here, we have tested domain-specific monoclonal antibodies for their capacity to interfere with homophilic binding in a cell aggregation assay. The results confirmed the existence of a binding region within the N-terminal Ig domains and identified a second region contributing to homophilic binding on the third and fourth fibronectin domains near the C terminus. The perturbation of each region alone resulted in a complete loss of cell aggregation, suggesting that axonin-1-mediated cell-cell contact results from a cooperative action of two homophilic binding regions. The data support that axonin-1-mediated cell-cell contact is formed by cis-assisted trans-binding. The N-terminal binding regions of axonin-1 establish a linear zipper-like string of trans-interacting axonin-1 molecules alternately provided by the two apposed membranes. The C-terminal binding regions strengthen the cell-cell contact by enhancing the expansion of the linear string into a two-dimensional array via cis-interactions. Cis-assisted trans-binding may be a basic binding mechanism common to many cell adhesion molecules.  相似文献   

17.
Time-lapse microscopy, retrospective immunohistochemistry, and cultured hippocampal neurons were used to determine the time frame of individual glutamatergic synapse assembly and the temporal order in which specific molecules accumulate at new synaptic junctions. New presynaptic boutons capable of activity-evoked vesicle recycling were observed to form within 30 min of initial axodendritic contact. Clusters of the presynaptic active zone protein Bassoon were present in all new boutons. Conversely, clusters of the postsynaptic molecule SAP90/PSD-95 and glutamate receptors were found on average only approximately 45 min after such boutons were first detected. AMPA- and NMDA-type glutamate receptors displayed similar clustering kinetics. These findings suggest that glutamatergic synapse assembly can occur within 1-2 hr after initial contact and that presynaptic differentiation may precede postsynaptic differentiation.  相似文献   

18.
Synaptic adhesion molecules, which coordinately control structural and functional changes at both sides of synapses, are important for synaptogenesis and synaptic plasticity. Because they physically form homophilic or heterophilic adhesions across synaptic junctions, these molecules can initiate transsynaptic communication in both anterograde and retrograde directions. Using optical imaging approaches, we investigated whether an increase in postsynaptic N‐cadherin could correspondingly alter the function of connected presynaptic terminals. Postsynaptic expression of β‐catenin Y654F, a phosphorylation‐defective form with enhanced binding to N‐cadherin, is sufficient to increase postsynaptic surface levels of N‐cadherin and consequently promote presynaptic reorganizations. Such reorganizations include increases in the densities of the synaptic vesicle protein, Synaptotagmin 1 and the active zone scaffold protein, Bassoon, the number of active boutons and the size of the total recycling vesicle pool. In contrast, synaptic vesicle turnover is significantly impaired, preventing the exchange of synaptic vesicles with adjacent boutons. Together, N‐cadherin‐mediated retrograde signaling, governed by phosphoregulation of postsynaptic β‐catenin Y654, coordinately modulates presynaptic vesicle dynamics to enhance synaptic communication in mature neurons. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 61–74, 2017  相似文献   

19.
Unlike adherens junctions, synapses are asymmetric connections, usually between axons and dendrites, that rely on various cell adhesion molecules for structural stability and function. Two cell types of adhesion molecules found at adherens junctions, cadherins and nectins, are thought to mediate homophilic interaction between neighboring cells. In this issue, Togashi et al. (see p. 141) demonstrate that the differential localization of two heterophilic interacting nectins mediates the selective attraction of axons and dendrites in cooperation with cadherins.  相似文献   

20.
Cell adhesion activity of carcinoembryonic antigen (CEA) and non-specific cross-reacting antigen (NCA) has been analysed by using CHO cells which had been transfected with cDNAs and are ectopically expressing each antigen on their surface. CEA expressing CHO tended to aggregate easily within 30 min after being suspended by trypsinization. Cell adhesion assay between 51Cr labelled cells and monolayered cells showed both homophilic and heterophilic interaction, the extent of which was CEA-CEA much greater than CEA-NCA greater than NCA-NCA. These reactions were completely inhibited by Fab' fragment of anti-CEA antibody. The results strongly suggested that CEA and NCA function as Ca++ independent cell adhesion molecules by homophilic and heterophilic interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号