首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Length-dependent energetics of (CTG)n and (CAG)n trinucleotide repeats   总被引:1,自引:0,他引:1  
Trinucleotide repeats are involved in a number of debilitating diseases such as myotonic dystrophy. Twelve to seventy-five base-long (CTG)n oligodeoxynucleotides were analysed using a combination of biophysical [UV-absorbance, circular dichroism and differential scanning calorimetry (DSC)] and biochemical methods (non-denaturing gel electrophoresis and enzymatic footprinting). All oligomers formed stable intramolecular structures under near physiological conditions with a melting temperature that was only weakly dependent on oligomer length. Thermodynamic analysis of the denaturation process by UV-melting and calorimetric experiments revealed an unprecedented length-dependent discrepancy between the enthalpy values deduced from model-dependent (UV-melting) and model-independent (calorimetry) experiments. Evidence for non-zero molar heat capacity changes was also derived from the analysis of the Arrhenius plots and DSC profiles. Such behaviour is analysed in the framework of an intramolecular ‘branched-hairpin’ model, in which long CTG oligomers do not fold into a simple long hairpin–stem intramolecular structure, but allow the formation of several independent folding units of unequal stability. We demonstrate that, for sequences ranging from 12 to 25 CTG repeats, an intramolecular structure with two loops is formed which we will call ‘bis-hairpin’. Similar results were also found for CAG oligomers, suggesting that this observation may be extended to various trinucleotide repeats-containing sequences.  相似文献   

2.
Amrane S  Mergny JL 《Biochimie》2006,88(9):1125-1134
Trinucleotide repeats are involved in a number of debilitating diseases such as fragile-X syndrome and myotonic dystrophy. Eighteen to 75 base-long (CCG)(n) and (CGG)(n) oligodeoxynucleotides were analysed using a combination of biophysical (UV-absorbance, differential scanning calorimetry) and biochemical methods (non-denaturing gel electrophoresis, enzymatic footprinting). All oligomers formed stable intramolecular structures under near physiological conditions with a melting temperature which was only weakly dependent on oligomer length. Thermodynamic analysis of the denaturation process by UV-melting and calorimetric experiments revealed a length-dependent discrepancy between the enthalpy values deduced from model-dependent (UV-melting) and model-independent experiments (calorimetry), as recently shown for CTG and CAG trinucleotides (Nucleic Acids Res. 33 (2005) 4065). Evidence for non-zero molar heat capacity changes was also derived from the analysis of the Arrhenius plots. Such behaviour is analysed in the framework of an intramolecular "branched" or "broken" hairpin model, in which long oligomers do not fold into a simple long hairpin-stem intramolecular structure, but allow the formation of several independent folding units of unequal stability. These results suggest that this observation may be extended to various trinucleotide repeats-containing sequences.  相似文献   

3.
We have used CD spectroscopy, polyacrylamide gel electrophoresis, and UV absorption spectroscopy to study conformational properties of DNA fragments containing (CCA)n and (TGG)n repeats, which are the most length-polymorphic microsatellite sequences of the human genome. The (CCA)n fragments are random single strands at neutral and alkaline pH but they fold into intramolecular intercalated cytosine tetraplexes at mildly acid pH values. More acid values stabilize intermolecular tetraplex formation. The behavior of (TGG)n repeats is more complex. They form hairpins or antiparallel homoduplexes in low salt solutions which, however, are transformed into parallel-stranded guanine tetraplexes at physiological KCl concentrations. Their molecularity depends on the repeat number: (TGG)4 associates into an octameric complex, (TGG)8 forms tetramolecular complexes. (TGG)n with odd repeat numbers (5, 7, and 9) generate bimolecular and tetramolecular tetraplexes. The only (TGG)7 folds into an intramolecular tetraplex at low KCl concentrations, which is antiparallel-stranded. Moreover, the (TGG)(n) fragments provide various mutually slipped conformers whose population increases with salt concentration and with the increasing repeat number. However, the self-structures of both strands disappear in the presence of the complementary strand because both (TGG)n and (CCA)n prefer to associate into the classical heteroduplex. We suppose that the extreme conformational variability of the DNA strands stands behind the length polymorphism which the (CCA)n/(TGG)n repeats exhibit in the human genome.  相似文献   

4.
5.
CAG trinucleotide RNA repeats interact with RNA-binding proteins.   总被引:2,自引:0,他引:2  
Genes associated with several neurological diseases are characterized by the presence of an abnormally long trinucleotide repeat sequence. By way of example, Huntington's disease (HD), is characterized by selective neuronal degeneration associated with the expansion of a polyglutamine-encoding CAG tract. Normally, this CAG tract is comprised of 11-34 repeats, but in HD it is expanded to > 37 repeats in affected individuals. The mechanism by which CAG repeats cause neuronal degeneration is unknown, but it has been speculated that the expansion primarily causes abnormal protein functioning, which in turn causes HD pathology. Other mechanisms, however, have not been ruled out. Interactions between RNA and RNA-binding proteins have previously been shown to play a role in the expression of several eukaryotic genes. Herein, we report the association of cytoplasmic proteins with normal length and extended CAG repeats, using gel shift and UV crosslinking assays. Cytoplasmic protein extracts from several rat brain regions, including the striatum and cortex, sites of neuronal degeneration in HD, contain a 63-kD RNA-binding protein that specifically interacts with these CAG-repeat sequences. These protein-RNA interactions are dependent on the length of the CAG repeat, with longer repeats binding substantially more protein. Two CAG repeat-binding proteins are present in human cortex and striatum; one comigrates with the rat protein at 63 kD, while the other migrates at 49 kD. These data suggest mechanisms by which RNA-binding proteins may be involved in the pathological course of trinucleotide repeat-associated neurological diseases.  相似文献   

6.
The expansion of trinucleotide repeats has been implicated in 17 neurological diseases to date. Factors leading to the instability of trinucleotide repeat sequences have thus been an area of intense interest. Certain genes involved in mismatch repair, recombination, nucleotide excision repair, and replication influence the instability of trinucleotide repeats in both Escherichia coli and yeast. Using a genetic assay for repeat deletion in E. coli, the effect of mutations in the recA, recB, and lexA genes on the rate of deletion of (CTG)n.(CAG)n repeats of varying lengths were examined. The results indicate that mutations in recA and recB, which decrease the rate of recombination, had a stabilizing effect on (CAG)n.(CTG)n repeats decreasing the high rates of deletion seen in recombination proficient cells. Thus, recombination proficiency correlates with high rates of genetic instability in triplet repeats. Induction of the SOS system, however, did not appear to play a significant role in repeat instability, nor did the presence of triplet repeats in cells turn on the SOS response. A model is suggested where deletion during exponential growth may result from attempts to restart replication when paused at triplet repeats.  相似文献   

7.
A quantitative genetic assay was developed to monitor alterations in tract lengths of trinucleotide repeat sequences in Saccharomyces cerevisiae. Insertion of (CAG)50 or (CTG)50 repeats into a promoter that drives expression of the reporter gene ADE8 results in loss of expression and white colony color. Contractions within the trinucleotide sequences to repeat lengths of 8 to 38 restore functional expression of the reporter, leading to red colony color. Reporter constructs including (CAG)50 or (CTG)50 repeat sequences were integrated into the yeast genome, and the rate of red colony formation was measured. Both orientations yielded high rates of instability (4 x 10(-4) to 18 x 10(-4) per cell generation). Instability depended on repeat sequences, as a control harboring a randomized (C,A,G)50 sequence was at least 100-fold more stable. PCR analysis of the trinucleotide repeat region indicated an excellent correlation between change in color phenotype and reduction in length of the repeat tracts. No preferential product sizes were observed. Strains containing disruptions of the mismatch repair gene MSH2, MSH3, or PMS1 or the recombination gene RAD52 showed little or no difference in rates of instability or distributions of products, suggesting that neither mismatch repair nor recombination plays an important role in large contractions of trinucleotide repeats in yeast.  相似文献   

8.
9.
10.
In neurological diseases such as fragile X syndrome, spinal and bulbar muscular atrophy, myotonic dystrophy, and Huntington’s disease, the molecular basis of pathogenicity is the presence of an expanded trinucleotide repeat (TNR) tract (Ashley & Warren, 1995). TNRs implicated in many of these diseases are composed of CAG/CTG repeats. For example, in healthy individuals 5–35, CAG/CTG TNR repeats are present in the huntingtin gene. However, individuals with 40 or greater repeats will develop Huntington’s disease (Andrew et al., 1993). We are particularly interested in how these TNR sequences are packaged in chromatin. Recent evaluations of CAG/CTG TNR sequences in our laboratory have demonstrated that the repeats increase the propensity for the DNA sequences to incorporate into nucleosomes, where nucleosomes represent the minimal unit of packaging in chromatin (Volle & Delaney, 2012). In this work, we are interested in determining the minimum number of CAG/CTG repeats required to confer a significant increase in nucleosome incorporation relative to sequences that lack the TNR sequence. By defining the changes imposed on these fundamental interactions by the presence of a CAG/CTG repeat tract, we will gain insight into the possible interactions that allow for the expansion of these TNR tracts.  相似文献   

11.
Seven cDNA fragments containing polymorphic (AAT)n trinucleotide repeats were isolated from a human brain cDNA library and mapped by linkage to specific loci. These repeats may serve as gene markers or as candidates for diseases caused by expansion mutation.  相似文献   

12.
13.
14.
The mechanism of disease-associated trinucleotide repeat length variation may involve slippage of the triplet-containing strand at the replication fork, generating a slipped-strand DNA structure. We recently reported formation in vitro of slipped-strand DNA (S-DNA) structures when DNAs containing triplet repeat blocks of myotonic dystrophy or fragile X diseases were melted and allowed to reanneal to form duplexes. Here additional evidence is presented that is consistent with the existence of S-DNA structures. We demonstrate that S-DNA structures can form between two complementary strands containing equal numbers of repeats. In addition, we show that both the propensity for S-DNA formation and the structural complexity of S-DNAs formed increase with increasing repeat length. S-DNA structures were also analyzed by electron microscopy, confirming that the two strands are slipped out of register with respect to each other and confirming the structural polymorphism expected within long tracts of trinucleotide repeats. For (CTG)50.(CAG)50 two distinct populations of slipped structures have been identified: those involving </=10 repeats per slippage, which appear as bent/kinked DNA molecules, and those involving >10 repeats, which have multiple loops or hairpins indicative of complex alternative DNA secondary structures.  相似文献   

15.
Zhang T  Huang J  Gu L  Li GM 《DNA Repair》2012,11(2):201-209
Expansion of CAG/CTG trinucleotide repeats (TNRs) in humans is associated with a number of neurological and neurodegenerative disorders including Huntington's disease. Increasing evidence suggests that formation of a stable DNA hairpin within CAG/CTG repeats during DNA metabolism leads to TNR instability. However, the molecular mechanism by which cells recognize and repair CAG/CTG hairpins is largely unknown. Recent studies have identified a novel DNA repair pathway specifically removing (CAG)(n)/(CTG)(n) hairpins, which is considered a major mechanism responsible for TNR instability. The hairpin repair (HPR) system targets the repeat tracts for incisions in the nicked strand in an error-free manner. To determine the substrate spectrum of the HPR system and its ability to process smaller hairpins, which may be the intermediates for CAG/CTG expansions, we constructed a series of CAG/CTG hairpin heteroduplexes containing different numbers of repeats (from 5 to 25) and examined their repair in human nuclear extracts. We show here that although repair efficiencies differ slightly among these substrates, removal of the individual hairpin structures all involve endonucleolytic incisions within the repeat tracts in the nicked DNA strand. Analysis of the repair intermediates defined specific incision sites for each substrate, which were all located within the repeat regions. Mismatch repair proteins are not required for, nor do they inhibit, the processing of smaller hairpin structures. These results suggest that the HPR system ensures CAG/CTG stability primarily by removing various sizes of (CAG)(n)/(CTG)(n) hairpin structures during DNA metabolism.  相似文献   

16.
Unusual expansion of trinucleotide repeats has been identified as a common mechanism of hereditary neurodegenerative diseases. Although the actual mechanism of repeat expansion remains uncertain, trinucleotide repeat instability may be related to the increased stability of an alternative DNA hairpin structure formed in the repeat sequences. Here we report that a synthetic ligand naphthyridine carbamate dimer (NCD) selectively bound to and stabilized an intra-stranded hairpin structure in CGG repeat sequences. The NCD-CGG hairpin complex was a stable structure that efficiently interfered with DNA replication by Taq DNA polymerase. Considering the sequence preference of NCD, the use of NCD would be valuable to investigate the genetic instabilities of CGG/CCG repeat sequences in human genomes.  相似文献   

17.
《Epigenetics》2013,8(4):416-420
Most epigenetic studies assess methylation of 5'-CpG-3' sites but recent evidence indicates that non-CpG cytosine methylation occurs at high levels in humans and other species. This is most prevalent at 5'-CHG-3', where H = A, C or T, and it preferentially occurs at 5'-CpA-3' and 5'-CpT-3' sites. With the goal of facilitating the detection of non-CpG methylation, the restriction endonucleases ApeKI, BbvI, EcoP15I, Fnu4HI, MwoI and TseI were assessed for their sensitivity to 5-methylcytosine at GpCpA, GpCpT, GpCpC or GpCpG sites, where methylation is catalyzed by the DNA 5-cytosine 5'-GpC-3' methyltransferase M.CviPI. We tested a variety of sequences including various plasmid-based sites, a cloned disease-associated (CAG)83?(CTG)83 repeat and in vitro synthesized tracts of only (CAG)500?(CTG)500 or (CAG)800?(CTG)800. The repeat tracts are enriched for the preferred CpA and CpT motifs. We found that none of the tested enzymes can cleave their recognition sequences when they are 5'-GpC-3' methylated. A genomic site known to convert its non-CpG methylation levels upon C2C12 differentiation was confirmed through the use of these enzymes. These enzymes can be useful in rapidly and easily determining the most common non-CpG methylation status in various sequence contexts, as well as at expansions of (CAG)n?(CTG)n repeat tracts associated with diseases like myotonic dystrophy and Huntington disease.  相似文献   

18.
Most epigenetic studies assess methylation of 5′-CpG-3′ sites but recent evidence indicates that non-CpG cytosine methylation occurs at high levels in humans and other species. This is most prevalent at 5′-CHG-3′, where H = A, C or T, and it preferentially occurs at 5′-CpA-3′ and 5′-CpT-3′ sites. With the goal of facilitating the detection of non-CpG methylation, the restriction endonucleases ApeKI, BbvI, EcoP15I, Fnu4HI, MwoI and TseI were assessed for their sensitivity to 5-methylcytosine at GpCpA, GpCpT, GpCpC or GpCpG sites, where methylation is catalyzed by the DNA 5-cytosine 5′-GpC-3′ methyltransferase M.CviPI. We tested a variety of sequences including various plasmid-based sites, a cloned disease-associated (CAG)83•(CTG)83 repeat and in vitro synthesized tracts of only (CAG)500•(CTG)500 or (CAG)800•(CTG)800. The repeat tracts are enriched for the preferred CpA and CpT motifs. We found that none of the tested enzymes can cleave their recognition sequences when they are 5′-GpC-3′ methylated. A genomic site known to convert its non-CpG methylation levels upon C2C12 differentiation was confirmed through the use of these enzymes. These enzymes can be useful in rapidly and easily determining the most common non-CpG methylation status in various sequence contexts, as well as at expansions of (CAG)n•(CTG)n repeat tracts associated with diseases like myotonic dystrophy and Huntington disease.Key words: non-CpG methylation, CpG methylation, 5-methylcytosine, trinucleotide repeats, ApeKI, BbvI, EcoP151, Fnu4HI, MwoI and TseI  相似文献   

19.
20.
Trinucleotide repeats undergo contractions and expansions in humans, leading in some cases to fatal neurological disorders. The mechanism responsible for these large size variations is unknown, but replication-slippage events are often suggested as a possible source of instability. We constructed a genetic screen that allowed us to detect spontaneous expansions/contractions of a short trinucleotide repeat in yeast. We show that deletion of RAD27, a gene involved in the processing of Okazaki fragments, increases the frequency of contractions tenfold. Repair of a chromosomal double-strand break (DSB) using a trinucleotide repeat-containing template induces rearrangements of the repeat with a frequency 60 times higher than the natural rate of instability of the same repeat. Our data suggest that both gene conversion and single-strand annealing are major sources of trinucleotide repeat rearrangements. Received: 8 January 1999 / Accepted: 17 March 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号