首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 999 毫秒
1.
A sensitive enzyme immunoassay for measurements of rat parvalbumin was established using antibodies raised in rabbits with parvalbumin purified from skeletal muscles. Antibodies in the antiserum were purified with a parvalbumin-coupled Sepharose column. The sandwich-type immunoassay system for parvalbumin was composed of polystyrene balls with immobilized purified antibodies and the same antibodies labeled with beta-D-galactosidase from Escherichia coli. The assay was highly sensitive and the minimum detection limit was 1 pg parvalbumin/tube. The assay did not cross-react with other calcium binding proteins, including human S-100a0 and S-100b proteins, rat 28-kDa calbindin-D, and bovine calmodulin. High concentrations of parvalbumin were observed in the skeletal muscles, especially in those composed of fast-twitch fibers, and in the diaphragm and tongue, but not in heart muscle. A relatively high concentration was estimated in the central nervous tissue. Parvalbumin was detected in the cerebral cortex and cerebellum of gestational 15-day fetuses. However, the levels of parvalbumin in the muscle tissues and central nervous tissue were very low in rats before 1 week of age. Thereafter, they increased sharply, reaching the adult levels by 5 weeks in most of the tissues. Parvalbumin concentrations in adult rat soleus muscle increased less than 20-fold within 10 days after transection of the ipsilateral sciatic nerve, while the concentrations in the extensor digitorum longus muscle did not change in the same period.  相似文献   

2.
In order to determine the quantitative distribution of alpha B crystallin (alpha B) in non-lenticular tissues, we have established a sensitive immunoassay system for specific measurement of alpha B. Antisera were raised in rabbits by injecting alpha B purified from bovine lenses, or C-terminal decapeptide (KPAVTAAPKK) of alpha B (alpha Bpep). The antibodies to alpha B and alpha Bpep were purified by the use of alpha B-coupled Sepharose column. The F(ab')2 fragments of antibody IgG to alpha B were immobilized on polystyrene balls and the Fab' fragments of antibody IgG to alpha Bpep were labeled with beta-D-galactosidase from Escherichia coli. The sandwich-type enzyme immunoassay consisted of the above two antibodies was sensitive, and the minimum detection limit of the assay was 10 pg alpha B without any crossreactivity with alpha A. By using the assay method, it is revealed that the alpha B was distributed in most of the tissues examined. Among the non-lenticular tissues, alpha B was present at high levels in the heart and striated muscles, especially in the soleus muscle, and kidney. High levels of alpha B in the muscle tissues were also seen in various animals. Developmental increases of alpha B in rat muscle tissues and kidney were observed from 16 days of gestational age to 1 or 5 weeks of postnatal age. In contrast, the alpha B in the brain kept a low level during the same period. After 5 weeks of age, alpha B concentrations in the brain increased sharply, reaching the adult levels at 9 weeks of age. Immunohistochemical staining with anti-alpha Bpep revealed that alpha B was positive not only in glial cells, in the central nervous tissues, but also in some neurons of spinal cord, brainstem, hippocampus, and olfactory bulb. Spermatocytes in the testis were also immunopositive for alpha B.  相似文献   

3.
Ultrasensitive enzyme immunoassay method for the measurement of rat brain-type creatine kinase BB (CK-BB) was developed by use of purified antibodies specific to the B subunit of creatine kinase. The antibody immunoglobulin G was purified with immunoaffinity chromatography of the antiserum raised in rabbits by injecting the purified rat CK-BB. The assay system consisted of polystyrene balls with immobilized antibody F(ab')2 fragments and the same antibody Fab' fragments labeled with beta-D-galactosidase from Escherichia coli. The assay was specific to the B subunit of CK (CK-B), showing about 10% cross-reactivity with CK-MB, but it did not cross-react with CK-MM and neuron-specific gamma gamma enolase. The minimum detection limit of the assay was 0.1 pg or 1 amol CK-BB, being sufficiently sensitive for the measurement of CK-B contents in the isolated Purkinje cell bodies at the level of single cells. The average content of CK-B in a single Purkinje cell was 1.64 pg. The CK-B concentration in rat cerebellum (about 22 micrograms/mg protein) was about twofold higher than that (about 13 micrograms/mg protein) in the cerebrum. High levels (greater than 5 micrograms/mg protein) of CK-B were also found in the peripheral tissues such as gastrointestinal tract and urinary bladder, all of which are composed of smooth muscle. Immunohistochemical localization of CK-B antigens in the CNS revealed that the antigens is distributed not only in the neurons but also in the glial cells.  相似文献   

4.
A monoclonal antibody designated M2 arose from the fusion of mouse myeloma cells with splenocytes from a rat immunized with particulate fraction from early postnatal mouse cerebellum. Expression of M2 antigen was examined by indirect immunofluorescence on frozen sections of developing and adult mouse cerebellum and on monolayer cultures of early postnatal mouse cerebellar cells. In adult cerebellum, M2 staining outlines the cell bodies of granule and Purkinje cells. A weaker, more diffuse staining is seen in the molecular layer and white matter. In sections of newborn cerebellum, M2 antigen is weakly detectable surrounding cells of the external granular layer and Purkinje cells. The expression of M2 antigen increases during development in both cell types, reaching adult levels by postnatal day 14. At all stages of postnatal cerebellar development, granule cells that have completed migration to the internal granule layer are more heavily stained by M2 antibodies than are those before and in process of migration. In monolayer cultures, M2 antigen is detected on the cell surface Of all GFA protein-positive astrocytes and on more immature oligodendrocytes, that express 04 antigen but not 01 antigen. After 3 days in culture, tetanus toxinpositive neurons begin to express M2 antigen. The same delayed expression of M2 antigen on neurons is observed in cultures derived from mice ranging in age from postnatal day 0 to 10.  相似文献   

5.
THE DEVELOPMENT OF D-AMINO ACID OXIDASE IN RAT CEREBELLUM   总被引:1,自引:0,他引:1  
D-Amino acid oxidase (D-amino acid: O2 oxidoreductase (deaminating), EC 1.4.3.3; D-AAO) activity is biochemically undetected in rat brain stem, cerebellum and forebrain until 14 days after birth. Adult levels are attained by day 30 in the brain stem, and by day 36 in the cerebellum. At adulthood, forebrain D-AAO activity per g wet weight of tissue is less than 2% that of the cerebellum. In contrast to the pattern in the CNS, substantial D-AAO activity is present in both liver and kidney 2 days before birth and adult levels are approached within 2 weeks of birth. Nonetheless, D-AAO activities in rat liver, kidney, brain stem and cerebellum are likely to be due to a single enzyme which has properties very similar to the purified hog D-AAO. The late ontogenesis of D-AAO activity in cerebellum and brain stem relative to that in liver and kidney parallels reported phylogenetic data. Histochemical staining for D-AAO in rat cerebellar cortex is absent until 15 days after birth when activity is first observed in some cells of the external germinal zone and adjacent molecular layer. These cells appear to migrate to a final destination around the Purkinje cell soma and leave processes at the pial surface. By 21 days of age an adult pattern of staining is manifest throughout the cerebellum but it is of weak intensity. The adult pattern includes some staining in the granular layer which seems to be associated with mossy fibers and certain cerebellar glomeruli, and strong staining at the pial surface, in the molecular layer, and in cells surrounding, but not within, the Purkinje cell soma. The data suggest that the biochemical appearance of D-AAO in developing cerebellum derives from two sources: one associated with differentiation of one of the last cell types to form from the external germinal zone, and the other with maturation of mossy fibers and their synapses (cerebellar glomeruli).  相似文献   

6.
Abstract: A60 is a 60-kDa component of the axonal cortical cytoskeleton in CNS neurones. It appears to be neurone specific and is tightly bound to brain membranes. In this study the cytoskeletal activities and developmental expression of A60 in rat cerebellum have been examined using the monoclonal antibody DR1. A60 in a partially purified soluble extract of brain membranes interacts selectively with brain but not erythrocyte spectrin. Because erythrocyte spectrin is more closely related to the dendritic form of spectrin than the axonal form, this raises the possibility that AGO localises in axons by interaction with the axonal form of spectrin only. A60 is not found in rat cerebellum before the day of birth. However, during postnatal development of the cerebellum (days 1–13) DR1 reactivity appears progressively. On postnatal day 1, a small population of cells in the mantle layer (presumptive Purkinje cells) is DR1 positive. There is no DR1 reactivity found in Purkinje cell axons during their initial phase of growth. By postnatal day 7, Purkinje cell bodies, initial dendritic segments, and the cerebellar white matter are all positive. This pattern of labelling is strengthened up until postnatal day 13. By contrast, in adult rat cerebellum, the location of A60 has changed so that it is most concentrated in axons, and dendritic staining is lost. These data indicate that A60 is a spectrin-binding component of the adult axonal membrane skeleton, the presence of which is only required in axons after the initial phase of growth.  相似文献   

7.
We studied the level of the basal (constitutive) HSP70 expression (inducible and constitutive forms) in the central nervous system (CNS) of male and female rats from the postnatal period to maturity. HSP70 levels were analyzed by immunoblotting in five different areas (cortex, hippocampus, hypothalamus, cerebellum, and spinal cord). The highest levels of HSP70 were found in juvenile rats and decreased progressively until reaching baseline levels between 2 and 4 months. A slight and nonsignificant increase in aged (2-year-old) rats compared with adult subjects was observed in some cerebral areas (cerebral cortex, hippocampus, and cerebellum). In the first weeks of postnatal development, HSP70 immunoreactivity was distributed throughout CNS sections and no specific immunopositive cells could be clearly determined. In adult animals, strong immunostaining was observed in some large neurons (Purkinje neurons and mesencephalic and spinal cord motor neurons), some perivascular and subpial astrocytes, and ependymocytes. Immunoelectron microscopy revealed that HSP70 in these cells is located in the perinuclear area and in mitochondria, rough endoplasmic reticulum, and microtubules. In neurons, strong immunolabeling was also observed in synaptic membranes. The postnatal time course of HSP70 levels and the location and size of HSP70-immunopositive cells suggest that HSP70 constitutively expressed in the rat CNS may be mainly determined by the degree of development and metabolic activity of the neural cells.  相似文献   

8.
Coupling of CNS receptors to phosphoinositide turnover has previously been found to vary with both age and brain region. To determine whether the metabolism of the second messenger inositol 1,4,5-trisphosphate also displays such variations, activities of inositol 1,4,5-trisphosphate 5'-phosphatase and 3'-kinase were measured in developing rat cerebral cortex and adult rat brain regions. The 5'-phosphatase activity was relatively high at birth (approximately 50% of adult values) and increased to adult levels by 2 weeks postnatal. In contrast, the 3'-kinase activity was low at birth and reached approximately 50% of adult levels by 2 weeks postnatal. In the adult rat, activities of the 3'-kinase were comparable in the cerebral cortex, hippocampus, and cerebellum, whereas much lower activities were found in hypothalamus and pons/medulla. The 5'-phosphatase activities were similar in cerebral cortex, hippocampus, hypothalamus, and pons/medulla, whereas 5- to 10-fold higher activity was present in the cerebellum. The cerebellum is estimated to contain 50-60% of the total inositol 1,4,5-trisphosphate 5'-phosphatase activity present in whole adult rat brain. The localization of the enriched 5'-phosphatase activity within the cerebellum was examined. Application of a histochemical lead-trapping technique for phosphatase indicated a concentration of inositol 1,4,5-trisphosphate 5'-phosphatase activity in the cerebellar molecular layer. Further support for this conclusion was obtained from studies of Purkinje cell-deficient mutant mice, in which a marked decrement of cerebellar 5'-phosphatase was observed. These results suggest that the metabolic fate of inositol 1,4,5-trisphosphate depends on both brain region and stage of development.  相似文献   

9.
We have used specific cDNAs to the rat vitamin D receptor (VDR) and to the mammalian vitamin D-dependent calcium-binding proteins (calbindin-D9k in intestine and calbindin-D28k in kidney) in order to obtain a better understanding of the regulation of the VDR gene and its relationship to calbindin gene expression. Hormonal regulation and development expression of the rat VDR gene were characterized by both Northern and slot blot analyses. Administration of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3; 25 ng/day for 7 days) to vitamin D-deficient rats resulted in an increase in calbindin mRNA in intestine and kidney but no change in VDR mRNA in these tissues. Vitamin D-deficient rats responded to dexamethasone treatment (100 micrograms/100 g of body weight/day for 4 days) with a 2.5-fold increase in intestinal VDR mRNA which was accompanied by a 4-fold decrease in intestinal calbindin-D9k mRNA. Developmental studies indicated a pronounced increase in renal VDR mRNA and calbindin-D28k mRNA between birth and 1 week of age. In the intestine, an induction of VDR and calbindin-D9k gene expression was observed at a later time, during the 3rd postnatal week (the period of increased duodenal active transport of calcium). Taken collectively, our data indicate that in the adult rat, target tissue response to hormone is not modified by a corresponding alteration in new receptor synthesis. However, developmental studies indicate that the induction of 1,25(OH)2D3 receptor mRNA is correlated with the induction of calbindin gene expression. Our results also demonstrate that glucocorticoid administration can result in an alteration in intestinal calbindin and VDR gene expression.  相似文献   

10.
Analysis of rat vitamin D-dependent calbindin-D28k gene expression   总被引:7,自引:0,他引:7  
We report the use of a cloned cDNA for mammalian calbindin-D28k (28-kDa vitamin D-dependent calcium-binding protein) to study the expression of the rat calbindin gene. Tissue distribution studies, using Northern analysis, indicated that calbindin-D28k-mRNA is detected in rat kidney and brain but is not detected in rat intestine, testes, bone, pancreas, liver, lung, or skeletal muscle. Both rat kidney and brain contain three RNA species (1.9, 2.8, and 3.2 kilobase pairs). The regulation of the gene was characterized by both Northern and slot blot analysis. Hormonal regulation, developmental expression of calbindin-D28k-mRNA, and the effect of dietary alteration were examined. In the kidney all three species of mRNA were dependent on the presence of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) for their induction. The time course of induction of renal calbindin-D28k-mRNA indicated that a significant increase in calbindin-D-mRNA was detectable as early as 2 h following a single injection of 1,25-(OH)2D3 (200 ng/100 g of body weight), reaching a maximum at 12 h. Unlike the kidney high levels of calbindin-D28k-mRNA were observed in the brain of vitamin D-deficient rats. The concentration of calbindin-D28k-mRNA in brain was unchanged after 1,25-(OH)2D3 administration. Developmental studies indicated that calbindin-D-mRNA in rat kidney and brain is present prior to birth but is developmentally regulated in a tissue-specific manner. The most pronounced changes in the abundance of renal calbindin-D28k-mRNA occur between birth and 1 week of age. Unlike the kidney a large increase in brain calbindin-D28k-mRNA occurs at a later time, between 1 and 2 weeks of age (the period of major synapse formation). In dietary alteration studies results of Northern blot analysis indicate that low dietary phosphorus results in increased calbindin-D-mRNA in kidney but not in brain. These studies represent the first analysis of the rat calbindin-D28k gene and its regulation in vivo. Our findings suggest that in rat kidney and brain there are significant differences both in the expression of the gene for calbindin-D28k and its regulation by 1,25-(OH)2D3.  相似文献   

11.
The localization of alpha-D-mannosidase in the rat cerebellum was studied by using indirect immunohistochemistry at both optical and electron microscopic levels. In the adult the enzyme is particularly concentrated in the dendrites and cell bodies of Purkinje cells, basket cells, and Golgi neurons in the cerebellar cortex and in the cytoplasm and dendrites of deep nuclei neurons. The cytoplasm of granule cells is poorly stained, whereas parallel fibers, white matter, Bergman fibers, and Golgi epitheloid cell perikarya show virtually no staining. Electron microscopy suggests that most of the staining is found in the cytosol, although some staining is found in the postsynaptic densities of the synapses between parallel fibers and Purkinje dendrites. The pattern of staining was followed throughout the postnatal development of the rat cerebellum. At bith an intense and diffuse staining is found in all cells except those of the external germinative layer. At the 6th postnatal day, Purkinje cell bodies and apical cones are strongly labeled. From the 13th day on the pattern is very similar to that found in the adult. However, at the 18th postnatal day (when compared with the other structures), the staining of Purkinje cell dendrites seems to be higher than at all other ages. These data are correlated with biochemical studies and discussed in relation to the possible role of this enzyme during the postnatal development of the rat cerebellum.  相似文献   

12.
Calbindin-D28K was immunohistochemically localized in myenteric and submucosal plexuses throughout the rat intestine. Calbindin-D28K immunoreactivity was found in about half of myenteric neurons and in more than 90% of submucosal neurons. Calbindin-D28K was also observed in nerve processes running inside ganglia, muscle layers and lamina propria. No correlation could be established between the presence of calbindin-D28K and the distribution of neuropeptides localized in this study (VIP, enkephalin, somatostatin and substance P). In addition, some endocrine-like cells of the ileum were calbindin-D28K-positive. Half of these endocrine cells also contained neurotensin but none of the other neuropeptides investigated.  相似文献   

13.
Abstract: Antiserum against purified rat brain hexokinase (ATP: D-hexose 6-phosphotransferase, EC 2.7.1.1) has been used in a study of the distribution of hexokinase during the postnatal development of rat cerebellum and retina. The cells of the external germinal layer of the cerebellum exhibit little or no fluorescence. The Purkinje cells exhibit a transient increase in hexokinase levels between 2 and 8 days postnatally, followed by a precipitous decrease (8–12 days) to the relatively low levels found in the mature Purkinje cell. Development of the intensely fluorescent cerebellar glomeruli in the granule cell layer is readily followed during the 3rd and 4th weeks postnatally. With respect to postnatal changes in hexokinase distribution of the retina, perhaps most notable is the observation that even the cytoplasmic protrusions which represent the precursors of the photoreceptor segments are richly endowed with hexokinase. Biochemical differentiation of the photoreceptor segments into hexokinase-rich inner segments and hexokinase-poor outer segments is readily observed long before the growth of the photoreceptor segments has been completed.  相似文献   

14.
The immunocytochemical distribution of glutamate dehydrogenase was studied in the cerebellum of the rat using antibodies made in rabbit and guinea pig against antigen purified from bovine liver. Antiserum was found to block partially enzymatic activity both of the purified enzyme and of extracts of the rat cerebellum. Using immunoblots of proteins of rat cerebellum, a major immunoreactive protein and several minor immunoreactive proteins were detected with antiserum. Only a single immunoreactive protein was detected using affinity-purified antibody preparations. This protein migrates with a molecular weight identical to that of the subunit of glutamate dehydrogenase. Further evidence that the antibodies were selective for glutamate dehydrogenase in rat cerebellum was obtained through peptide mapping. Purified glutamate dehydrogenase and the immunoreactive protein from rat cerebellum generated similar patterns of immunoreactive peptides. No significant cross-reaction was observed with glutamine synthetase. Immunocytochemistry was done on cryostat- and Vibratome-cut sections of the cerebellum of rats that had been perfused with cold 4% paraformaldehyde. Glial cells were found to be the most immunoreactive structures throughout the cerebellum. Most apparent was the intense labeling of Bergmann glial cell bodies and fibers. In the granule cell layer, heavy labeling of astrocytes was seen. Purkinje and granule cell bodies were only lightly immunoreactive, whereas stellate, basket, and Golgi cells were unlabeled. Labeling of presynaptic terminals was not apparent. These findings suggest that glutamate dehydrogenase, like glutamine synthetase, is enriched in glia relative to neurons.  相似文献   

15.
Ontogeny of the GTP-Binding Protein Go in Rat Brain and Heart   总被引:6,自引:6,他引:0  
We determined the ontogeny of the GTP-binding protein Go in rat brain and heart by employing highly sensitive enzyme immunoassay methods. In the brain, the alpha subunit of Go (Go alpha) gradually increased and reached adult levels approximately 20 and 30 days after birth in cerebral cortex and cerebellum, respectively. Concentrations of beta subunits, which were also quantified by the immunoassay, were almost equal to those of Go alpha in the brain of rats younger than 10 days, but were higher than those of Go alpha after 10 days. These results suggest that late development of GTP-binding proteins other than Go. Go alpha was immunohistochemically positive in neuropils and negative in cell bodies at any age tested. In the heart, the concentrations of Go alpha increased up to several times of the adult level just after birth, and then gradually decreased after the 20th postnatal day. The level of Go alpha in the liver, however, was very low and constant throughout ontogenic development. An immunohistochemical study indicated that Go alpha was positive in the cardiac muscle of young rat, but negative in that of adult rat. These results indicate that Go alpha exists in cells other than those of nervous tissues and neuroendocrine cells in some periods of ontogenic development.  相似文献   

16.
5'-nucleotidase cytochemistry was performed in the cerebellum of adult rats exposed previously to a single postnatal X-irradiation which maintains until adulthood the normally transient multiple innervation of cerebellar Purkinje cells by climbing fibers. 5'-nucleotidase activity persists in climbing fiber synapses and other asymmetrical synapses while it is transient during normal development. Therefore, in the X-irradiated rat, an immature stage of the excitatory synapses persists which, for the climbing fibers, co?ncides with or precedes their involution during normal development.  相似文献   

17.
Levels of three enolase isozymes (αα, αγ and γγ) were determined in rat tissues from one-cell embryo to adult brain with a sensitive enzyme immunoassay system. Each embryo of the early stage (gestational age, 0–3 days) contained about 5 × 10?17 mol of αα enolase. The nervous system-specific αγ and γγ enolases would be detected in the embryos of 6–8 days, which contain no histologically recognizable neurones. The 8-day embryos contained 4.3 × 10?17 and 3.4 × 10?16 mol of αγ and γγ enolases. Amounts of all the three enolases were increased with growth of the embryo. The nervous system-specific enolases (αγ and γγ) in the brain kept increasing until 1–2 months of postnatal age, whereas the αα enolase level in the brain was relatively constant after the 15-day embryo through the adult rat.  相似文献   

18.
Indirect immunocytochemical staining with antisera raised against purified glial filament protein and a neurofilament polypeptide was used to study cell interactions between astrocytes and neurons dissociated from embryonic and early postnatal cerebellum. Staining with antibodies raised against purified glial filament protein revealed that greater than 99% of all processes present in cerebellar cultures during the 1st wk in vitro were glial in origin. After 1 wk in culture, unstained processes that were presumably neuronal were observed. Stained astroglial processes formed a dense network that served as a template for cerebellar neurons, identified by indirect immunocytochemical localization of tetanus toxin. More than 90% of neurons from postnatal days 1 or 7 were positioned within one cell diameter of a glial process. In contrast, less than 40% of the neurons dissociated from early embryonic cerebellum were located adjacent to a glial process. Staining with antibodies raised against purified glial filament protein also revealed differences in astroglial morphology that were under developmental regulation. Astroglial cells from embryonic cerebellum were fewer in number and had thick, unbranched processes. Those from postnatal day 1 were more slender, branched, and stellate. Those from postnatal day 7 were highly branched and stellate. Some veil-like astroglial processes were also observed in cells from postnatal animals. These morphological changes were also observed when cells from embryonic day 13 were maintained for a week in vitro. No specific staining of embryonic or postnatal cerebellum cells was observed with antibodies raised against purified neurofilament polypeptides.  相似文献   

19.
Cerebellar granule neurons migrate from the external granule cell layer (EGL) to the internal granule cell layer (IGL) during postnatal morphogenesis. This migration process through 4 different layers is a complex mechanism which is highly regulated by many secreted proteins. Although chemokines are well-known peptides that trigger cell migration, but with the exception of CXCL12, which is responsible for prenatal EGL formation, their functions have not been thoroughly studied in granule cell migration. In the present study, we examined cerebellar CXCL14 expression in neonatal and adult mice. CXCL14 mRNA was expressed at high levels in adult mouse cerebellum, but the protein was not detected. Nevertheless, Western blotting analysis revealed transient expression of CXCL14 in the cerebellum in early postnatal days (P1, P8), prior to the completion of granule cell migration. Looking at the distribution of CXCL14 by immunohistochemistry revealed a strong immune reactivity at the level of the Purkinje cell layer and molecular layer which was absent in the adult cerebellum. In functional assays, CXCL14 stimulated transwell migration of cultured granule cells and enhanced the spreading rate of neurons from EGL microexplants. Taken together, these results revealed the transient expression of CXCL14 by Purkinje cells in the developing cerebellum and demonstrate the ability of the chemokine to stimulate granule cell migration, suggesting that it must be involved in the postnatal maturation of the cerebellum.  相似文献   

20.
Abstract Ultrasensitive enzyme immunoassay systems for the assay of rat brain enolase isozymes ( αα , αγ , and γγ forms) were prepared by use of β- d -galactosidase from Escherichia coli as label and the purified rabbit antibodies to αα and γγ enolases. The antibodies were purified from the immunoglobulin G (IgG) fractions of antisera by immunoaffinity chromatography with a column of the corresponding antigen-coupled Sepharose. Sandwich-type immunoassay systems with the galactosidase-labeled antibody Fab'fragments and the antibody F(abapos;)2-immobilized polystyrene beads could determine amounts as small as 1 amol (10−18 mol) of each isozyme. Purkinje cell bodies picked up from the bulk-separated fraction by means of a nylon loop were subjected to the assay at the level of single cells. In contrast to previous report, this neuron contained not only the γγ but also the αγ and αα enolases at a level of amol per cell body, although the concentration of γγ was the highest. Immunohistochemical experiments on the cerebellum with the peroxidase-labeled antirabbit IgG antibody and the unlabeled antibody method confirmed the above results, and indicated that both α and γ subunits of the enolase were stained intensely in axons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号