首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Intracellular copper routing in Enterococcus hirae can be accomplished by the CopZ metallochaperone. Using surface plasmon resonance analysis, we show here that CopZ interacts with the CopA copper ATPase. The binding affinity of CopZ for CopA was increased in the presence of copper, due to a 15-fold lower dissociation rate constant. Mutating the N-terminal copper binding motif of CopA from CxxC to SxxS abolished this copper-induced effect. Moreover, CopZ failed to show an interaction with an unrelated copper binding protein used as a control. These results show that (i) the CopA copper ATPase specifically interacts with the CopZ chaperone, (ii) this interaction is based on protein-protein interaction, and (iii) surface plasmon resonance is a novel tool for quantitative analysis of metallochaperone-target interactions.  相似文献   

3.
The cop operon is a key element of copper homeostasis in Enterococcus hirae. It encodes two copper ATPases, CopA and CopB, the CopY repressor, and the CopZ metallochaperone. The cop operon is induced by copper, which allows uncompromised growth in up to 5 mM ambient copper. Copper uptake appears to be accomplished by the CopA ATPase, a member of the heavy metal CPx-type ATPases and closely related to the human Menkes and Wilson ATPases. The related CopB ATPase extrudes copper when it reaches toxic levels. Intracellular copper routing is accomplished by the CopZ copper chaperone. Using surface plasmon resonance analysis, it was demonstrated that CopZ interacts with the CopA ATPase where it probably becomes copper loaded. CopZ in turn can donate copper to the copper responsive repressor CopY, thereby releasing it from DNA. In high copper, CopZ is proteolyzed. Cell extracts were found to contain a copper activated proteolytic activity that degrades CopZ in vitro. This post-translational control of CopZ expression presumably serves to avoid the accumulation of detrimental Cu-CopZ levels.  相似文献   

4.
Extensive insight into copper homeostasis has recently emerged. The Gram-positive bacterium Enterococcus hirae has been a paradigm for many aspects of the process. The cop operon of E. hirae consists of four genes that encode a repressor, CopY, a copper chaperone, CopZ, and two CPx-type copper ATPases, CopA and CopB. CopA and CopB accomplish copper uptake and export, respectively, and the expression of the cop operon is regulated by copper via the CopY repressor and the CopZ chaperone. The functions of the four Cop proteins have been extensively studied in vivo as well as in vitro and a detailed understanding of the regulation of the cop operon by copper has emerged.  相似文献   

5.
The cop operon of Enterococcus hirae encodes a repressor, CopY, a copper chaperone, CopZ, and two copper ATPases, CopA and CopB. Regulation of the cop operon is bi-phasic, with copper addition as well as copper chelation leading to induction. Using a plasmid-borne system with a reporter gene, induction of wild-type and mutant cop promoters by high and low copper conditions was investigated. Only mutations that impaired the interaction of CopY with both DNA binding sites had a marked effect on regulation, leading to hyperinduction by copper(I) or copper(II). Chelation of copper(II), but not copper(I), also induced the operon, but induction by copper chelation was not significantly affected by the mutations. E. hirae mutants with reduced extracellular copper reductase activity exhibited the same induction kinetics as wild-type cells. These results show that copper addition and copper chelation induce the cop operon by different routes.  相似文献   

6.
Intracellular copper routing in Enterococcus hirae is accomplished by the CopZ copper chaperone. Under copper stress, CopZ donates Cu+ to the CopY repressor, thereby releasing its bound zinc and abolishing repressor–DNA interaction. This in turn induces the expression of the cop operon, which encodes CopY and CopZ, in addition to two copper ATPases, CopA and CopB. To gain further insight into the function of CopZ, the yeast two-hybrid system was used to screen for proteins interacting with the copper chaperone. This led to the identification of Gls24, a member of a family of stress response proteins. Gls24 is part of an operon containing eight genes. The operon was induced by a range of stress conditions, but most notably by copper. Gls24 was overexpressed and purified, and was shown by surface plasmon resonance analysis to also interact with CopZ in vitro . Circular dichroism measurements revealed that Gls24 is partially unstructured. The current findings establish a novel link between Gls24 and copper homeostasis.  相似文献   

7.
CopZ, an Atx1-like copper chaperone from the bacterium Bacillus subtilis, functions as part of a complex cellular machinery for Cu(I) trafficking and detoxification, in which it interacts specifically with the transmembrane Cu(I)-transporter CopA. Here we demonstrate that the cysteine residues of the MXCXXC Cu(I)-binding motif of CopZ have low proton affinities, with both exhibiting pK(a) values of 6 or below. Chelator competition experiments demonstrated that the protein binds Cu(I) with extremely high affinity, with a small but significant pH-dependence over the range pH 6.5-8.0. From these data, a pH-corrected formation constant, beta(2)= approximately 6 x 10(22) M(-2), was determined. Rapid exchange of Cu(I) between CopZ and the Cu(I)-chelator BCS (bathocuproine disulfonate) indicated that the mechanism of exchange does not involve simple dissociation of Cu(I) from CopZ (or BCS), but instead proceeds via the formation of a transient Cu(I)-mediated protein-chelator complex. Such a mechanism has similarities to the Cu(I)-exchange pathway that occurs between components of copper-trafficking pathways.  相似文献   

8.
Cu homeostasis depends on a tightly regulated network of proteins that transport or sequester Cu, preventing the accumulation of this toxic metal while sustaining Cu supply for cuproproteins. In Rhodobacter capsulatus, Cu‐detoxification and Cu delivery for cytochrome c oxidase (cbb3‐Cox) assembly depend on two distinct Cu‐exporting P1B‐type ATPases. The low‐affinity CopA is suggested to export excess Cu and the high‐affinity CcoI feeds Cu into a periplasmic Cu relay system required for cbb3‐Cox biogenesis. In most organisms, CopA‐like ATPases receive Cu for export from small Cu chaperones like CopZ. However, whether these chaperones are also involved in Cu export via CcoI‐like ATPases is unknown. Here we identified a CopZ‐like chaperone in R. capsulatus, determined its cellular concentration and its Cu binding activity. Our data demonstrate that CopZ has a strong propensity to form redox‐sensitive dimers via two conserved cysteine residues. A ΔcopZ strain, like a ΔcopA strain, is Cu‐sensitive and accumulates intracellular Cu. In the absence of CopZ, cbb3‐Cox activity is reduced, suggesting that CopZ not only supplies Cu to P1B‐type ATPases for detoxification but also for cuproprotein assembly via CcoI. This finding was further supported by the identification of a ~150 kDa CcoI‐CopZ protein complex in native R. capsulatus membranes.  相似文献   

9.
In this paper the interaction of cytoplasmic CopZ and the N-terminal domain of the CopA ATPase from Bacillus subtilis has been studied by NMR through (15)N-(1)H HSQC experiments in order to understand the role of the two proteins in the whole copper trafficking mechanism of the bacteria. It appears that the two proteins interact in a fashion similar to that of the yeast homologue proteins [Arnesano, F., Banci, L., Bertini, I., Cantini, F., Ciofi-Baffoni, S., Huffman, D. L., and O'Halloran, T. V. (2001) J. Biol. Chem. 276, 41365-41376], although the surface potentials are reversed. A structural model for the interaction is proposed. (15)N mobility studies on the free proteins and on their complex are also reported. From these data, it appears that copper is largely transferred from CopZ to CopA, thus suggesting their possible involvement in a detoxification process. Comparing functional data of homologous proteins of other bacteria, it can be concluded that this class of proteins is involved in copper homeostasis but the specific roles are species dependent.  相似文献   

10.
Copper is an essential component of life because of its convenient redox potential of 200-800 mV when bound to protein. Extensive insight into copper homeostasis has only emerged in the last decade and Enterococcus hirae has served as a paradigm for many aspects of the process. The cop operon of E. hirae regulates copper uptake, availability, and export. It consists of four genes that encode a repressor, CopY, a copper chaperone, CopZ, and two CPx-type copper ATPases, CopA and CopB. Most of these components have been conserved across the three evolutionary kingdoms. The four Cop proteins have been studied in vivo as well as in vitro and their function is understood in some detail.  相似文献   

11.
The chaperone CopZ together with the P-type ATPase transporter CopA constitute a copper-detoxification system in Bacillus subtilis that is commonly found in bacteria and higher cells. Previous studies of the regulation of the copZA operon showed that expression is significantly upregulated in response to elevated concentrations of environmental silver and cadmium, as well as copper. Here, we have used spectroscopic and bioanalytical methods to investigate in detail the capacity of CopZ to bind these metal ions (as Ag(+) and Cd(2+)). We demonstrate that Ag(+) binding mimics closely that of Cu(+): Ag(+)-mediated dimerisation of the protein occurs, and distinct Ag(+)-bound species are formed at higher Ag(+) loadings. Cd(2+) also binds to CopZ, but exhibits significantly different behaviour. Cd(2+)-mediated dimerisation is only observed at low loadings, such that at 0.5 and one Cd(2+) per CopZ the protein is present mainly in a monomeric form; and multinuclear higher-order forms of Cd(2+)-CopZ are not observed. Competition binding studies reveal that Ag(+) binds with an affinity very similar to that of Cu(+), while Cd(2+) binding is significantly weaker. These data provide support for the proposal that CopZ may be involved in the detoxification of silver and cadmium, in addition to copper.  相似文献   

12.
Bacterial CopZ proteins deliver copper to P1B-type Cu+-ATPases that are homologous to the human Wilson and Menkes disease proteins. The genome of the hyperthermophile Archaeoglobus fulgidus encodes a putative CopZ copper chaperone that contains an unusual cysteine-rich N-terminal domain of 130 amino acids in addition to a C-terminal copper binding domain with a conserved CXXC motif. The N-terminal domain (CopZ-NT) is homologous to proteins found only in extremophiles and is the only such protein that is fused to a copper chaperone. Surprisingly, optical, electron paramagnetic resonance, and x-ray absorption spectroscopic data indicate the presence of a [2Fe-2S] cluster in CopZ-NT. The intact CopZ protein binds two copper ions, one in each domain. The 1.8 A resolution crystal structure of CopZ-NT reveals that the [2Fe-2S] cluster is housed within a novel fold and that the protein also binds a zinc ion at a four-cysteine site. CopZ can deliver Cu+ to the A. fulgidus CopA N-terminal metal binding domain and is capable of reducing Cu2+ to Cu+. This unique fusion of a redox-active domain with a CXXC-containing copper chaperone domain is relevant to the evolution of copper homeostatic mechanisms and suggests new models for copper trafficking.  相似文献   

13.
Metal ion homeostasis mechanisms in the food-borne human pathogen Campylobacter jejuni are poorly understood. The Cj1516 gene product is homologous to the multicopper oxidase CueO, which is known to contribute to copper tolerance in Escherichia coli. Here we show, by optical absorbance and electron paramagnetic resonance spectroscopy, that purified recombinant Cj1516 contains both T1 and trinuclear copper centers, which are characteristic of multicopper oxidases. Inductively coupled plasma mass spectrometry revealed that the protein contained approximately six copper atoms per polypeptide. The presence of an N-terminal “twin arginine” signal sequence suggested a periplasmic location for Cj1516, which was confirmed by the presence of p-phenylenediamine (p-PD) oxidase activity in periplasmic fractions of wild-type but not Cj1516 mutant cells. Kinetic studies showed that the pure protein exhibited p-PD, ferroxidase, and cuprous oxidase activities and was able to oxidize an analogue of the bacterial siderophore anthrachelin (3,4-dihydroxybenzoate), although no iron uptake impairment was observed in a Cj1516 mutant. However, this mutant was very sensitive to increased copper levels in minimal media, suggesting a role in copper tolerance. This was supported by increased expression of the Cj1516 gene in copper-rich media. A mutation in a second gene, the Cj1161c gene, encoding a putative CopA homologue, was also found to result in copper hypersensitivity, and a Cj1516 Cj1161c double mutant was found to be more copper sensitive than either single mutant. These observations and the apparent lack of alternative copper tolerance systems suggest that Cj1516 (CueO) and Cj1161 (CopA) are major proteins involved in copper homeostasis in C. jejuni.  相似文献   

14.
XAS studies have been performed, under various experimental conditions, on a copper(I)-transporting protein, CopZ, of Bacillus subtilis. The copper(I) ion, reduced with dithiothreitol, is three-coordinate with three sulfur donor atoms, two of which presumably provided by the protein and one by dithiothreitol. If a molar excess of acetate (15 mM; 5:1 respect to CopZ) or citrate (6 mM; 2:1 respect to CopZ) is present in solution, the EXAFS spectra suggest the presence of a dimeric form involving a close contact between Cu(I) ions from two molecules, where Cu is still three-coordinate. (1)H and (15)N NMR data provide further structural details. If copper reduction is accomplished with ascorbate, the data indicate that one oxygen of ascorbate enters in the first-coordination sphere of copper, together with two sulfur atoms, in a dimeric form of the protein. These results are instructive and have been discussed with respect to the molecular basis of copper trafficking.  相似文献   

15.
16.
Extracellular copper regulates the DNA binding activity of the CopY repressor of Enterococcus hirae and thereby controls expression of the copper homeostatic genes encoded by the cop operon. CopY has a CxCxxxxCxC metal binding motif. CopZ, a copper chaperone belonging to a family of metallochaperones characterized by a MxCxxC metal binding motif, transfers copper to CopY. The copper binding stoichiometries of CopZ and CopY were determined by in vitro metal reconstitutions. The stoichiometries were found to be one copper(I) per CopZ and two copper(I) per CopY monomer. X-ray absorption studies suggested a mixture of two- and three-coordinate copper in Cu(I)CopZ, but a purely three-coordinate copper coordination with a Cu-Cu interaction for Cu(I)2CopY. The latter coordination is consistent with the formation of a compact binuclear Cu(I)-thiolate core in the CxCxxxxCxC binding motif of CopY. Displacement of zinc, by copper, from CopY was monitored with 2,4-pyridylazoresorcinol. Two copper(I) ions were required to release the single zinc(II) ion bound per CopY monomer. The specificity of copper transfer between CopZ and CopY was dependent on electrostatic interactions. Relative copper binding affinities of the proteins were investigated using the chelator, diethyldithiocarbamic acid (DDC). These data suggest that CopY has a higher affinity for copper than CopZ. However, this affinity difference is not the sole factor in the copper exchange; a charge-based interaction between the two proteins is required for the transfer reaction to proceed. Gain-of-function mutation of a CopZ homologue demonstrated the necessity of four lysine residues on the chaperone for the interaction with CopY. Taken together, these results suggest a mechanism for copper exchange between CopZ and CopY.  相似文献   

17.
18.
The solution structure of the N-terminal region (151 amino acids) of a copper ATPase, CopA, from Bacillus subtilis, is reported here. It consists of two domains, CopAa and CopAb, linked by two amino acids. It is found that the two domains, which had already been separately characterized, interact one to the other through a hydrogen bond network and a few hydrophobic interactions, forming a single rigid body. The two metal binding sites are far from one another, and the short link between the domains prevents them from interacting. This and the surface electrostatic potential suggest that each domain receives copper from the copper chaperone, CopZ, independently and transfers it to the membrane binding site of CopA. The affinity constants of silver(I) and copper(I) are similar for the two sites as monitored by NMR. Because the present construct "domain-short link-domain" is shared also by the last two domains of the eukaryotic copper ATPases and several residues at the interface between the two domains are conserved, the conclusions of the present study have general validity for the understanding of the function of copper ATPases.  相似文献   

19.
Cellular copper homeostasis requires transmembrane transport and compartmental trafficking while maintaining the cell essentially free of uncomplexed Cu2+/+. In bacteria, soluble cytoplasmic and periplasmic chaperones bind and deliver Cu+ to target transporters or metalloenzymes. Transmembrane Cu+-ATPases couple the hydrolysis of ATP to the efflux of cytoplasmic Cu+. Cytosolic Cu+ chaperones (CopZ) interact with a structural platform in Cu+-ATPases (CopA) and deliver copper into the ion permeation path. CusF is a periplasmic Cu+ chaperone that supplies Cu+ to the CusCBA system for efflux to the extracellular milieu. In this report, using Escherichia coli CopA and CusF, direct Cu+ transfer from the ATPase to the periplasmic chaperone was observed. This required the specific interaction of the Cu+-bound form of CopA with apo-CusF for subsequent metal transfer upon ATP hydrolysis. As expected, the reverse Cu+ transfer from CusF to CopA was not observed. Mutation of CopA extracellular loops or the electropositive surface of CusF led to a decrease in Cu+ transfer efficiency. On the other hand, mutation of Met and Glu residues proposed to be part of the metal exit site in the ATPase yielded enzymes with lower turnover rates, although Cu+ transfer was minimally affected. These results show how soluble chaperones obtain Cu+ from transmembrane transporters. Furthermore, by explaining the movement of Cu+ from the cytoplasmic pool to the extracellular milieu, these data support a mechanism by which cytoplasmic Cu+ can be precisely directed to periplasmic targets via specific transporter-chaperone interactions.  相似文献   

20.
Escherichia coli CopA is a copper ion-translocating P-type ATPase that confers copper resistance. CopA formed a phosphorylated intermediate with [gamma-(32)P]ATP. Phosphorylation was inhibited by vanadate and sensitive to KOH and hydroxylamine, consistent with acylphosphate formation on conserved Asp-523. Phosphorylation required a monovalent cation, either Cu(I) or Ag(I). Divalent cations Cu(II), Zn(II), or Co(II) could not substitute, signifying that the substrate of this copper-translocating P-type ATPase is Cu(I) and not Cu(II). CopA purified from dodecylmaltoside-solubilized membranes similarly exhibited Cu(I)/Ag(I)-stimulated ATPase activity, with a K(m) for ATP of 0.5 mm. CopA has two N-terminal Cys(X)(2)Cys sequences, Gly-Leu-Ser-Cys(14)-Gly-His-Cys(17), and Gly-Met-Ser-Cys(110)-Ala-Ser-Cys(113), and a Cys(479)-Pro-Cys(481) motif in membrane-spanning segment six. The requirement of these cysteine residues was investigated by the effect of mutations and deletions. Mutants with substitutions of the N-terminal cysteines or deletion of the first Cys-(X)(2)-Cys motif formed acylphosphate intermediates. From the copper dependence of phosphoenzyme formation, the mutants appear to have 2-3 fold higher affinity for Cu(I) than wild type CopA. In contrast, substitutions in Cys(479) or Cys(481) resulted in loss of copper resistance, transport and phosphoenzyme formation. These results imply that the cysteine residues of the Cys-Pro-Cys motif (but not the N-terminal cysteine residues) are required for CopA function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号