首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Expression of the serum albumin gene is extinguished in rat hepatoma microcell hybrids that retain mouse chromosome 1. These data define atrans-dominant extinguisher locus,Tse-2,on mouse chromosome 1. To localize the human TSE2 locus, we prepared and characterized rat/human microcell hybrids that contained either human chromosome 1 or chromosome 2, the genetic homologues of mouse chromosome 1. Rat hepatoma microcell hybrids retaining a derivative human chromosome 1 [der 1 t(1;17)(p34.3;q11.2)] expressed their serum albumin genes at levels similar to those of parental hepatoma cells. In contrast, microcell transfer of human chromosome 2 into rat hepatoma recipients produced karyotypically heterogeneous collections of hybrid clones, some of which displayed dramatic albumin extinction phenotypes. For example, albumin mRNA levels in several extinguished microcell hybrids were reduced at least 500-fold, similar to albumin mRNA levels in hepatoma × fibroblast whole-cell hybrids. Expression of several other liver genes, including α1-antitrypsin, aldolase B, alcohol dehydrogenase, and phosphoenolpyruvate carboxykinase, was also affected in some of the microcell hybrids, but expression of these genes was not concordant with expression of albumin. Hybrid segregants were prepared from the albumin-extinguished hybrids, and reexpression of albumin mRNA and protein was observed in sublines that had lost or fragmented human chromosome 2. Finally, expression of mRNAs encoding the liver-enrichedtransactivators HNF-1, HNF-4, HNF-3α, and HNF-3β was not affected in any of the chromosome 2-containing hybrids. These data define and map a genetic locus on human chromosome 2 that extinguishes albumin gene expression intrans,and they suggest that TSE2-mediated extinction is independent of HNF-1, -4, -3α, and -3β expression.  相似文献   

2.
Tissue-specific extinguisher 1 (Tse-1) is a genetic locus on mouse chromosome 11 that can repress expression of several liver genes in trans. This locus is clearly active in fibroblasts, as hepatoma cells retaining fibroblast chromosome 11 are extinguished for both tyrosine aminotransferase and phosphoenolpyruvate carboxykinase gene expression. To assess the activity of Tse-1 in other tissues, we transferred mouse chromosome 11 from several different cell types into rat hepatoma recipients. Tse-1 was active in nonhepatic cell lines derived from each primary germ layer, but Tse-1 activity was not apparent in hybrids between hepatoma cells and primary mouse hepatocytes. These differences in the genetic activity of murine Tse-1 were apparently heritable in cis.  相似文献   

3.
A M Killary  R E Fournier 《Cell》1984,38(2):523-534
Extinction is an operational term that refers to the lack of expression of tissue-specific traits that is generally observed in hybrid cells formed by fusing dissimilar cell types. To define the genetic basis of this phenomenon, a series of rat hepatoma x mouse fibroblast hybrids has been isolated and characterized. We report here that the extinction of hepatic marker traits in these clones was strictly correlated with the retention of five particular fibroblast chromosomes (autosomes 8, 9, 10, 11, and 13). In order to dissect this correlation into its component parts, hepatoma microcell hybrids containing single, specific fibroblast chromosomes were constructed. Hepatoma clones retaining only fibroblast chromosome 11 were specifically extinguished for liver-specific tyrosine aminotransferase (TAT) expression, while expression of four other hepatic traits and of numerous constitutive markers was unaffected. Furthermore, removal of fibroblast chromosome 11 from the populations by back-selection resulted in reexpression of TAT activity to full parental levels. These data define and localize a genetic locus, tissue-specific extinguisher-1 (Tse-1), which regulates hepatic TAT expression in trans. We also provide evidence that human Tse-1 resides on the homologous chromosome (human chromosome 17), and that hybrids retaining active Tse-1 loci lack TAT-specific mRNA.  相似文献   

4.
Independent hybrid clones resulted from the whole cell and microcell-mediated transfer of hamster or mouse fibroblast chromosomes into mouse hepatoma XXIIa cells. The fusion was promoted with PEG, ethidium bromide alone, or in combination with HAT and ouabain, was used for selecting the hybrids. Using indirect immunoautoradiography, three clones (one intra- and one interspecies microcellular; one interspecies, whole cell fusion) have been found to express their hepatic function to synthesize transferrin. The liver specific protein--albumin--was extinguished in all the hybrid combinations. Possible mechanisms of gene expression are discussed. The hybrids selected could be used for mapping chromosomes, coding proteins, as well as for studying regulation in the tandem of albumin and alpha-fetoprotein genes in the mouse genome. The microcell mediated chromosome transfer into differentiated cells has been used to construct original genetical combinations of regulatory and structural elements of the mouse genome.  相似文献   

5.
The structural gene encoding liver-specific tyrosine aminotransferase (TAT; EC 2.6.1.5) was assigned to mouse chromosome 8 by screening a series of hybrid cell lines for retention of murine Tat-1 gene sequences by genomic Southern blotting. This assignment demonstrated that the Tat-1 structural gene was not syntenic with Tse-1, a chromosome 11-linked locus that negatively regulates TAT expression in trans (A. M. Killary and R. E. K. Fournier, Cell 38:523-534, 1984). We also showed that the fibroblast Tat-1 gene was systematically activated in hepatoma X fibroblast hybrids retaining fibroblast chromosomes 8 in the absence of chromosome 11 but was extinguished in cells retaining both fibroblast chromosomes. Thus, the TAT structural genes of both parental cell types were coordinately regulated in the intertypic hybrids, and the TAT phenotype of the cells was determined by the presence or absence of fibroblast Tse-1.  相似文献   

6.
7.
Rollini P  Fournier RE 《Genomics》1999,56(1):22-30
The genes encoding alpha1-antitrypsin (alpha1AT, gene symbol PI) and corticosteroid-binding globulin (CBG) are part of a cluster of six serine protease inhibitor (serpin) genes located on human chromosome 14q32.1. Both genes are actively transcribed in the liver and in human hepatoma cells, but they are not expressed in most other cell types. In this study we mapped DNase I-hypersensitive sites (DHSs) in an approximately 130-kb region of 14q32.1 that includes both genes. The distributions of DHSs in expressing (HepG2) vs nonexpressing (HeLa S3) cells were very different: HepG2 cells displayed 29 DHSs in this interval, but only 7 of those sites were present in HeLa cells. To determine the chromatin organization of activated or extinguished serpin alleles, we transferred human chromosome 14 into rat hepatoma cells or fibroblasts, respectively. Human alpha1AT and CBG gene expression was activated in rat hepatoma microcell hybrids containing human chromosome 14, but extinguished in rat fibroblast hybrids with the same genotype. DHS mapping in these microcell hybrids demonstrated that the chromatin structure of the entire 130-kb region was reorganized in microcell hybrids, and the distributions of DHSs in activated and extinguished alleles recapitulated those of expressing and nonexpressing cells, respectively. Thus, microcell hybrids provide a system in which reproducible changes in gene activity and long-range chromatin organization can be induced experimentally. This provides a basis for studying the effects of targeted modifications of the alpha1AT and CBG loci on the regulation of gene activity and chromatin structure.  相似文献   

8.
Extinction of phosphoenolpyruvate carboxykinase (PCK) gene expression in hepatoma x fibroblast hybrids is mediated by a trans-acting genetic locus designated tissue-specific extinguisher 1 (TSE1). To identify PCK gene sequences required for extinction, hepatoma transfectants expressing PCK-thymidine kinase (TK) chimeric genes were fused with TK- fibroblasts and PCK-TK expression in the resulting hybrids was monitored. Expression of a PCK-TK chimera containing PCK sequences between base pairs -548 and +73 was extinguished in four of five hepatoma transfectants tested, although hybrids derived from one transfectant clone failed to extinguish PCK-TK expression. In contrast, crosses between hepatoma transfectants expressing the herpesvirus TK gene from its own promoter and TK- fibroblasts produced TK+ hybrids; extinction of the transfected TK gene was not observed. Thus, rat PCK gene sequences between base pairs -548 and +73 are sufficient for tissue-specific extinction in hybrid cells. Extinction of PCK-TK gene expression in transfectant microcell hybrids mapped specifically to human chromosome 17, the site of human TSE1.  相似文献   

9.
Somatic cell hybrids formed by fusing hepatoma cells with fibroblasts generally fail to express liver functions, a phenomenon termed extinction. Previous studies demonstrated that extinction of the genes encoding tyrosine aminotransferase, phosphoenolpyruvate carboxykinase, and argininosuccinate synthetase is mediated by a specific genetic locus (TSE1) that maps to mouse chromosome 11 and human chromosome 17. In this report, we show that full repression of these genes requires a genetic factor in addition to TSE1. This conclusion is based on the observation that residual gene activity was apparent in monochromosomal hybrids retaining human TSE1 but not in complex hybrids retaining many fibroblast chromosomes. Furthermore, TSE1-repressed genes were hormone inducible, whereas fully extinguished genes were not. Analysis of hybrid segregants indicated that genetic loci required for the complete repression phenotype were distinct from TSE1.  相似文献   

10.
alpha-Fetoprotein (AFP), a liver-specific protein, is extinguished in somatic cell hybrids formed by the fusion of mouse hepatoma cells (BWTG3) with rat fibroblast cells (JF1). Our studies show that the extinction of mouse AFP expression in these somatic cell hybrids may involve at least two cis-acting regulatory domains, i.e., the enhancer elements and a tissue-specific promoter region, which are located in the 5'-flanking region of the AFP gene.  相似文献   

11.
Hybrids formed by the fusion of mouse hepatoma (BWTG3) and rat fibroblast (JF1) cells exhibit the extinction of mouse albumin and alpha-fetoprotein synthesis. Karyotype analyses suggest that all parental chromosomes are present in the hybrids. The extinction, therefore, of mouse hepatocyte genes is attributed to the inhibitory action of the rat genome. In these studies, we show that these hybrids possess and express the mouse beta-glucuronidase gene (which is encoded on the same chromosome as the mouse albumin and alpha-fetoprotein gene), and we present data of Southern blot analysis which demonstrate that such hybrids have indeed retained both mouse and rat albumin DNA sequences. In addition, using mouse albumin cDNA, we have shown by cDNA-RNA reassociation kinetics that albumin mRNA is virtually absent in these hybrids. We conclude from these studies that the extinction of albumin synthesis involves a mechanism which results in the loss of cytoplasmic albumin mRNA.  相似文献   

12.
Activation of a silent gene is accompanied by its demethylation   总被引:3,自引:0,他引:3  
The phenomenon of gene activation by cell fusion makes it possible to study a gene when it passes from a silent to an active state. The relationship between methylation and activation of the mouse albumin gene has been investigated in two types of hybrid clones: mouse lymphoblastoma--rat hepatoma hybrids where activation is very frequent, and mouse L-cell--rat hepatoma hybrids where activation is a rare event. Analysis of the methylation pattern of seven MspI/HpaII sites that occur along the first 8000 bases of the mouse albumin gene has been performed. The entire 5' region is unmethylated only in albumin-producing cells (adult liver and hepatoma); in non-hepatic cells this region is heavily methylated. In hybrids between rat hepatoma cells and mouse cells of mesenchymal origin, the only regular change is the demethylation of the most 5' site (M1), which is systematically observed in clones where expression of the mouse albumin gene has been activated. Demethylation of this site, like activation of the mouse albumin gene, is gene dosage-dependent; it is systematic in the lymphoblastoma--hepatoma hybrids and rare in L-cell--hepatoma hybrids. We conclude that demethylation of this site is tightly coupled with activation of the gene and may well be a necessary prerequisite for activation.  相似文献   

13.
14.
15.
A study of aldehyde dehydrogenase in rat hepatoma cells and rat hepatoma-mouse fibroblast hybrids revealed that the hepatoma cells had activity comparable to that found in whole rat liver and that the enzyme activity was suppressed in early hybrids and reappeared following chromosome loss. Starch gel electrophoresis and heat inactivation studies showed that a new form of enzyme was produced in the hybrids, possibly a heteropolymorphic combination between the HTC enzyme and a previously repressed mouse form. Staining methods for starch gel electrophoresis and histochemical detection of aldehyde dehydrogenase are described.This work was supported by grants from the Damon Runyon Foundation (DRG 1088s) and the Public Health Service (1-R01-Ca 12310-02).  相似文献   

16.
Expression of human hepatic genes in somatic cell hybrids   总被引:4,自引:0,他引:4  
Four diploid human cell types (lymphocytes, fibroblasts, amniotic fluid cells, and hepatocytes) were fused to mouse hepatoma cells, HH. HH synthesized and secreted several liver-specific gene products including albumin, transferrin, and alpha-fetoprotein. The resulting interspecific hybrids were compared to determine whether or not the pattern of human hepatic gene expression was similar when these various cells were fused with the mouse hepatoma line. The expression of six human hepatic genes was examined, including albumin, alpha-fetoprotein, ceruloplasmin, transferrin, alpha-1-antitrypsin, and haptoglobin. Albumin was most frequently expressed while alpha-fetoprotein was not detected in any of the hybrids studied. The patterns of expression of human serum proteins differed between the hybrid series. Hybrids derived from human fibroblasts produced primarily albumin, while those derived from lymphoblastoid cells and amniocytes had a higher frequency of clones secreting alpha-1-antitrypsin. The findings reported here suggest that the frequency of hybrid clones expressing human hepatic gene products and the array of proteins produced are influenced by the histogenetic state of the human parental cell type.  相似文献   

17.
Activation of two previously silent mouse hepatic genes has been investigated in hybrid cells between pseudodiploid mouse lymphoblastoma cells and hyperdiploid or hypertetraploid rat hepatoma cells. In this material, activation of the mouse albumin gene is a frequent event, whereas activation of mouse alpha-fetoprotein (AFP) occurs only in those cells that produce large amounts of albumin. Quantitative tests of hybrid populations for the activated proteins and their mRNAs revealed the expected sizes and structures: moreover, as in hepatoma cells, the amount of both rat and mouse albumin produced was directly proportional to the intracellular concentration of the corresponding mRNA. The cellular environment required for activation of the liver-specific genes was investigated by cell-by-cell analysis of each hybrid clone. Immunostaining for the presence of rat and mouse albumin and mouse AFP revealed unexpected heterogeneity in the phenotypes of the hybrid populations, which were found to contain cells that: (a) failed to express either of the proteins; (b) produced all three; (c) produced both rat and mouse albumin; or (d) produced rat albumin only. Karyotypic analysis indicated that the hybrid-cell phenotype depended on parental chromosome ratios rather than absolute numbers of chromosomes. It was found for albumin and mouse AFP that the fraction of immunostained cells was equal to the fraction of metaphases that contained a minimal rat-to-mouse chromosome ratio of 2.5 and 9, respectively. It is concluded that in those hybrids, expression of liver-specific genes is regulated by extinguishers, but in a dose-dependent fashion, suggesting the intervention of antagonistic activators from the rat hepatoma chromosomes.  相似文献   

18.
19.
Neonatal hepatic functions are selectively extinguished in hybrids between mouse hepatoma cells, that express only fetal hepatic functions, and rat hepatoma cells expressing neonatal as well as fetal functions. A search for hybrid cells reexpressing these neonatal functions was undertaken to determine; (1) whether the selective extinction of neonatal functions is reversible and at what frequency, and (2) whether the re-expression of neonatal functions would be accompanied by modifications in the expression of fetal functions. The criterion used to obtain hybrids showing re-expression was glucose-free medium (G) where growth requires the presence of the extinguished gluconeogenic enzymes. Even though the parental cells are of the same histotype it proved difficult to obtain re-expression. Survivors in G- were obtained only from hybrids containing a greater than 1s complement of rat chromosomes; they reexpress not only gluconeogenic enzymes but also basal tyrosine aminotransferase activity, and the fetal hepatic function alpha-fetoprotein continues to be expressed in most of the clones. All survivors in G- display a significant loss of chromosomes and this loss concerns essentially mouse chromosomes.  相似文献   

20.
The dominance or recessiveness of glucocorticoid responsiveness and albumin production of different hepatoma cell lines were investigated using somatic cell hybrids. The majority of the intraspecific, intraorgan hybrids between glucocorticoid sensitive, tyrosine aminotransferase (TAT) non-inducible, albumin non-secreting parents and glucocorticoid resistant, TAT-inducible, albumin secreting parents were glucocorticoid sensitive, TAT non-inducible and albumin non-producing. The TAT inducibility was extinguished in interspecific, interorgan hybrids of TAT-inducible hepatoma and non-inducible Chinese hamster fibroblast parents. No TAT reexpression was observed among the many independent hybrid clones. The experiments provided evidence for the non-coordinate control of the expression of differentiated functions in hepatoma hybrid cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号