首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
2.
A number of environmental stresses can lead to enhanced production of superoxide within plant tissues, and plants are believed to rely on the enzyme superoxide dismutase (SOD) to detoxify this reactive oxygen species. We have identified seven cDNAs and genes for SOD in Arabidopsis. These consist of three CuZnSODs (CSD1, CSD2, and CSD3), three FeSODs (FSD1, FSD2, and FSD3), and one MnSOD (MSD1). The chromosomal location of these seven SOD genes has been established. To study this enzyme family, antibodies were generated against five proteins: CSD1, CSD2, CSD3, FSD1, and MSD1. Using these antisera and nondenaturing-polyacrylamide gel electrophoresis enzyme assays, we identified protein and activity for two CuZnSODs and for FeSOD and MnSOD in Arabidopsis rosette tissue. Additionally, subcellular fractionation studies revealed the presence of CSD2 and FeSOD protein within Arabidopsis chloroplasts. The seven SOD mRNAs and the four proteins identified were differentially regulated in response to various light regimes, ozone fumigation, and ultraviolet-B irradiation. To our knowledge, this is the first report of a large-scale analysis of the regulation of multiple SOD proteins in a plant species.  相似文献   

3.
4.
The aim of this investigation was to identify the growth limiting factors in Arabidopsis thaliana subjected to a mild salt stress. Two natural accessions (Col and N1438) were compared. In spite of their morphological and developmental similarity, they have been previously shown to differ in the response of their superoxide dismutase genes to salt stress (Physiol Plant 132:293–305, 2008). Thirty-day-old seedlings were grown for 15 days using a split-root configuration in which the root system was divided into two equal parts: the first was immersed in a complete nutrient solution with 50 mM NaCl added, while the second part was immersed in either complete or incomplete K-, Ca-, or N-free medium. Using this approach, we demonstrated that K+ and Ca2+ uptake was impaired in the roots subjected to NaCl. There was no indication of the salt-induced inhibition of N uptake. If K+ or Ca2+ were available from salt-free medium, plants were able to grow at normal rate and accumulate large amounts of Na+ in the shoots. These results indicate that the sensitivity of Arabidopsis growth to mild salinity was probably due to an inhibition of K+ or Ca2+ root transport by salt rather than due to salt accumulation in shoots. Furthermore, the salt sensitivity of ion transport in roots seemed to depend on the genotype, since K+ was limiting for Col growth, in contrast to N1438, the growth of which was limited by Ca2+.  相似文献   

5.
6.
7.
Four genes encoding cold shock domain (CSD) proteins have been identified in salt cress [Thellungiella salsuginea (halophila), an extremophyte currently recognized as a promising model for studying stress tolerance]. The deduced proteins prove highly homologous to those of Arabidopsis thaliana (up to 95% identity) and are accordingly enumerated TsCSDP1-TsCSDP4; after the N-proximal conserved CSD, they have respectively 6, 2, 7, and 2 zinc finger motifs evenly spaced by Gly-rich stretches. Much lower similarity (approximately 45%) is observed in the regions upstream of TATA-box promoters of TsCSDP1 vs. AtCSP1, with numerous distinctions in the sets of identifiable cis-regulatory elements. Plasmid expression of sCSDP1 rescues a cold-sensitive cup-lacking mutant of Escherichia coli, confirming that the protein is functional. In leaves of salt cress plants under normal conditions, the mRNA levels for the four TsCSDPs relate as 10: 27: 1: 31. Chilling to 4 degrees C markedly alters the gene expression; the 4-day dynamics are different for all four genes and quite dissimilar from those reported for their Arabidopsis homologues under comparable conditions. Thus, the much greater cold hardiness of Thellungiella vs. Arabidopsis cannot be explained by structural distinctions of its CSDPs, but rather may be due to expedient regulation of their expression at low temperature.  相似文献   

8.
Overexpression of SOD2 increases salt tolerance of Arabidopsis   总被引:7,自引:0,他引:7       下载免费PDF全文
Gao X  Ren Z  Zhao Y  Zhang H 《Plant physiology》2003,133(4):1873-1881
The yeast (Schizosaccharomyces pombe) SOD2 (Sodium2) gene was introduced into Arabidopsis under the control of the cauliflower mosaic virus 35S promoter. Transformants were selected for their ability to grow on medium containing kanamycin. Southern- and northern-blot analyses confirmed that SOD2 was transferred into the Arabidopsis genome. There were no obvious morphological or developmental differences between the transgenic and wild-type (wt) plants. Several transgenic homozygous lines and wt plants (control) were evaluated for salt tolerance and gene expression. Overexpression of SOD2 in Arabidopsis improved seed germination and seedling salt tolerance. Analysis of Na+ and K+ contents of the symplast and apoplast in the parenchyma cells of the root cortex and mesophyll cells in the spongy tissue of the leaf showed that transgenic lines accumulated less Na+ and more K+ in the symplast than the wt plants did. The photosynthetic rate and the fresh weight of the transgenic lines were distinctly higher than that of wt plants after NaCl treatment. Results from different tests indicated that the expression of the SOD2 gene promoted a higher level of salt tolerance in vivo in transgenic Arabidopsis plants.  相似文献   

9.
There are three iron superoxide dismutases in Arabidopsis thaliana: FE SUPEROXIDE DISMUTASE1 (FSD1), FSD2, and FSD3. Their biological roles in chloroplast development are unknown. Here, we show that FSD2 and FSD3 play essential roles in early chloroplast development, whereas FSD1, which is found in the cytoplasm, does not. An fsd2-1 fsd3-1 double mutant had a severe albino phenotype on agar plates, whereas fsd2 and fsd3 single knockout mutants had pale green phenotypes. Chloroplast development was arrested in young seedlings of the double mutant. The mutant plants were highly sensitive to oxidative stress and developed increased levels of reactive oxygen species (ROS) during extended darkness. The FSD2 and FSD3 proteins formed a heteromeric protein complex in the chloroplast nucleoids. Furthermore, transgenic Arabidopsis plants overexpressing both the FSD2 and FSD3 genes showed greater tolerance to oxidative stress induced by methyl viologen than did the wild type or single FSD2- or FSD3-overexpressing lines. We propose that heteromeric FSD2 and FSD3 act as ROS scavengers in the maintenance of early chloroplast development by protecting the chloroplast nucleoids from ROS.  相似文献   

10.
An analysis of the salinity tolerance of 354 Arabidopsis thaliana accessions showed that some accessions were more tolerant to salt shock than the reference accession, Col-0, when transferred from 0 to 225 mM NaCl. In addition, several accessions, including Zu-0, showed marked acquired salt tolerance after exposure to moderate salt stress. It is likely therefore that Arabidopsis plants have at least two types of tolerance, salt shock tolerance and acquired salt tolerance. To evaluate a role of well-known salt shock tolerant gene SOS1 in acquired salt tolerance, we isolated a sos1 mutant from ion-beam-mutagenized Zu-0 seedlings. The mutant showed severe growth inhibition under salt shock stress owing to a single base deletion in the SOS1 gene and was even more salt sensitive than Col-0. Nevertheless, it was able to survive after acclimation on 100 mM NaCl for 7 d followed by 750 mM sorbitol for 20 d, whereas Col-0 became chlorotic under the same conditions. We propose that genes for salt acclimation ability are different from genes for salt shock tolerance and play an important role in the acquisition of salt or osmotic tolerance.  相似文献   

11.
12.
Superoxide dismutases (SODs) are ubiquitous metalloenzymes that catalyze the dismutation of superoxide radicals (O2-) to molecular oxygen (O2) and hydrogen peroxide (H2O2). In this study we characterized an Arabidopsis thaliana CuZnSOD (CSD1), a close ortholog of a previously identified Brassica juncea CuZnSOD (MSOD1). CSD1 and other two homologs CSD2 and CSD3 were spatially regulated in Arabidopsis, and CSD1 exhibited distinct expression patterns in response to different stress treatments. To investigate the in vivo function of SOD, transgenic Arabidopsis plants, expressing sense and antisense MSOD1 RNAs, were generated and those with altered SOD activity were selected for further characterization. Although SOD transgenic plants exhibited normal phenotypes, the shoot regeneration response in transgenic explants was significantly affected by the modulated SOD activity and the corresponding H2O2 levels. Transgenic explants with downregulated SOD activity were poorly regenerative, whereas those with upregulated SOD activity were highly regenerative. These results suggest that shoot regeneration in vitro is regulated by the SOD activity.  相似文献   

13.
Tamaoki M  Matsuyama T  Kanna M  Nakajima N  Kubo A  Aono M  Saji H 《Planta》2003,216(4):552-560
We compared the physiological and molecular responses of two Arabidopsis accessions, Col-0 and Ws-2, to ozone (O(3)) exposure. Observation of visible injury as well as ion-leakage analysis demonstrated clear differences between the O(3)-tolerant accession Col and the O(3)-sensitive accession Ws. RNA-blot analysis showed that O(3)-induced increases in mRNA levels of several ethylene-inducible genes and a salicylic acid-inducible gene were substantially higher in Ws than in Col. The time-course of induction of various mRNA levels shows that the expression of ethylene-inducible genes was rapidly, and more strongly, induced by O(3) in Ws than in Col, suggesting that Ws exhibits higher ethylene-signaling. Both the level of mRNA for an O(3)-inducible 1-aminocyclopropane-1-carboxylate synthase and the level of ethylene generation after 3 h of O(3)-exposure were higher in Ws than in Col. O(3)-induced leaf damage was attenuated by pretreatment with ethylene biosynthesis- and signaling-inhibitors, indicating that ethylene signaling is required for O(3)-induced leaf injury in Ws. On the other hand, an ethylene-overproducing mutant of Col, eto1-1, displayed significantly increased O(3)-induced leaf injury compared to wild type plants. These results indicate that the difference in O(3) sensitivity is dependent on the difference in ethylene production rate between these two accessions. Finally, we investigated the relationship between the degree of leaf damage and the level of ethylene evolution in 20 different Arabidopsis accessions. Based on the result, the accessions were classified into four types. However, most of them showed significant correlation between the ethylene production level and the degree of leaf injury, suggesting that ethylene signaling is an important factor in the natural variety of O(3) sensitivity among Arabidopsis accessions.  相似文献   

14.
Sun J  Jiang H  Xu Y  Li H  Wu X  Xie Q  Li C 《Plant & cell physiology》2007,48(8):1148-1158
The molecular mechanism governing the response of plants to salinity stress, one of the most significant limiting factors for agriculture worldwide, has just started to be revealed. Here, we report AtSZF1 and AtSZF2, two closely related CCCH-type zinc finger proteins, involved in salt stress responses in Arabidopsis. The expression of AtSZF1 and AtSZF2 is quickly and transiently induced by NaCl treatment. Mutants disrupted in the expression of AtSZF1 or AtSZF2 exhibit increased expression of a group of salt stress-responsive genes in response to high salt. Significantly, the atszf1-1/atszf2-1 double mutant displays more sensitive responses to salt stress than the atszf1-1 or atszf2-1 single mutants and wild-type plants. On the other hand, transgenic plants overexpressing AtSZF1 show reduced induction of salt stress-responsive genes and are more tolerant to salt stress. We also showed that AtSZF1 is localized in the nucleus. Taken together, these results demonstrated that AtSZF1 and AtSZF2 negatively regulate the expression of salt-responsive genes and play important roles in modulating the tolerance of Arabidopsis plants to salt stress.  相似文献   

15.
Salt cress (Thellungiella halophila), a halophyte, is a genetic model system with a small plant size, short life cycle, copious seed production, small genome size, and an efficient transformation. Its genes have a high sequence identity (90%-95% at cDNA level) to genes of its close relative, Arabidopsis. These qualities are advantageous not only in genetics but also in genomics, such as gene expression profiling using Arabidopsis cDNA microarrays. Although salt cress plants are salt tolerant and can grow in 500 mm NaCl medium, they do not have salt glands or other morphological alterations either before or after salt adaptation. This suggests that the salt tolerance in salt cress results from mechanisms that are similar to those operating in glycophytes. To elucidate the differences in the regulation of salt tolerance between salt cress and Arabidopsis, we analyzed the gene expression profiles in salt cress by using a full-length Arabidopsis cDNA microarray. In salt cress, only a few genes were induced by 250 mm NaCl stress in contrast to Arabidopsis. Notably a large number of known abiotic- and biotic-stress inducible genes, including Fe-SOD, P5CS, PDF1.2, AtNCED, P-protein, beta-glucosidase, and SOS1, were expressed in salt cress at high levels even in the absence of stress. Under normal growing conditions, salt cress accumulated Pro at much higher levels than did Arabidopsis, and this corresponded to a higher expression of AtP5CS in salt cress, a key enzyme of Pro biosynthesis. Furthermore, salt cress was more tolerant to oxidative stress than Arabidopsis. Stress tolerance of salt cress may be due to constitutive overexpression of many genes that function in stress tolerance and that are stress inducible in Arabidopsis.  相似文献   

16.
Superoxide dismutase (SOD) is widely assumed to play a role in the detoxification of reactive oxygen species caused by environmental stresses. We found a characteristic expression of manganese SOD 1 (MSD1) in a heat‐stress‐tolerant cultivar of rice (Oryza sativa). The deduced amino acid sequence contains a signal sequence and an N‐glycosylation site. Confocal imaging analysis of rice and onion cells transiently expressing MSD1‐YFP showed MSD1‐YFP in the Golgi apparatus and plastids, indicating that MSD1 is a unique Golgi/plastid‐type SOD. To evaluate the involvement of MSD1 in heat‐stress tolerance, we generated transgenic rice plants with either constitutive high expression or suppression of MSD1. The grain quality of rice with constitutive high expression of MSD1 grown at 33/28 °C, 12/12 h, was significantly better than that of the wild type. In contrast, MSD1‐knock‐down rice was markedly susceptible to heat stress. Quantitative shotgun proteomic analysis indicated that the overexpression of MSD1 up‐regulated reactive oxygen scavenging, chaperone and quality control systems in rice grains under heat stress. We propose that the Golgi/plastid MSD1 plays an important role in adaptation to heat stress.  相似文献   

17.
18.
Despite the fact that glycine-rich RNA-binding proteins (GRPs) have been implicated in the responses of plants to changing environmental conditions, the reports demonstrating their biological roles are severely limited. Here, we examined the functional roles of a zinc finger-containing GRP, designated atRZ-1a, in Arabidopsis thaliana under drought or salt stress conditions. Transgenic Arabidopsis plants overexpressing atRZ-1a displayed retarded germination and seedling growth compared with the wild-type plants under salt or dehydration stress conditions. In contrast, the loss-of-function mutants of atRZ-1a germinated earlier and grew faster than the wild-type plants under the same stress conditions. Germination of the transgenic plants and mutant lines was influenced by the addition of ABA or glucose, implying that atRZ-1a affects germination in an ABA-dependent way. H(2)O(2) was accumulated at higher levels in the transgenic plants compared with the wild-type plants under stress conditions. The expression of several germination-responsive genes was modulated by atRZ-1a, and proteome analysis revealed that the expression of different classes of genes, including those involved in reactive oxygen species homeostasis and functions, was affected by atRZ-1a under dehydration or salt stress conditions. Taken together, these results suggest that atRZ-1a has a negative impact on seed germination and seedling growth of Arabidopsis under salt or dehydration stress conditions, and imply that atRZ-1a exerts its function by modulating the expression of several genes under stress conditions.  相似文献   

19.
The small GTPases of Rop/Rho family is central regulators of important cellular processes in plants. Tobacco small G protein gene NtRop1 has been isolated; however, its roles in stress responses were unknown. In the present study, the genomic sequence of NtRop1 was cloned, which has seven exons and six introns, similar to the Rop gene structure from Arabidopsis. The NtRop1 gene was constitutively expressed in the different organs whereas the other six Rop genes from tobacco had differential expression patterns. The expression of the NtRop1 gene was moderately induced by methyl viologen, NaCl, and ACC treatments, but slightly inhibited by ABA treatment, with no significant induction by NAA treatment. The transgenic Arabidopsis plants overexpressing the NtRop1 showed increased salt sensitivity as can be seen from the reduced root growth and elevated relative electrolyte leakage. The hydrogen peroxide production was also promoted in the NtRop1-trangenic plants in comparison with wild type plants. These results imply that the NtRop1 may confer salt sensitivity through activation of H2O2 production during plant response to salt stress.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号