首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of 5-enolpyruvylshikimate-3-phosphate synthase of Escherichia coli with the thiol reagent 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) leads to a modification of only 2 of the 6 cysteines of the enzyme, with a significant loss of its enzymatic activity. Under denaturing conditions, however, all 6 cysteines of 5-enolpyruvylshikimate-3-phosphate synthase react with DTNB, indicating the absence of disulfide bridges in the native protein. In the presence of shikimate 3-phosphate and glyphosate, only 1 of the 2 cysteines reacts with the reagent, with no loss of activity, suggesting that only 1 of these cysteines is at or near the active site of the enzyme. Cyanolysis of the DTNB-inactivated enzyme with KCN leads to elimination of 5-thio-2-nitrobenzoate, with formation of the thiocyano-enzyme. The thiocyano-enzyme is fully active; it exhibits a small increase in its I50 for glyphosate (6-fold) and apparent Km for phosphoenolpyruvate (4-fold) compared to the unmodified enzyme. Its apparent Km for shikimate 3-phosphate is, however, unaltered. These results clearly establish the nonessentiality of the active site-reactive cysteine of E. coli 5-enolpyruvylshikimate-3-phosphate synthase for either catalysis or substrate binding. Perturbations in the kinetic constants for phosphoenolpyruvate and glyphosate suggest that the cysteine thiol is proximal to the binding site for these ligands. By N-[14C]ethylmaleimide labeling, tryptic mapping, and N-terminal sequencing, the 2 reactive cysteines have been identified as Cys408 and Cys288. The cysteine residue protected by glyphosate and shikimate 3-phosphate from its reaction with DTNB was found to be Cys408.  相似文献   

2.
A gene homologous to D-ribose-5-phosphate isomerase (EC 5.3.1.6) was found in the genome of Pyrococcus horikoshii. D-ribose-5-phosphate isomerase (PRI) is of particular metabolic importance since it catalyzes the interconversion between the ribose and ribulose forms involved in the pentose phosphate cycle and in the process of photosynthesis. The gene consisting of 687 bp was overexpressed in Escherichia coli, and the resulting enzyme showed activity at high temperatures with an optimum over 90 degrees C. The crystal structures of the enzyme, free and in complex with D-4-phosphoerythronic acid inhibitor, were determined. PRI is a tetramer in the crystal and in solution, and each monomer has a new fold consisting of two alpha/beta domains. The 3D structures and the characterization of different mutants indicate a direct or indirect catalytic role for the residues E107, D85, and K98.  相似文献   

3.
The gene encoding D-lactate dehydrogenase (D-lactate: NAD+ oxidoreductase, EC 1.1.1.28) of Lactobacillus plantarum has been sequenced, and expressed in Escherichia coli cells with an inducible expression plasmid, in which the 5'-noncoding region of the gene was replaced with the tac promoter. Comparison of the sequence of D-lactate dehydrogenase with L-lactate dehydrogenases, including the L. plantarum L-lactate dehydrogenase, showed no significant homology. In contrast, the D-lactate dehydrogenase is homologous to E. coli D-3-phosphoglycerate dehydrogenase and Lactobacillus casei D-2-hydroxyisocaproate dehydrogenase. This indicates that D-lactate dehydrogenase is a member of a new family of 2-hydroxyacid dehydrogenases recently proposed, being distinct from L-lactate dehydrogenase and L-malate dehydrogenase, and strongly suggests that the new family consists of D-isomer-stereospecific enzymes. In the reductive reaction, the enzyme showed a broad substrate specificity, although pyruvate was the most favorable of all 2-ketocarboxylic acids tested. In particular, hydroxypyruvate is effectively reduced by the enzyme, the reaction rate, and Km value being comparable to those in the case of pyruvate, indicating that the enzyme has not only D-lactate dehydrogenase activity but also D-glycerate dehydrogenase activity. The conserved residues in this family appear to be the residues involved in the substrate binding and the catalytic reaction, and thus to be targets for site-directed mutagenesis.  相似文献   

4.
3-Deoxy-D-manno-octulosonate (KDO)-8-phosphate synthetase has been purified 450-fold from frozen Escherichia coli B cells. The purified enzyme catalyzed the stoichiometric formation of KDO-8-phosphate and Pi from phosphoenolpyruvate (PEP) and D-arabinose-5-phosphate. The enzyme showed no metal requirement for activity and was inhibited by 1 mM Cd2+, Cu2+, Zn2+, and Hg2+. The inhibition by Hg2+ could be reversed by dithiothreitol. The optimum temperature for enzyme activity was determined to be 45 degrees C, and the energy of activation calculated by the Arrhenius equation was 15,000 calories (ca. 3,585 J) per mol. The enzyme activity was shown to be pH and buffer dependent, showing two pH optima, one at pH 4.0 to 6.0 in succinate buffer and one at pH 9.0 in glycine buffer. The isoelectric point of the enzyme was 5.1. KDO-8-phosphate synthetase had a molecular weight of 90,000 +/- 6,000 as determined by molecular sieving through G-200 Sephadex and by Ferguson analysis using polyacrylamide gels. Based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the 90,000-molecular-weight native enzyme was composed of three identical subunits, each with an apparent molecular weight of 32,000 +/- 4,000. The enzyme had an apparent Km for D-arabinose-5-phosphate of 2 X 10(-5) M and an apparent Km for PEP of 6 X 10(-6) M. No other sugar or sugar-phosphate could substitute for D-arabinose-5-phosphate. D-Ribose-5-phosphate was a competitive inhibitor of D-arabinose-5-phosphate, with an apparent Ki of 1 X 10(-3) M. The purified enzyme has been utilized to synthesize millimole quantities of pure KDO-8-phosphate.  相似文献   

5.
2-Deoxyribose-5-phosphate aldolase (DERA, EC 4.1.2.4) catalyzes the reversible aldol reaction between acetaldehyde and D-glyceraldehyde-3-phosphate to generate D-2-deoxyribose-5-phosphate. It is unique among the aldolases as it catalyzes the reversible asymmetric aldol addition reaction of two aldehydes. In order to expand the substrate scope and stereoselectivity of DERA, structure-based substrate design as well as site-specific mutation has been investigated. Using the 1.05 A crystal structure of DERA in complex with its natural substrate as a guide, five site-directed mutants were designed in order to improve its activity with the unnatural nonphosphorylated substrate, D-2-deoxyribose. Of these, the S238D variant exhibited a 2.5-fold improvement over the wild-type enzyme in the retroaldol reaction of 2-deoxyribose. Interestingly, this S238D mutant enzyme was shown to accept 3-azidopropinaldehyde as a substrate in a sequential asymmetric aldol reaction to form a deoxy-azidoethyl pyranose, which is a precursor to the corresponding lactone and the cholesterol-lowering agent Lipitor. This azidoaldehyde is not a substrate for the wild-type enzyme. Another structure-based design of new nonphosphorylated substrates was focused on the aldol reaction with inversion in enantioselectivity using the wild type or the S238D variant as the catalyst and 2-methyl-substituted aldehydes as substrates. An example was demonstrated in the asymmetric synthesis of a deoxypyranose as a new effective synthon for the total synthesis of epothilones. In addition, to facilitate the discovery of new enzymatic reactions, the engineered E. coli strain SELECT (Deltaace, adhC, DE3) was developed to be used in the future for selection of DERA variants with novel nonphosphorylated acceptor specificity.  相似文献   

6.
1. 3-Deoxy-D-arabinoheptulosonate-7-phosphate synthetase(phe) from Escherichia coli K12 has been purified to near homogeneity. The purified enzyme has a specific activity of 67 units/mg which is about 1000 times that found in cell-free extracts of wild-tupe E. coli K12. 2. The minimum molecular weight of the enzyme was estimated by dodecylsuphate-gel electrophoresis to be 33000. Re-estimation of the native molecular weight by gel filtration confirmed the previously determined value of 110000. 3.Amino acid anaktsus abd tryptic fingerprints indicated that the subunits of the enzyme are very similar and possibly identical. 4.The purified enzyme does not contain Co2+.  相似文献   

7.
C Corbier  F Della Seta  G Branlant 《Biochemistry》1992,31(49):12532-12535
NAD(P) aldehyde dehydrogenases (EC 1.2.1.3) are a family of enzymes that oxidize a wide variety of aldehydes into acid or activated acid compounds. Using site-directed mutagenesis, the essential nucleophilic Cys 149 in the NAD-dependent phosphorylating glyceraldehyde-3-phosphate dehydrogenase from Escherichia coli has been replaced by alanine. Not unexpectedly, the resulting mutant no longer shows any oxidoreduction phosphorylating activity. The same mutation, however, endows the enzyme with a novel oxidoreduction nonphosphorylating activity, converting glyceraldehyde 3-phosphate into 3-phosphoglycerate. Our study further provides evidence for an alternative mechanism in which the true substrate is the gem-diol entity instead of the aldehyde form. This implies that no acylenzyme intermediate is formed during the catalytic event. Therefore, the mutant C149A is a new enzyme which catalyzes a distinct reaction with a chemical mechanism different from that of its parent phosphorylating glyceraldehyde-3-phosphate dehydrogenase. This finding demonstrates the possibility of an alternative route for the chemical reaction catalyzed by classical nonphosphorylating aldehyde dehydrogenases.  相似文献   

8.
Howe DL  Sundaram AK  Wu J  Gatti DL  Woodard RW 《Biochemistry》2003,42(17):4843-4854
Escherichia coli 3-deoxy-D-manno-octulosonate 8-phosphate (KDO8-P) synthase is able to utilize the five-carbon phosphorylated monosaccharide, 2-deoxyribose 5-phosphate (2dR5P), as an alternate substrate, but not D-ribose 5-phosphate (R5P) nor the four carbon analogue D-erythrose 4-phosphate (E4P). However, E. coli KDO8-P synthase in the presence of either R5P or E4P catalyzes the rapid consumption of approximately 1 mol of PEP per active site, after which consumption of PEP slows to a negligible but measurable rate. The mechanism of this abortive utilization of PEP was investigated using [2,3-(13)C(2)]-PEP and [3-F]-PEP, and the reaction products were determined by (13)C, (31)P, and (19)F NMR to be pyruvate, phosphate, and 2-phosphoglyceric acid (2-PGA). The formation of pyruvate and 2-PGA suggests that the reaction catalyzed by KDO8-P synthase may be initiated via a nucleophilic attack to PEP by a water molecule. In experiments in which the homologous enzyme, 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAH7-P) synthase was incubated with D,L-glyceraldehyde 3-phosphate (G3P) and [2,3-(13)C(2)]-PEP, pyruvate and phosphate were the predominant species formed, suggesting that the reaction catalyzed by DAH7-P synthase starts with a nucleophilic attack by water onto PEP as observed in E. coli KDO8-P synthase.  相似文献   

9.
D-Cysteine-specific desulfhydrase is found in some intestinal bacteria. Escherichia coli W3110 delta trpED102/F' delta trpED102 was found to have the highest enzyme activity. The enzyme was purified from E. coli W3110 delta trpED102/F' delta trpED102 in six steps. After the last step the enzyme appeared to be homogeneous by the criteria of polyacrylamide gel electrophoresis, analytical ultracentrifugation and double diffusion in agarose. The enzyme has a molecular mass of about 67 000 Da and consists of two subunits identical in molecular mass. The enzyme exhibits absorption maxima at 278 nm and 418 nm, which are independent of pH (6.5-10.5), and contains 2 mol pyridoxal phosphate/mol enzyme. The holoenzyme is resolved to the apoenzyme by incubation with phenylhydrazine, and reconstituted on the addition of pyridoxal phosphate. D-Cysteine desulfhydrase also catalyzes the beta-replacement reaction of the chlorine of 3-chloro-D-alanine with thioglycolic acid to yield S-carboxymethyl-D-cysteine. Its catalytic and immunological properties are compared with those of 3-chloro-D-alanine dehydrochlorinase.  相似文献   

10.
A novel enzyme system, myo-inositol-1-phosphate dehydrogenase, has been isolated from germinating mung bean seeds. The dehydrogenation and cleavage of myo-inositol 1-phosphate by this enzyme leads to the synthesis of a pentose phosphate which appears to be ribulose 5-phosphate. The pH optimum of the enzyme is 8.6; NAD+ is required as coenzyme and no other nucleotides can replace NAD+. Mono- or divalent cations are not essential for the enzyme activity. Stoichiometry of the reaction suggests that 2 mol of NAD+ are reduced per mol of ribulose-5-P generated.  相似文献   

11.
The ugp-encoded transport system of Escherichia coli accumulates sn-glycerol-3-phosphate with high affinity; it is binding protein mediated and part of the pho regulon. Here, we report that glycerophosphoryl diesters (deacylated phospholipids) are also high-affinity substrates for the ugp-encoded system. The diesters are not taken up in an unaltered form but are hydrolyzed during transport to sn-glycerol-3-phosphate plus the corresponding alcohols. The enzyme responsible for this reaction is not essential for the translocation of sn-glycerol-3-phosphate or for the glycerophosphoryl diesters but can only hydrolyze diesters that are in the process of being transported. Diesters in the periplasm or in the cytoplasm were not recognized, and no enzymatic activity could be detected in cellular extracts. The enzyme is encoded by the last gene in the ugp operon, termed ugpQ. The product of the ugpQ gene, expressed in minicells, has an apparent molecular weight of 17,500. We present evidence that only one major phoB-dependent promoter controls all ugp genes.  相似文献   

12.
The first step of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis in plant plastids and most eubacteria is catalyzed by 1-deoxy-D-xylulose 5-phosphate synthase (DXS), a recently described transketolase-like enzyme. To identify key residues for DXS activity, we compared the amino acid sequence of Escherichia coli DXS with that of E. coli and yeast transketolase (TK). Alignment showed a previously undetected conserved region containing an invariant histidine residue that has been described to participate in proton transfer during TK catalysis. The possible role of the conserved residue in E. coli DXS (H49) was examined by site-directed mutagenesis. Replacement of this histidine residue with glutamine yielded a mutant DXS-H49Q enzyme that showed no detectable DXS activity. These findings are consistent with those obtained for yeast TK and demonstrate a key role of H49 for DXS activity.  相似文献   

13.
DNA deoxyribophosphodiesterase.   总被引:17,自引:0,他引:17       下载免费PDF全文
A previously unrecognized enzyme acting on damaged termini in DNA is present in Escherichia coli. The enzyme catalyses the hydrolytic release of 2-deoxyribose-5-phosphate from single-strand interruptions in DNA with a base-free residue on the 5' side. The partly purified protein appears to be free from endonuclease activity for apurinic/apyrimidinic sites, exonuclease activity and DNA 5'-phosphatase activity. The enzyme has a mol. wt of approximately 50,000-55,000 and has been termed DNA deoxyribophosphodiesterase (dRpase). The protein presumably is active in DNA excision repair to remove a sugar-phosphate residue from an endonucleolytically incised apurinic/apyrimidinic site, prior to gap filling and ligation.  相似文献   

14.
The isomerase activity of the C-terminal fructose-6P binding domain (residues 241-608) of glucosamine-6-phosphate synthase from Escherichia coli has been studied. The equilibrium constant of the C-terminal domain k(eq) ([glucose-6P]/[fructose-6-P]) = 5.0. A non-competitive product inhibition of the isomerase activity by the reaction product glucose-6-P has been detected. The existence of more than one binding and reaction sites for the substrate fructose-6P on the molecule of glucosamine-6-phosphate synthase can be expected. The fructose-6P binding domain possibly includes a regulatory site, different from the catalytic center of the enzyme.  相似文献   

15.
Solubilized glycerophosphate acyltransferase from Escherichia coli was reconstituted in small unilamellar vesicles consisting of phosphatidylcholine/phosphatidylglycerol in a molar ratio of 4:1. Glycerol 3-phosphate, trapped inside these vesicles, cannot be acylated by the enzyme upon addition of extra-vesicular palmitoyl-CoA. Thus, substrate-binding sites and active sites are asymmetrically oriented in the model membrane. When up to 10 mol/100 mol lysophosphatidic acid was incorporated in the vesicles a decrease in glycerophosphate acyltransferase activity is observed at amounts exceeding 1 mol% lysophosphatidate. Similar experiments, using lysophosphatidylcholine and phosphatidic acid, suggest the decrease to result from an increase in negative surface charge. Reconstituted glycerophosphate acyltransferase exhibits a preference for palmitoyl-CoA over oleoyl-CoA. This preference increases considerably at elevated temperatures. The glycerophosphate acyltransferase could, therefore, participate in the temperature-dependent changes in the fatty acid composition of the phospholipids in E. coli.  相似文献   

16.
3,4-Dihydroxy-2-butanone 4-phosphate is biosynthesized from ribulose 5-phosphate and serves as the biosynthetic precursor for the xylene ring of riboflavin. The gene coding for 3,4-dihydroxy-2-butanone 4-phosphate synthase of Escherichia coli has been cloned and sequenced. The gene codes for a protein of 217 amino acid residues with a calculated molecular mass of 23,349.6 Da. The enzyme was purified to near homogeneity from a recombinant E. coli strain and had a specific activity of 1,700 nmol mg-1 h-1. The N-terminal amino acid sequence and the amino acid composition of the protein were in agreement with the deduced sequence. The molecular mass as determined by ion spray mass spectrometry was 23,351 +/- 2 Da, which is in agreement with the predicted mass. The previously reported loci htrP, "luxH-like," and ribB at 66 min of the E. coli chromosome are all identical to the gene coding for 3,4-dihydroxy-2-butanone 4-phosphate synthase, but their role had not been hitherto determined. Sequence homology indicates that gene luxH of Vibrio harveyi and the central open reading frame of the Bacillus subtilis riboflavin operon code for 3,4-dihydroxy-2-butanone 4-phosphate synthase.  相似文献   

17.
Sialic acids participate in many important biological recognition events, yet eukaryotic sialic acid biosynthetic genes are not well characterized. In this study, we have identified a novel human gene based on homology to the Escherichia coli sialic acid synthase gene (neuB). The human gene is ubiquitously expressed and encodes a 40-kDa enzyme. The gene partially restores sialic acid synthase activity in a neuB-negative mutant of E. coli and results in N-acetylneuraminic acid (Neu5Ac) and 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid (KDN) production in insect cells upon recombinant baculovirus infection. In vitro the human enzyme uses N-acetylmannosamine 6-phosphate and mannose 6-phosphate as substrates to generate phosphorylated forms of Neu5Ac and KDN, respectively, but exhibits much higher activity toward the Neu5Ac phosphate product.  相似文献   

18.
Glucose is metabolized in Escherichia coli chiefly via the phosphoglucose isomerase reaction; mutants lacking that enzyme grow slowly on glucose by using the hexose monophosphate shunt. When such a strain is further mutated so as to yield strains unable to grow at all on glucose or on glucose-6-phosphate, the secondary strains are found to lack also activity of glucose-6-phosphate dehydrogenase. The double mutants can be transduced back to glucose positivity; one class of transductants has normal phosphoglucose isomerase activity but no glucose-6-phosphate dehydrogenase. An analogous scheme has been used to select mutants lacking gluconate-6-phosphate dehydrogenase. Here the primary mutant lacks gluconate-6-phosphate dehydrase (an enzyme of the Enter-Doudoroff pathway) and grows slowly on gluconate; gluconate-negative mutants are selected from it. These mutants, lacking the nicotinamide dinucleotide phosphate-linked glucose-6-phosphate dehydrogenase or gluconate-6-phosphate dehydrogenase, grow on glucose at rates similar to the wild type. Thus, these enzymes are not essential for glucose metabolism in E. coli.  相似文献   

19.
A comparison of the primary structures of NAD(+)-dependent D-lactate dehydrogenase with L-lactate dehydrogenase and L-malate dehydrogenase failed to show any sequence similarity. However, D-2-hydroxyisocaproate dehydrogenase from Lactobacillus casei, glycerate dehydrogenase from cucumber, D-3-phosphoglycerate dehydrogenase and erythronate 4-phosphate dehydrogenase from Escherichia coli showed 38%, 24%, 24% and 22% amino acid identity, respectively. The profile analysis of the aligned sequences confirmed their relatedness. The hydropathy profiles of the aligned dehydrogenases were almost identical between residues 100-300 indicating largely preserved folding patterns of their polypeptide chains. The data suggest that L- and D-specific 2-hydroxy acid dehydrogenase genes evolved from two different ancestors and thus represent two different sets of enzyme families.  相似文献   

20.
A gene encoding a new D-2-hydroxyacid dehydrogenase (E.C. 1.1.1.) from the halophilic Archaeon Haloferax mediterranei has been sequenced, cloned and expressed in Escherichia coli cells with the inducible expression plasmid pET3a. The nucleotide sequence analysis showed an open reading frame of 927 bp which encodes a 308 amino acid protein. Multiple amino acid sequence alignments of the D-2-hydroxyacid dehydrogenase from H. mediterranei showed high homology with D-2-hydroxyacid dehydrogenases from different organisms and other enzymes of this family. Analysis of the amino acid sequence showed catalytic residues conserved in hydroxyacid dehydrogenases with d-stereospecificity. In the reductive reaction, the enzyme showed broad substrate specificity, although alpha-ketoisoleucine was the most favourable of all alpha-ketocarboxylic acids tested. Kinetic data revealed that this new D-2-hydroxyacid dehydrogenase from H. mediterranei exhibits dual coenzyme-specificity, using both NADPH and NADH as coenzymes. To date, all D-2-hydroxyacid dehydrogenases have been found to be NADH-dependent. Here, we report the first example of a D-2-hydroxyacid dehydrogenase with dual coenzyme-specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号