首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been previously shown that autoreactive T cells appear during mercury-induced autoimmunity in Brown-Norway (BN) rats. In the present work, it is shown that: 1) T cells and T helper cells from HgCl2-injected BN rats are able to actively transfer autoimmunity in normal BN rats; the disease transferred is exacerbated when recipients are treated with the antisuppressor/cytotoxic T cell monoclonal antibody (OX8); 2) normal T cells preincubated with HgCl2 are also able to transfer the disease in OX8-treated but not in T cell-depleted rats; and 3) T cells from HgCl2-injected BN rats also transferred the disease in both normal and T cell depleted rats. It is concluded that: 1) autoreactive T cells, and presumably anti-Ia T cells are involved in the pathogenesis of mercury-induced autoimmunity; 2) these autoreactive T cells induce suppressor/cytotoxic T cells to proliferate in normal syngeneic recipients; the fact that this T cell subset did not proliferate in HgCl2-injected BN rats suggests that HgCl2 also affects T suppressor cells; and 3) mercury-induced autoimmunity could result from the additive effect of the emergence of autoreactive T cells and of a defect at the T suppressor level.  相似文献   

2.
Chemically induced autoimmunity is a recently recognized environmental hazard that may affect individuals genetically predisposed to autoimmune disease and chronically exposed to certain chemicals. For example, moderate concentrations of mercury may lead to renal autoimmune disease in a small but significant percentage of the exposed population. Mercury also induces autoimmune glomerulonephritis in susceptible Brown Norway (BN) and MAXX inbred strain rats. Autoimmune responses, directed to epitopes of the renal glomerular basement membrane (GBM), are rapid in onset and have a self-limiting course in mercury-treated rats. Both regulatory T cells and idiotype-anti-idiotype network have been implicated in the resolution of this autoimmune process. In our investigations of immune regulation of mercury-induced autoimmune glomerulonephritis, we have used flow cytometry to quantitate lymphocyte subpopulations in the spleen and lymph nodes of mercury-treated and control BN rats. Of particular interest was the RT6+ T cell subset, that appears to have important immunoregulatory properties in a rat model of autoimmune insulin-dependent diabetes mellitus. Spleen and lymph nodes from control BN rats contained 22 and 52%, respectively, RT6+ cells. Spleens from mercury-treated animals contained 21% RT6+ cells on Day 10 of treatment, 13% on Day 17, 16% on Day 24 and 20% on Day 30. Lymph nodes from the same rats had 36% RT6+ cells on Day 10, 23% on Day 17, 29% on Day 24, and 28% on Day 30. The decrease in RT6+ cells correlated inversely with autoimmune responses to GBM, which peaked on Days 17-24 and declined by Day 30. Moreover, autoimmune responses were also associated with elevated RT6-:RT6+ T cell ratios. Similar results were obtained in two additional groups of BN rats, comprising both younger and older animals, sacrificed at Day 18 of mercury treatment. Analysis of other lymphocyte subpopulations demonstrated a decrease of CD4+ and CD5+ cells, whereas B cells as well as CD8+, IL-2 receptor+, and MHC class II+ subsets showed no consistent correlation with the onset or resolution of the autoimmune process. These findings suggest that mercury-induced changes in RT6+ T lymphocytes may be related to the development of renal autoimmune disease in genetically predisposed BN rats.  相似文献   

3.
In the companion paper (J. Rossert et al., Cell. Immunol. 137, 1991), we showed by using limiting dilution analysis that Lewis (LEW) rats injected with HgCl2 and immunized with myelin (LEWHg/MYE) exhibit anti-basic protein CD4+ T helper cells (Th), at least 10-fold more frequent CD8+ T suppressor cells (Ts), and T contrasuppressor cells (Tcs). These Tcs cells were shown to be CD4+ T cells adhering to Vicia villosa (VV) lectin and allowed Th cells to proliferate despite the presence of Ts cells. The CD8+ Ts cells might be responsible for the protection from experimental allergic encephalomyelitis (EAE) observed in about 70% of LEW rats injected with HgCl2. The concomitant presence of CD4+ Tcs cells might explain that 30% of the rats escaped this protection. The aim of this work is to demonstrate in vivo the roles of CD8+ Ts cells and Tcs cells in mercury-induced protection from EAE. It will be shown that LEWHg/MYE rats depleted of CD8+ cells as well as LEWHg/MYE rats transferred with VV lectin-adherent Tcs cells develop EAE. These data demonstrate that CD8+ Ts cells are responsible for HgCl2-induced protection and that Tcs cells are involved in the control of Ts cells in vivo.  相似文献   

4.
Mercuric chloride (HgCl2) induces in Lewis (LEW) rats a non-antigen-specific immunosuppression and is able to down-modulate experimental allergic encephalomyelitis in about 70% of the rats. The aim of the present study was to determine the frequencies of lymph node cells involved in the proliferative response to myelin basic protein in rats injected with HgCl2 and immunized with myelin by using limiting dilution analysis (LDA). Highly frequent CD8+ T suppressor cells and at least 10-fold less frequent protein basic-specific T helper cells were detected in these rats. A third cell type allowing the proliferative response of Th cells in spite of Ts cells was also demonstrated. These cells, which could act as contrasuppressor cells, were CD4+ and adhered to Vicia villosa lectin; their frequency was in the same range as that of T helper cells. These data illustrate the potential role of different levels of T cell immunoregulatory activity in autoimmunity and the major interest of LDA in their analysis.  相似文献   

5.
Differential cytokine production by T cells plays an important role in regulating the nature of an immune response. In the rat, Brown-Norway (BN) and Lewis (LEW) strains differ markedly in their susceptibility to develop either type 1 or type 2-mediated autoimmune manifestations. BN rats are susceptible to type 2-dependent systemic autoimmunity, while LEW rats are resistant. Conversely, type 1-mediated, organ-specific autoimmune disease can be easily induced in LEW, but not in BN, rats. The mechanisms involved in the differential development of type 1 and type 2 immune responses by these two strains are still unknown. In the present study we analyzed the contributions of APC, CD4 and CD8 T cells, and MHC molecules in the difference between LEW and BN rats to develop a type 1 immune response. First, we show that the defect of BN T cells to produce type 1 cytokines in vitro does not require the presence of APC and, by using an APC-independent stimulation assay, we have localized the defect within the T cell compartment. Both CD4 and CD8 T cells are involved in the defect of BN rats to develop a type 1 immune response with a major contribution of the CD8 T cell compartment. This defect is associated with an increase in the type 2 cytokine IL-4 in both BN T cell populations, but neutralization of this cytokine does not restore this defect. Finally, by using MHC congenic rats, we show that the MHC haplotype is not involved in the defect of BN T cells to mount a proper type 1 cytokine response.  相似文献   

6.
We have previously shown that rat allo-selective cells of the CD2+CD5- phenotype were generated in Brown Norway (BN) rats after immunization with allogeneic Wistar/Furth (WF) cells, whereas immunization with semi-allogeneic F1 (WF/BN) cells generated CD2+CD5+ effector T cells. We now report that the allo-selective CD2+CD5- lymphocytes lacked expression of intact CD3 complexes and expressed NKR-P1 molecules although lower as compared to classical NK cells, implicating that these lymphocytes constitute a subset of NK cells. The CD5+ T cells were not cytolytically active in BN rats immunized with WF cells indicating an intersubset regulation with mutually exclusive activation of either allo-selective T cells or allo-selective NK cells. Cold target inhibition showed that lysis of both allogeneic target cells and NK-sensitive target cells was mediated by the same NKR-P1 intermediate effector cells. These NK cells lysed WF but not allogeneic Fischer 344 or autologous BN target cells, indicating selective recognition of an allogeneic determinant. Semiallogeneic F1 (WF/BN) target cells were not lysed. Furthermore, target cells from F1 (WF/BN) x WF back-cross hybrids lacking expression of RT1n (self-MHC class I) were susceptible to lysis, whereas back-cross hybrids expressing RT1n were protected from lysis, indicating that self-MHC molecules conferred protection from lysis. These findings implicate the existence of NKR-P1intermediate and NKR-P1high NK cell subsets with different regulation and function in vivo.  相似文献   

7.
We all possess T cells with autoaggressive potential. Knowledge of their regulation is crucial for elucidating pathogenetic pathways and designing effective treatments for autoimmune diseases. A novel mechanism of T-cell silencing--in an autoimmune model--has recently been identified and is termed "epitope theft". The "thieves" are naive CD8+ T cells, which apparently "steal" MHC-class-I-antigen complexes from antigen-presenting cells (APCs). The deprived APCs can no longer activate other potentially pathogenic naive CD8+ T cells that are specific for the same epitope. This phenomenon is a previously unrecognized antigen-specific mode of protection against autoimmunity.  相似文献   

8.
After exposure to subtoxic doses of heavy metals such as mercury, H-2(s) mice develop an autoimmune syndrome consisting of the rapid production of IgG autoantibodies that are highly specific for nucleolar autoantigens and a polyclonal increase in serum IgG1 and IgE. In this study, we explore the role of one of the members of the CD28-B7 costimulation families, ICOS-B7 homologous protein (B7h), in the regulation of mercury-induced autoimmunity. The expression of ICOS on T cells was more enhanced in susceptible A.SW mice than in non-responsive C57BL/6 and DBA/2 mice after HgCl(2) treatment. Furthermore, in A.SW mice treated with HgCl(2), administration of a blocking anti-ICOS Ab effectively inhibited anti-nucleolar autoantibodies and total serum IgE production. Taken together, these results indicate that the ICOS-B7h costimulation pathway is required for this autoimmune syndrome and suggest that targeting this pathway might have therapeutic benefits for human autoimmune diseases.  相似文献   

9.
The T cell marker CD26/dipeptidyl peptidase (DP) IV is associated with an effector phenotype and markedly elevated in the human CNS disorder multiple sclerosis. However, little is known about the in vivo role of CD26/DP IV in health and disease, and the underlying mechanism of its function in CNS inflammation. To directly address the role of CD26/DP IV in vivo, we examined Th1 immune responses and susceptibility to experimental autoimmune encephalomyelitis in CD26(-/-) mice. We show that gene deletion of CD26 in mice leads to deregulation of Th1 immune responses. Although production of IFN-gamma and TNF-alpha by pathogenic T cells in response to myelin Ag was enhanced in CD26(-/-) mice, production of the immunosuppressive cytokine TGF-beta1 was diminished in vivo and in vitro. In contrast to the reduction in TGF-beta1 production, responsiveness to external TGF-beta1 was normal in T cells from CD26(-/-) mice, excluding alterations in TGF-beta1 sensitivity as a mechanism causing the loss of immune regulation. Natural ligands of CD26/DP IV induced TGF-beta1 production in T cells from wild-type mice. However, natural ligands of CD26/DP IV failed to elicit TGF-beta1 production in T cells from CD26(-/-) mice. The striking functional deregulation of Th1 immunity was also seen in vivo. Thus, clinical experimental autoimmune encephalomyelitis scores were significantly increased in CD26(-/-) mice immunized with peptide from myelin oligodendrocyte glycoprotein. These results identify CD26/DP IV as a nonredundant inhibitory receptor controlling T cell activation and Th1-mediated autoimmunity, and may have important therapeutic implications for the treatment of autoimmune CNS disease.  相似文献   

10.
Brown-Norway (BN) rats are uniquely susceptible to development of autoimmune phenomena and enlargement of lymph nodes and spleen after repeated injections of mercuric chloride. Despite its ability to produce autoimmunity, HgCl2 inhibited the development in BN rats of experimental allergic encephalomyelitis (EAE), another autoimmune process. The inhibition by mercury was probably due to lack of the normal absorption and granulomatous reaction to the EAE inoculum in the enlarged lymph nodes draining the inoculation site. Lewis rats did not develop enlarged nodes from HgCl2 treatment. Lewis lymph nodes absorbed the EAE inoculum abundantly and developed an extensive granulomatous reaction despite the mercury treatment, and there was only a slight inhibition of EAE. Therefore, the ability of HgCl2 to produce lymphadenopathy in BN rats may be responsible for the inability of these rats to absorb the inoculated antigen. The mercury-induced failure of absorption was manifested as an inhibition of EAE in BN rats.  相似文献   

11.
Congenitally lymphopenic diabetes-prone (DP) BioBreeding (BB) rats develop spontaneous T cell-dependent autoimmunity. Coisogenic diabetes-resistant (DR) BB rats are not lymphopenic and are free of spontaneous autoimmune disease, but become diabetic in response to depletion of RT6+ T cells. The basis for the predisposition to autoimmunity in BB rats is unknown. Abnormal T cell development in DP-BB rats can be detected intrathymically, and thymocytes from DR-BB rats adoptively transfer diabetes. The mechanisms underlying these T cell developmental abnormalities are not known. To study these processes, we established adult thymus organ cultures (ATOC). We report that cultured DR- and DP-BB rat thymi generate mature CD4 and CD8 single-positive cells with up-regulated TCRs. DR-BB rat cultures also generate T cells that express RT6. In contrast, DP-BB rat cultures generate fewer CD4+, CD8+, and RT6+ T cells. Analysis of the cells obtained from ATOC suggested that the failure of cultured DP-BB rat thymi to generate T cells with a mature phenotype is due in part to an increased rate of apoptosis. Consistent with this inference, we observed that addition of the general caspase inhibitor Z-VAD-FMK substantially increases the number of both mature and immature T cells produced by DP-BB rat ATOC. We conclude that cultured DR-BB and DP-BB rat thymi, respectively, recapitulate the normal and abnormal T cell developmental kinetics and phenotypes observed in these animals in vivo. Such cultures should facilitate identification of the underlying pathological processes that lead to immune dysfunction and autoimmunity in BB rats.  相似文献   

12.
CD95/CD95L interactions and their role in autoimmunity   总被引:5,自引:0,他引:5  
CD95 (Fas/Apo-1) is a broadly expressed death receptor involved in a variety of physiological and pathological apoptotic processes. Since its discovery, defects in CD95/CD95L system have been proposed as major pathogenic factors responsible for impaired immunological tolerance to self antigens and autoimmunity. Later, analysis of altered sensitivity to CD95-induced apoptosis in cells targeted by the immune response has revealed an unexpected role for CD95 and CD95L in organ-specific autoimmunity. CD95 has been shown to be expressed and functional in virtually all cell types that are target of the organ-specific autoimmune response. Here we review some of the major findings concerning the role of CD95 in autoimmunity, in dysfunctions due to increased or decreased CD95-induced apoptosis.  相似文献   

13.
The prerequisites of peripheral activation of self-specific CD4(+) T cells that determine the development of autoimmunity are incompletely understood. SJL mice immunized with myelin proteolipid protein (PLP) 139-151 developed experimental autoimmune encephalomyelitis (EAE) when pertussis toxin (PT) was injected at the time of immunization but not when injected 6 days later, indicating that PT-induced alterations of the peripheral immune response lead to the development of autoimmunity. Further analysis using IA(s)/PLP(139-151) tetramers revealed that PT did not change effector T cell activation or regulatory T cell numbers but enhanced IFN-gamma production by self-specific CD4(+) T cells. In addition, PT promoted the generation of CD4(+)CD62L(low) effector T cells in vivo. Upon adoptive transfer, these cells were more potent than CD4(+)CD62L(high) cells in inducing autoimmunity in recipient mice. The generation of this population was paralleled by higher expression of the costimulatory molecules CD80, CD86, and B7-DC, but not B7-RP, PD-1, and B7-H1 on CD11c(+)CD4(+) dendritic cells whereas CD11c(+)CD8alpha(+) dendritic cells were not altered. Collectively, these data demonstrate the induction of autoimmunity by specific in vivo expansion of CD4(+)CD62L(low) cells and indicate that CD4(+)CD62L(low) effector T cells and CD11c(+)CD4(+) dendritic cells may be attractive targets for immune interventions to treat autoimmune diseases.  相似文献   

14.
The nuclear hormone receptor peroxisome proliferator-activated receptor γ (PPARγ) was shown to play an immunoregulatory role in many immune-related cell types, and activation of PPARγ was reported to be an effective therapeutic approach in murine and human autoimmune disease. However, despite an association between lymphopenia and autoimmunity, there has been no study on the role of T cell PPARγ in lymphopenia-associated autoimmunity. In the present studies, we examined the role of PPARγ in CD4(+) T cells in two murine models of lymphopenia-associated autoimmunity. Surprisingly, we found that PPARγ expression in CD4(+) CD25(-) T cells (T effector cells [Teffs]) is actually required for development of autoimmunity under lymphopenic conditions. Mechanistically, the inability of PPARγ-deficient (T-PPAR) Teffs to mediate lymphopenic autoimmunity is associated with a significant decrease in accumulation of Teffs in the spleen, lymph nodes, and tissues after adoptive transfer. This abnormal accumulation of T-PPAR Teffs was associated with defects in both in vivo proliferation and survival. Additionally, T-PPAR Teffs demonstrated decreased cytokine production in inflammatory sites and decreased expression of the homing receptor α4β7. Finally, these abnormalities in T-PPAR Teff function were not elicited by lymphopenia alone but also required the additional activation involved in the mediation of autoimmunity. Thus, in contrast to its documented immunosuppressive role, we identified an unexpected function for PPARγ in Teffs: a role in Teff proliferation and survival in lymphopenia-associated autoimmunity. These findings highlight both the multifunctional role of PPARγ in T cells and the complexity of PPARγ as a potential therapeutic target in autoimmunity.  相似文献   

15.
CD4+ CD25+ regulatory T cells (T(Reg)) play a critical role in the control of autoimmunity. However, little is known about how T(Reg) suppress self-reactive T cells in vivo, thus limiting the development of T(Reg)-based therapy for treating autoimmune diseases. This is in large part due to the dependency on a state of lymphopenia to demonstrate T(Reg)-mediated suppression in vivo and the unknown Ag specificity of T(Reg) in most experimental models. Using a nonlymphopenic model of autoimmune pneumonitis and T(Reg) with known Ag specificity, in this study we demonstrated that these T(Reg) can actively suppress activation of self-reactive T cells and protect mice from fatal autoimmune pneumonitis. The protection required T(Reg) with the same Ag specificity as the self-reactive T cells and depended on IL-10 and TGF-beta. These results suggest that suppression of autoimmunity by T(Reg) in vivo consists of multiple layers of regulation and advocate for a strategy involving Ag-specific T(Reg) for treating organ-specific autoimmunity, because they do not cause generalized immune suppression.  相似文献   

16.
Mature TCR alpha beta T cells in peripheral blood are generally classified into either CD4 single positive (sp) T cells or CD8sp T cells. Several studies demonstrated that considerable amounts of CD4+CD8+ double positive (DP) T cells exist in peripheral blood of human and several animals. In particular, we previously reported that peripheral DP T cells increase in an age-related manner in cynomolgus monkeys (Macaca fascicularis), but the finding that DP T cells in some aged monkeys were maintained at a low proportion (under 5%), suggests that the increase in peripheral DP T cells might be genetically controlled in cynomolgus monkeys. To test this hypothesis, 24 families were randomly selected and used in a formal genetic analysis of the proportion of DP T cells. Parents and offspring in selected families were classified into DP-High and DP-Low groups based on a 5% cutoff level of DP T cells. The cutoff value was set by analysis of the distribution of the proportion of DP T cells. Nine out of 13 offspring (69.2%) with DP-High x DP-High parents belonged to the DP-High group, whereas three out of nine offspring (33.3%) belonged to DP-High group in the case of DP-High x DP-Low mating pairs. No offspring (0%) of two offspring with DP-Low x DP-Low parents belonged to the DP-High group. In addition, heritability (h2: narrow sense) obtained from the regression coefficient of offspring on mid-parent values was 0.54 +/- 0.19. Both findings suggest that increases in DP T cells in cynomolgus monkeys may be genetically controlled.  相似文献   

17.
Clinical autoimmunity requires both activation of self-reactive T cells as well as a failure of peripheral tolerance mechanisms. We previously identified one such mechanism that involves regulatory T cells recognizing TCR V beta 8.2 chain-derived peptides in the context of MHC. How this regulation affects the fate of target V beta 8.2(+) T lymphocytes in vivo that mediate experimental autoimmune encephalomyelitis has remained unknown. The present study using immunoscope and CFSE-labeling analysis demonstrates that the expansion of regulatory CD4 and CD8 T cells in vivo results in apoptotic depletion of the dominant, myelin basic protein-reactive V beta 8.2(+) T cells, but not subdominant V beta 13(+) T cells. The elimination of only activated T cells by this negative feedback mechanism preserves the remainder of the naive V beta 8.2(+) T cell repertoire and at the same time results in protection from disease. These studies are the first in clearly elucidating the fate of myelin basic protein-specific encephalitogenic T cells in vivo following regulation.  相似文献   

18.
CD19 and the Src family protein tyrosine kinases (PTKs) are important regulators of intrinsic signaling thresholds in B cells. Regulation is achieved by cross-talk between Src family PTKs and CD19; Lyn is essential for CD19 phosphorylation, while CD19 establishes an Src family PTK activation loop that amplifies kinase activity. However, CD19-deficient (CD19(-/-)) B cells are hyporesponsive to transmembrane signals, while Lyn-deficient (Lyn(-/-)) B cells exhibit a hyper-responsive phenotype resulting in autoimmunity. To identify the outcome of interactions between CD19 and Src family PTKs in vivo, B cell function was examined in mice deficient for CD19 and Lyn (CD19/Lyn(-/-)). Remarkably, CD19 deficiency suppressed the hyper-responsive phenotype of Lyn(-/-) B cells and autoimmunity characterized by serum autoantibodies and immune complex-mediated glomerulonephritis in Lyn(-/-) mice. Consistent with Lyn and CD19 each regulating conventional B cell development, B1 cell development was markedly reduced by Lyn deficiency, with further reductions in the absence of CD19 expression. Tyrosine phosphorylation of Fyn and other cellular proteins induced following B cell Ag receptor ligation was dramatically reduced in CD19/Lyn(-/-) B cells relative to Lyn(-/-) B cells, while Syk phosphorylation was normal. In addition, the enhanced intracellular Ca(2+) responses following B cell Ag receptor ligation that typify Lyn deficiency were delayed by the loss of CD19 expression. BCR-induced proliferation and humoral immune responses were also markedly inhibited by CD19/Lyn deficiency. These findings demonstrate that while the CD19/Lyn amplification loop is a major regulator of signal transduction thresholds in B lymphocytes, CD19 regulation of other Src family PTKs also influences B cell function and the development of autoimmunity.  相似文献   

19.
D10.G4.1 (D10) cells, a murine conalbumin-reactive Th2 cell line, made to overexpress the beta(2) integrin LFA-1 by pharmacological manipulation or by transfection become autoreactive and are capable of inducing in vivo autoimmunity. However, whether this is specific to LFA-1 and whether overexpression of other T cell integrin molecules has the same effect are unknown. We examined the functional consequences of T cell CD49d (alpha(4) integrin) overexpression by transfecting murine CD49d cDNA into D10 cells. Similar to the LFA-1-transfected cells, the CD49d-overexpressing T cells are autoreactive and proliferate in response to APCs in an MHC class II-dependent manner in the absence of nominal Ag. Additionally, CD49d overexpression is associated with increased in vitro adhesion to endothelial cells and increased in vivo splenic homing. However, in contrast to LFA-1 overexpression, increased T cell CD49d expression is not associated with autoreactive cytotoxicity or the ability to induce in vivo autoimmunity. In addition to the novel observation that CD49d overexpression is sufficient to induce T cell autoreactivity, our results also support the hypothesis that the ability to induce in vivo autoimmunity is related to T cell cytotoxicity and not to T cell proliferation function in the D10 murine adoptive transfer model of autoimmunity.  相似文献   

20.
IL-27 is a novel IL-12 family member that plays a role in the early regulation of Th1 initiation. We have recently demonstrated that IL-27 has a potent antitumor activity, which is mainly mediated through CD8+ T cells, and also has an adjuvant activity to induce epitope-specific CTL in vivo. In this study, we further investigated the in vitro effect of IL-27 on CD8+ T cells of mouse spleen cells. In a manner similar to CD4+ T cells, IL-27 activated STAT1, -2, -3, -4, and -5, and augmented the expression of T-bet, IL-12Rbeta2, and granzyme B, and slightly that of perforin in naive CD8+ T cells stimulated with anti-CD3. IL-27 induced synergistic IFN-gamma production with IL-12 and proliferation of naive CD8+ T cells. Moreover, IL-27 enhanced proliferation of CD4+ T cell-depleted spleen cells stimulated by allogeneic spleen cells and augmented the generation of CTL. In STAT1-deficient naive CD8+ T cells, IL-27-induced proliferation was not reduced, but synergistic IFN-gamma production with IL-12 was diminished with decreased expression of T-bet, IL-12Rbeta2, granzyme B, and perforin. In T-bet-deficient naive CD8+ T cells, IL-27-induced proliferation was hardly reduced, but synergistic IFN-gamma production with IL-12 was diminished with decreased expression of IL-12Rbeta2, granzyme B, and perforin. However, IL-27 still augmented the generation of CTL from T-bet-deficient CD4+ T cell-depleted spleen cells stimulated by allogeneic spleen cells with increased granzyme B expression. These results suggest that IL-27 directly acts on naive CD8+ T cells in T-bet-dependent and -independent manners and augments generation of CTL with enhanced granzyme B expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号