首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously shown that the liver endothelium can desialylate the glycoprotein transferrin (Tf). In the present work we provide evidence that asialotransferrin obtained by this means behaves differently on Ricinus communis agglutinin (RCA120) lectin affinity chromatography from asialotransferrin obtained by either neuraminidase treatment or acid hydrolysis. Purified rat transferrin was radiolabelled either with 125I (protein moiety) or with 3H (sialyl residues), and subsequently saturated with iron. It was then passed through an RCA120-agarose column to isolate the fully sialylated component. Sialylated Tf was then desialylated either by incubation with purified rat liver endothelium or, in vitro, by neuraminidase treatment or by acid hydrolysis. The protein was again subjected to RCA120 column chromatography. Although both neuraminidase treatment and acid hydrolysis almost completely desialylated the glycoprotein (as evidenced by near absence of 3H label), the glycoprotein was not retained by the RCA120-agarose column. By contrast, liver endothelium partially desialylated the glycoprotein, but this desialylated fraction was retained by the RCA120-agarose column. These results suggest that desialylation with neuraminidase or acid hydrolysis may be inadequate for functional studies of asialotransferrin.  相似文献   

2.
To investigate the variations in desialylation of glycoproteins by liver endothelium, we compared endothelial desialylation for 3 glycoproteins, human ceruloplasmin, human and rat transferrin. Radiolabeled glycoproteins were chased through purified rat liver endothelium and then fractionated by lectin affinity chromatography. Endothelium processed glycoproteins were fractionated by RCA120 chromatography into sialylated and desialylated components. The latter was then studied by Con A chromatography. Desialylation occurred only when the molecule contained at least a single triantennary chain of glycan. Desialylation was minimal in the case of human transferrin which contains mostly biantennary branching pattern. Thus, it appears that a single triantennary glycan chain is necessary and sufficient to trigger desialylation of glycoproteins by liver endothelium and this process is an all-or-none phenomenon.  相似文献   

3.
The structures of the major oligosaccharide moieties of the nicotinic acetylcholine receptor (AcChoR) protein from Torpedo californica have been reported [Nomoto, H., Takahashi, N., Nagaki, Y., Endo, S., Arata, Y. and Hayashi, K. (1986) Eur. J. Biochem. 157, 233-242] to be high-mannose types. Here we report detailed analyses of the structures of the remaining oligosaccharides in this receptor. The sialylated oligosaccharides released by glycopeptidase (almond) digestion were separated according to the number of sialic acid residues using high-performance anion-exchange chromatography with pulsed amperometric detection. After removal of sialic acid from each fraction, the resulting neutral oligosaccharides were separately pyridylaminated and were analyzed by a combination of sequential exoglycosidase digestion and HPLC, then identified on a two-dimensional sugar map. The structures of two desialylated pyridylamino-oligosaccharides were further analyzed by high-resolution proton NMR. Each oligosaccharide was composed of species containing varying numbers of sialic acids. The desialylated complex-type oligosaccharides of AcChoR consisted of ten, eight and one different biantennary, triantennary and tetraantennary oligosaccharide, respectively. The biantennary oligosaccharides were divided into two groups; oligosaccharides with fucose at the proximal N-acetylglucosamine (six varieties) and oligosaccharides without fucose (four varieties). Each group consisted of species differing in the number of terminal galactose residues. The major component of the biantennary oligosaccharides had two galactose residues at the non-reducing termini. The terminal alpha-galactose residue(s) linked to C3 of beta-galactose were found in the fucose-containing biantennary oligosaccharides (two varieties). The triantennary oligosaccharides were also divided into two groups; oligosaccharides with (four varieties) and without (four varieties) besecting N-acetylglucosamine. These groups were composed of species differing in the number of terminal galactose residues. The major component of the triantennary oligosaccharides was fully galactosylated with three galactose residues. An unusual group, Gal beta 1-3GlcNAc, was present in low levels in the triantennary oligosaccharides. In contrast, the tetraantennary oligosaccharide was composed of only one species, which is fully galactosylated with four galactose residues.  相似文献   

4.
Pigmentation-associated antigen (PAA) or gp75 is a glycoprotein localized to the melanosomes of human melanomas and melanocytes to which a mouse monoclonal antibody (AbTA99) has been produced (T. M. Thomson et al. (1985) J. Invest. Dermatol. 85, 169). Treatment of 3H-labeled immunoprecipitated melanoma PAA with alkaline-borohydride, hydrazinolysis, or N-glycanase released three families of carbohydrate chains (I, II, and III). Peak I consists of a major component (Ia) of sialylated triantennary N-linked chains which are partially substituted with fucose on terminal positions as well as on the chitobiose core and a minor component (Ib) which is a sialylated biantennary N-linked species. Peak II was not well characterized but may be a monoantennary complex chain species. Peak III consists of typical N-linked high mannose units with six to seven mannose residues. Melanocyte PAA carbohydrate chains have the same general features as melanoma PAA except that the biantennary complex chain predominates; this difference resembles that observed between the cell surface glycopeptides of transformed animal cells and their nontransformed counterparts. The glycosylation characteristics of this melanosomal glycoprotein are compared with those of glycoproteins from endoplasmic reticulum, Golgi, and lysosomes, and with tyrosinase. It is suggested that the glycosylation pattern is a reflection of the biosynthetic origin and cellular destination of a particular organelle and its constituents.  相似文献   

5.
In mammals, clearance of desialylated serum glycoproteins to the liver is mediated by a galactose-specific hepatic lectin, the 'asialoglycoprotein receptor'. In humans, serum glycoprotein glycans are usually capped with sialic acid, which protects these proteins against hepatic uptake. However, in most other species, an additional noncharged terminal element with the structure Galalpha1-->3Galbeta1-->4R is present on glycoprotein glycans. To investigate if alpha3-galactosylated glycoproteins, just like desialylated glycoproteins, could be cleared by the hepatic lectin, the affinities of alpha3-galactosylated compounds towards this lectin were determined using an in vitro inhibition assay, and were compared with those of the parent compounds terminating in Galbeta1-->4R. Diantennary, triantennary and tetraantennary oligosaccharides that form part of N-glycans were alpha3-galactosylated to completion by use of recombinant bovine alpha3-galactosyltransferase. Similarly, desialylated alpha1-acid glycoprotein (orosomucoid) was alpha3-galactosylated in vitro. The alpha3-galactosylation of a branched, Galbeta1-->4-terminated oligosaccharide lowered its affinity for the membrane-bound lectin on whole rat hepatocytes 50-250-fold, and for the detergent-solubilized hepatic lectin 7-50-fold. In contrast, alpha3-galactosylation of asialo-alpha1-acid glycoprotein caused only a minor decrease in affinity, increasing the IC50 from 5 to 15 nM. Fully alpha3-galactosylated alpha1-acid glycoprotein, intravenously injected into the mouse, was rapidly cleared from the circulation, with a clearance rate close to that of asialo-alpha1-acid glycoprotein (t1/2 of 0.42 min vs. 0.95 min). Its uptake was efficiently inhibited by pre-injection of an excess asialo-fetuin. Organ distribution analysis showed that the injected alpha1-acid glycoprotein accumulated predominantly in the liver. Taken together, these observations suggest that serum glycoproteins that are heavily alpha3-galactosylated will be rapidly cleared from the bloodstream via the hepatic lectin. It is suggested that glycosyltransferase expression in murine hepatocytes is tightly regulated in order to prevent undesired uptake of hepatocyte-derived, circulating glycoproteins.  相似文献   

6.
The structures of the oligosaccharides comprising the carbohydrate moieties of human prostatic acid phosphatase were elucidated by 1H NMR spectroscopy. Homogeneous enzyme was digested with Pronase P, and three asparagine-linked carbohydrate moieties were obtained upon fractionation of the digest using a concanavalin A-Sepharose affinity column. One fraction did not bind to the column, while the portion that did bind was separated into two fractions by elution with two concentrations of mannose. The high-resolution 1H NMR spectra for the three fractions were recorded at 470 MHz. From these data, the structures were deduced to be high mannose, partially sialylated and fucosylated biantennary complex, and fucosylated, partially sialylated triantennary complex oligosaccharides. No O-linked carbohydrate moiety was detected, although the possible presence of small O-linked oligosaccharides cannot be completely discounted from these data.  相似文献   

7.
Through a process resembling receptor-mediated endocytosis, liver endothelium binds and internalizes the plasma glycoprotein ceruloplasmin (CP) on the luminal side. The protein is then transported via a vesicular system to the albuminal side where it is externalized to the space of Disse. In its path, the glycoprotein is fully desialylated. To determine if the endosomal compartment is involved in this transport, we used endosomal inhibitors NH4Cl, ethylamine as well as monensin to quantitatively measure the magnitude of radiolabeled CP transport across purified liver endothelial cells. All three reagents inhibited the transport of CP and its discharge by endothelium. The magnitude of inhibition was dose-related for all three reagents. We conclude that the endosomal compartment is involved in the transendothelial transport of CP across the liver endothelium.  相似文献   

8.
Factor VII (FVII) is a vitamin K-dependent glycoprotein which, in its activated form (FVIIa), participates in the coagulation process by activating factor X and factor IX. FVII is secreted as single peptide chain of 406 residues. Plasma-derived FVII undergoes many post-translational modifications such as γ-carboxylation, N- and O-glycosylation, β-hydroxylation. Despite glycosylation of recombinant FVIIa has been fully characterized, nothing is reported on the N- and O-glycans of plasma-derived FVII (pd-FVII) and on their structural heterogeneity at each glycosylation site. N- and O-glycosylation sites and site specific heterogeneity of pd-FVII were studied by various complementary qualitative and quantitative techniques. A MALDI-MS analysis of the native protein indicated that FVII is a 50.1 kDa glycoprotein modified on two sites by diantennary, disialylated non-fucosylated (A2S2) glycans. LC–ESIMS/MS analysis revealed that both light chain and heavy chain were N-glycosylated mainly by A2S2 but also by triantennary sialylated glycans. Nevertheless, lower amounts of triantennary structures were found on Asn322 compared to Asn145. Moreover, the triantennary glycans were shown to be fucosylated. In parallel, quantitative analysis of the isolated glycans by capillary electrophoresis indicated that the diantennary structures represented about 50% of the total glycan content. Glycan sequencing using different glycanases led to the identification of triantennary difucosylated structures. Last, MS and MS/MS analysis revealed that FVII is O-glycosylated on the light chain at position Ser60 and Ser52 which are modified by oligosaccharide structures such as fucose and Glc(Xyl)0–1–2, respectively. These latter three O-glycans coexist in equal amounts in plasma-derived FVII.  相似文献   

9.
The mammalian oocyte is encased by a transparent extracellular matrix, the zona pellucida (ZP), which consists of three glycoproteins, ZPA, ZPB, and ZPC. The glycan structures of the porcine ZP and the complete N-glycosylation pattern of the ZPB/ZPC oligomer has been recently described. Here we report the N-glycan pattern and N-glycosylation sites of the porcine ZP glycoprotein ZPA of an immature oocyte population as determined by a mass spectrometric approach. In-gel deglycosylation of the electrophoretically separated ZPA protein and comparison of the pattern obtained from the native, the desialylated and the endo-beta-galactosidase-treated glycoprotein allowed the assignment of the glycan structures by MALDI-TOF MS by considering the reported oligosaccharide structures. The major N-glycans are neutral biantennary complex structures containing one or two terminal galactose residues. Complex N-glycans carrying N-acetyllactosamine repeats are minor components and are mostly sialylated. A significant signal corresponding to a high-mannose type chain appeared in the three glycan maps. MS/MS analysis confirmed its identity as a pentamannosyl N-glycan. By the combination of tryptic digestion of the endo-beta-galactosidase-treated ZP glycoprotein mixture and in-gel digestion of ZPA with lectin affinity chromatography and reverse-phase HPLC, five of six N-glycosylation sites at Asn(84/93), Asn268, Asn316, Asn323, and Asn530 were identified by MS. Only one site was found to be glycosylated in the N-terminal tryptic glycopeptide with Asn(84/93.) N-glycosidase F treatment of the isolated glycopeptides and MS analysis resulted in the identification of the corresponding deglycosylated peptides.  相似文献   

10.
A novel 114 kDa hexameric lectin was purified from the fruiting bodies of the mushroom Ganoderma lucidum. Biochemical characterization revealed it to be a glycoprotein having 9.3% neutral sugar and it showed hemagglutinating activity on pronase treated human erythrocytes. The lectin was stable in the pH range of 5-9 and temperature up to 50 degrees C. The hemagglutinating activity was inhibited by glycoproteins that possessed N-as well as O-linked glycans. Chemical modification of the G. lucidum lectin revealed contribution of tryptophan and lysine to binding activity. The thermodynamics of binding of bi- and triantennary N-glycans to G. lucidum lectin was studied by spectrofluorimetry. The lectin showed very high affinity for asialo N-linked triantennary glycan and a preference for asialo glycans over sialylated glycans. The binding was accompanied with a large negative change in enthalpy as well as entropy, indicating primarily involvement of polar hydrogen, van der Waals and hydrophobic interactions in the binding.  相似文献   

11.
Mouse myeloma immunoglobulin IgM heavy chains were cleaved with cyanogen bromide into nine peptide fragments, four of which contain asparagine-linked glycosylation. Three glycopeptides contain a single site, including Asn 171, 402, and 563 in the intact heavy chain. Another glycopeptide contains two sites at Asn 332 and 364. The carbohydrate containing fragments were treated with Pronase and fractionated by elution through Bio-Gel P-6. The major glycopeptides from each site were analyzed by 500 MHz 1H-NMR and the carbohydrate compositions determined by gas-liquid chromatography. The oligosaccharide located at Asn 171 is a biantennary complex and is highly sialylated. The amount of sialic acid varies, and some oligosaccharides contain alpha 1,3-galactose linked to the terminal beta 1,4-galactose. The oligosaccharides at Asn 332, Asn 364, an Asn 402 are all triantennary and are nearly completely sialylated on two branches and partially sialylated on the triantennary branch linked beta 1,4 to the core mannose. The latter is sialylated about 40% of the time for all three glycosylation sites. The major oligosaccharide located at Asn 563 is of the high mannose type. The 1H-NMR determination of structures at Asn 563 suggests that the high mannose oligosaccharide contains only three mannose residues.  相似文献   

12.
Drastic enrichment of potential disease-specific glycoprotein markers in human plasma can be achieved by the combination of affinity- and immuno-depletion. In the affinity-fractionation step all glycoproteins carrying a certain glycostructure are isolated by lectin affinity chromatography, thus depleting other components. Against the respective glycoprotein fraction isolated from the plasma of healthy individuals antibodies are raised in llamas. The llama heavy chain antibodies (which are particularly stable) directed at the isolated plasma glycoprotein fraction are immobilized and the immunoaffinity column thus obtained is used to deplete the respective glycoprotein fraction of patient plasma samples. Depletion of proteins normally found in human plasma by 99.8-99.9% can be achieved, resulting in a 800-1000-fold enrichment of potential disease-specific proteins in the flow-through of the immunoaffinity column.  相似文献   

13.
Sialyltransferase activity in regenerating rat liver   总被引:6,自引:3,他引:3       下载免费PDF全文
Liver microsomal fractions catalyse the transfer of sialic acid from CMP-N-acetyl-neuraminic acid to various exogenous acceptors such as desialylated fetuin, desialylated human Tamm–Horsfall glycoprotein and desialylated bovine submaxillary-gland mucin. An increase in the rate of incorporation of sialic acid into desialylated glycoproteins was found after a lag period (7h) in regenerating liver. The increase was maximum 24h after partial hepatectomy for all acceptors tested. At later times after operation the sialyltransferase activity remained high only for desialylated fetuin. No soluble factors from liver or serum of partially hepatectomized animals influenced the activity of the sialyltransferases bound to the microsomal fraction. The sensitivity of sialyltransferases to activation by Triton X-100, added to the incubation medium, was unchanged in the microsomal preparation from animals 24h after sham operation or partial hepatectomy. The full activity of sialyltransferases towards the various desialylated acceptors showed some differences. Human Tamm–Horsfall glycoprotein was a good acceptor of sialic acid only when desialylated by mild acid hydrolysis. After this treatment, but not after enzymic hydrolysis, a decrease in molecular weight of human Tamm–Horsfall glycoprotein was observed. Further, the sialyltransferase activity as a function of incubation temperature gave different curves according to the acceptor used. The relationship between the biosynthesis of glycoproteins by regenerating liver and the sialyltransferase activity of microsomal fraction after partial hepatectomy is discussed.  相似文献   

14.
The N- and O-glycans of recombinant amyloid precursor protein (APP), purified from Chinese hamster ovary cells transfected with the human 695-amino acid form of APP, were separately released by hydrazinolysis under different conditions. The reducing ends of the released N- and O-glycans were reduced with NaB3H4 and derivatized with 2-aminobenzamide (2AB), respectively. After acidic N-glycans were obtained by anion-exchange column chromatography, these were converted to neutral oligosaccharides by sialidase digestion, demonstrating that their acidic nature was entirely due to sialylation. The sialidase-treated N-glycans were then fractionated by lectin column chromatography and their structures were determined by linkage-specific sequential exoglycosidase digestion. These results demonstrated that recombinant APP has bi- and triantennary complex type N-glycans with fucosylated and nonfucosylated trimannosyl cores. In a similar fashion, the 2AB-labeled O-glycans derived from APP were determined to be mono- and disialylated core type 1 structures. Taken together, these results indicate that recombinant APP has sialylated bi- and triantennary N-glycans with fucosylated and nonfucosylated cores and sialylated O-glycans with core type 1 structures.  相似文献   

15.
An affinity column for the purification of thymidine kinase is described. The ligand in this column is a glycoprotein isolated from rat kidney. This glycoprotein inhibits phosphorylation of thymidine in cultured cells and in a cell-free assay system. With an affinity column containing the glycoprotein as a ligand, a 24-fold purification of thymidine kinase from an ammonium sulfate fraction of a crude tissue extract can be obtained. Thymidine kinase eluted from the affinity column migrates as one major band on polyacrylamide and as one diffuse major band on sodium dodecyl sulfate-polyacrylamide. The affinity column, with thymidine kinase bound to the inhibitor, can also be used as an assay system. When the glycoprotein is covalently attached to Sepharose, it retains its binding capacity for thymidine kinase but has apparently lost its ability to inhibit the enzyme. Thymidine kinase eluted from the affinity column is again sensitive to the glycoprotein. It seems to be a carbohydrate moiety of the glycoprotein that is responsible for the inhibition.  相似文献   

16.
Glycopeptides obtained from human serotransferrin by pronase digestion were separated into two fractions by affinity chromatography on Con A-Sepharose. The retarded fraction (85% of total glycopeptides) contained sialylated biantennary glycans of the N-acetyllactosaminic type, the primary structure of which has been previously determined. The non-retained fraction (15% of total glycopeptides) consisted of two isomeric triantennary glycans of the N-acetyllactosaminic type. The primary structure have been elucidated by methylation analysis and 500 MHz 1H-NMR spectroscopy. Both contain an additional NeuAc(alpha 2----3)Gal(beta 1----4)GlcNAc antenna. The latter is linked to C-4 of the (alpha 1----3) bound Man residue in 45% of the glycans in the non-retained fraction but to C-6 of the (alpha 1----6) bound Man residue, in the remaining 55% of the glycans in this fraction.  相似文献   

17.
Porcine thyroid cells were cultured in serum-free medium and thyrotropin was or was not added at day 4 and [3H]glucosamine at day 6 for 24 h. The major glycoprotein secreted outside the follicles proved to be thyroglobulin by immunoprecipitation, polyacrylamide gel electrophoresis, and amino acid composition. Thyroglobulin glycopeptides were analyzed by sequential affinity chromatography on immobilized lectins and compared to chemically labeled carbohydrate chains released from thyroid-derived thyroglobulin by hydrazinolysis. 82% and 85% of the glucosamine-labeled oligosaccharides of thyroglobulin from control and stimulated cells, respectively, were unretained on concanavalin A (ConA)-Sepharose compared to 46% only for in vivo thyroglobulin. 35-42% and 33-35% of the ConA-unbound glycopeptides were retarded on erythrophytohemagglutinin and leukophytohemagglutinin under basal or stimulatory conditions, respectively, while none of the triantennary structures of in vivo thyroglobulin was. Moreover, binding to Bandieraea-agarose showed that 20% of these complex structures contained alpha-linked galactose in thyroglobulin secreted by control cells, but only 10% in the molecules derived from thyroid. When analyzed on ricin-agarose after neuraminidase treatment, the ConA-unbound glycopeptides were retained to an extent of 65% for those from control cells and 98% for those from stimulated cells. Furthermore, 15% of desialylated ConA-unbound glycopeptides from cellular origin were also found to bind to wheat germ agglutinin. Carbohydrate composition, gel chromatography, and exoglycosidase treatment further demonstrated that thyroglobulin carbohydrate chains synthesized under serum-free cell culture were essentially composed of heterogeneous multiantennary structures instead of usual biantennary and high mannose type species. Under thyrotropin stimulation, 85% of the carbohydrate chains of thyroglobulin was shown to be sialylated by high performance liquid chromatography analysis instead of 65% under basal conditions, suggesting that thyrotropin may shift terminal glycosylation of thyroglobulin from alpha-galactose to sialic acid.  相似文献   

18.
gamma-Glutamyltranspeptidase purified from human kidneys contains 4-5 asparagine-linked sugar chains in each molecule. The sugar chains were released from the polypeptide portion of the enzyme by hydrazinolysis as oligosaccharides and separated by paper electrophoresis into one neutral and two acidic fractions. By sequential exoglycosidase digestion and methylation analysis, the neutral fraction, which comprised 69% of total oligosaccharides, was shown to be a mixture of bisected bi- and triantennary complex-type sugar chains with and without a fucose on the proximal N-acetylglucosamine residue and with Gal beta 1----4GlcNAc and/or Gal beta 1----4(Fuc alpha 1----3)GlcNAc groups in their outer chain moieties. The acidic oligosaccharide fractions were mixtures of mono- and disialyl derivatives of bisected triantennary complex-type oligosaccharides with Gal beta 1----4GlcNAc and/or Gal beta 1----4(Fuc alpha 1----3)GlcNAc group in their outer chain moieties. Some of the outer chains of the acidic oligosaccharides were considered to be sialylated X-antigenic structures.  相似文献   

19.
The articular lubricating fraction from bovine synovial fluid was prepared by repeated fractionation in three consecutive CsCl density gradients to remove completely traces of hyaluronic acid. The major glycoprotein consituent (LGP-I) was then isolated by repeated gel-permeation chromatography. The yield of the LGP-I component was about 20 mg/litre of synovial fluid. Sedimentation-equilibrium measurements showed that this glycoprotein was homogeneous and the mol.wt. was calculated to be 227500. Amino acids represented 43% (w/w) and carbohydrate constituents 44% (w/w) of the molecule. Threonine, glutamic acid, proline and lysine (224, 127, 242 and 128 residues/1000 residues respectively) were the major amino acids. Galactosamine, galactose and N-acetylneuraminic acid (202, 162 and 114 residues/molecule of LGP-I component respectively) accounted for 98% of the total carbohydrate residues present. Small amounts of mannose and glucosamine (1 and 9mol respectively/mol of LGP-I component) were also present. After treatment of LGP-I component with alkali and NaB3H4 radioactivity was incorporated into alpha-aminobutyric acid and alanine in a molar ratio of 4:1, and radioactive galactosaminitol was isolated by ion-exchange chromatography from a cleaved oligosaccharide fraction. These data demonstrate the presence of threonine and serine -O-GalNAc linkages, but only 25% of the theoretical likages involving threonine were cleaved by a beta-elimination reaction. Digestion of LGP-I component with Pronase followed by chromatography on DEAE-cellulose yielded glycopeptide fractions with a similar amino acid and carbohydrate composition to the intact molecule. Treatment of desialylated and intact LGP-I component with galactose oxidase followed by reduction with NaB3H4 revealed the presence of 52mol of terminal galactose in the intact molecule and 153mol of galactose/mol of LGP-I component after treatment with neuraminidase. The data indicate the LGP-I component is composed of a single polypeptide chain containg more than 150 oligaosaccharide side chains composed of O-GaINAc-Gal distributed over the length of the peptide chain and that terminal sialic acid residues are linked to galactose in two-thirds of these side chains.  相似文献   

20.
The N-glycosidically linked glycans in the large subunit (HA1) of the hemagglutinin from fowl plague virus, strain Dutch (containing about 15%, w/w, of carbohydrates), were liberated by alkaline hydrolysis, and were filtrated through Bio-Gel as the re-N-acetylated oligosaccharide alditols. One major fraction (90%, mol/mol) was obtained. It was subfractionated by concanavalin A affinity chromatography and was analyzed by methylation/capillary gas chromatography/mass fragmentography and especially by one-dimensional and two-dimensional 1H nuclear magnetic resonance. The major HA1 glycans, which are not sialylated, were thus found to comprise about 40%, 30% and 20% (mol/mol), respectively, of biantennary intersected, biantennary, and triantennary N-acetyllactosaminic ('complex') oligosaccharides. About two thirds of the internal GlcNAc residues in these glycans are substituted by Fuc(alpha 1----6), all the triantennary species carry the third Gal(beta 1----4)GlcNAc(beta 1----unit at the Man(alpha 1----6)-branch, and roughly one fourth of the N-acetyllactosamine units in the non-intersected biantennary oligosaccharides are incomplete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号