首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Although the initial site of poliovirus replication in humans is the intestine, previously isolated transgenic mice which carry the human poliovirus receptor (PVR) gene (TgPVR mice), which develop poliomyelitis after intracerebral inoculation, are not susceptible to infection by the oral route. The low levels of PVR expressed in the TgPVR mouse intestine might explain the absence of poliovirus replication at that site. To ascertain whether PVR is the sole determinant of poliovirus susceptibility of the mouse intestine, we have generated transgenic mice by using the promoter for rat intestine fatty acid binding protein to direct PVR expression in mouse gut. Pvr was detected by immunohistochemistry in the enterocytes and M cells of transgenic mouse (TgFABP-PVR) small intestine. Upon oral inoculation with poliovirus, no increase in virus titer was detected in the feces of TgFABP-PVR mice, and no virus replication was observed in the small intestine, although poliovirus replicated in the brain after intracerebral inoculation. The failure of poliovirus to replicate in the TgFABP-PVR mouse small intestine was not due to lack of virus binding sites, because poliovirus could attach to fragments of small intestine from these mice. These results indicate that the inability of poliovirus to replicate in the mouse alimentary tract is not solely due to the absence of virus receptor, and other factors are involved in determining the ability of poliovirus to replicate in the mouse gut.  相似文献   

2.
Virus-infected cells secrete a broad range of interferon (IFN) subtypes which in turn trigger the synthesis of antiviral factors that confer host resistance. IFN-alpha, IFN-beta and other type I IFNs signal through a common universally expressed cell surface receptor, whereas IFN-lambda uses a distinct receptor complex for signaling that is not present on all cell types. Since type I IFN receptor-deficient mice (IFNAR1(0/0)) exhibit greatly increased susceptibility to various viral diseases, it remained unclear to which degree IFN-lambda might contribute to innate immunity. To address this issue we performed influenza A virus infections of mice which carry functional alleles of the influenza virus resistance gene Mx1 and which, therefore, develop a more complete innate immune response to influenza viruses than standard laboratory mice. We demonstrate that intranasal administration of IFN-lambda readily induced the antiviral factor Mx1 in mouse lungs and efficiently protected IFNAR1(0/0) mice from lethal influenza virus infection. By contrast, intraperitoneal application of IFN-lambda failed to induce Mx1 in the liver of IFNAR1(0/0) mice and did not protect against hepatotropic virus infections. Mice lacking functional IFN-lambda receptors were only slightly more susceptible to influenza virus than wild-type mice. However, mice lacking functional receptors for both IFN-alpha/beta and IFN-lambda were hypersensitive and even failed to restrict usually non-pathogenic influenza virus mutants lacking the IFN-antagonistic factor NS1. Interestingly, the double-knockout mice were not more susceptible against hepatotropic viruses than IFNAR1(0/0) mice. From these results we conclude that IFN-lambda contributes to inborn resistance against viral pathogens infecting the lung but not the liver.  相似文献   

3.
Several attempts were made to colonize the alimentary tract and infect germfree BALB/c mice and germfree Sprague-Dawley rats with two human isolates of Helicobacter pylori. The alimentary tracts of mice, sacrificed at intervals between 1 day and 20 weeks after oral challenge, were culture negative for H. pylori. The alimentary tract, kidney, liver, and mesenteric lymph nodes were culture negative for H. pylori 5 h after intravenous challenge. Growth of H. pylori was inhibited by homogenates of murine stomach, small intestine, liver, and mesenteric lymph nodes. Germfree rats and mice do not appear to be readily colonized or infected by human strains of H. pylori.  相似文献   

4.
Localization of norovirus and poliovirus in Pacific oysters   总被引:2,自引:0,他引:2  
Aims:  To examine the uptake and tissue distribution of norovirus (NoV) and poliovirus (PV) experimentally bioaccumulated in feeding Pacific oysters ( Crassostrea gigas ).
Methods and Results:  Pacific oysters were allowed to bioaccumulated either PV or NoV under tidally synchronized feeding conditions in laboratory tanks. Oysters were then either fixed and paraffin wax embedded prior to localizing virus within tissues by immunohistochemistry (IHC), or they were dissected into digestive tract (stomach, intestine and digestive diverticula), gill and labial palp tissues, and the viral load determined by quantitative RT-PCR. Both PV and NoV immunoreactivities were predominantly found in the lumen and within cells of the digestive tract tissues; however, PV was also found within cells of nondigestive tract tissues, and in the gills and labial palp. Quantitative RT-PCR of tissue extracts corroborate the immunohistochemical data in that the major site for virus localization is the gut, but significant amounts of viral RNA were identified in the gills and labial palp.
Conclusions:  The human enteric viruses, PV and NoV, are readily bioaccumulated by feeding Pacific oysters and that some of the virus is internalized within cells of both digestive and nondigestive tissues.
Significance and Impact of the Study:  Oysters that have been virally contaminated even after depuration (cleaning) in uncontaminated seawater could pose a human health risk if consumed.  相似文献   

5.
There is a critical need for development of novel delivery systems to facilitate the translation of nucleic acid-based macromolecules into clinically-viable therapies. The aim of this investigation was to develop and evaluate a novel nanoparticles-in-microsphere oral system (NiMOS) for gene delivery and transfection in specific regions of the gastrointestinal (GI) tract. Plasmid DNA, encoding for the enhanced green fluorescent protein (EGFP-N1), was encapsulated in type B gelatin nanoparticles. NiMOS were prepared by further protecting the DNA-loaded nanoparticles in a poly(epsilon-caprolactone) (PCL) matrix to form microspheres of less than 5.0 μm in diameter. In order to evaluate the biodistribution following oral administration, radiolabeled (111In-labeled) gelatin nanoparticles and NiMOS were administered orally to fasted Balb/C mice. The results of biodistribution studies showed that, while gelatin nanoparticles traversed through the GI tract fairly quickly with more than 54% of the administered dose per gram localizing in the large intestine at the end of 2 h, NiMOS resided in the stomach and small intestine for relatively longer duration. Following oral administration of EGFP-N1 plasmid DNA at 100 μg dose in the control and test formulations, the quantitative and qualitative results presented in this study provide the necessary evidence for transfection potential of NiMOS upon oral administration. After 5 days post-administration, transgene expression in the small and large intestine of mice was observed. Based on these results, NiMOS show significant potential as novel gene delivery vehicle for therapeutic and vaccination purposes.  相似文献   

6.
Cytoplasmic and endosomal RNA sensors recognize RNA virus infection and signals to protect host cells by inducing type I IFN. The cytoplasmic RNA sensors, retinoic acid inducible gene I/melanoma differentiation-associated gene 5, actually play pivotal roles in sensing virus replication. IFN-β promoter stimulator-1 (IPS-1) is their common adaptor for IFN-inducing signaling. Toll/IL-1R homology domain-containing adaptor molecule 1 (TICAM-1), also known as TRIF, is the adaptor for TLR3 that recognizes viral dsRNA in the early endosome in dendritic cells and macrophages. Poliovirus (PV) belongs to the Picornaviridae, and melanoma differentiation-associated gene 5 reportedly detects replication of picornaviruses, leading to the induction of type I IFN. In this study, we present evidence that the TLR3/TICAM-1 pathway governs IFN induction and host protection against PV infection. Using human PVR transgenic (PVRtg) mice, as well as IPS-1(-/-) and TICAM-1(-/-) mice, we found that TICAM-1 is essential for antiviral responses that suppress PV infection. TICAM-1(-/-) mice in the PVRtg background became markedly susceptible to PV, and their survival rates were decreased compared with wild-type or IPS-1(-/-) mice. Similarly, serum and organ IFN levels were markedly reduced in TICAM-1(-/-)/PVRtg mice, particularly in the spleen and spinal cord. The sources of type I IFN were CD8α(+)/CD11c(+) splenic dendritic cells and macrophages, where the TICAM-1 pathway was more crucial for PV-derived IFN induction than was the IPS-1 pathway in ex vivo and in vitro analyses. These data indicate that the TLR3/TICAM-1 pathway functions are dominant in host protection and innate immune responses against PV infection.  相似文献   

7.
Receptor binding to human poliovirus type 1 (PV1/M) and the major group of human rhinoviruses (HRV) was studied comparatively to uncover the evolution of receptor recognition in picornaviruses. Surface plas- mon resonance showed receptor binding to PV1/M with faster association and dissociation rates than to HRV3 and HRV16, two serotypes that have similar binding kinetics. The faster rate for receptor association to PV1/M suggested a relatively more accessible binding site. Thermodynamics for receptor binding to the viruses and assays for receptor-mediated virus uncoating showed a more disruptive receptor interaction with PV1/M than with HRV3 or HRV16. Cryo-electron microscopy and image reconstruction of receptor-PV1/M complexes revealed receptor binding to the 'wall' of surface protrusions surrounding the 'canyon', a depressive surface in the capsid where the rhinovirus receptor binds. These data reveal more exposed receptor-binding sites in poliovirus than rhinoviruses, which are less protected from immune surveillance but more suited for receptor-mediated virus uncoating and entry at the cell surface.  相似文献   

8.
9.
RIG-I-like receptors and Toll-like receptors (TLRs) play important roles in the recognition of viral infections. However, how these molecules contribute to the defense against poliovirus (PV) infection remains unclear. We characterized the roles of these sensors in PV infection in transgenic mice expressing the PV receptor. We observed that alpha/beta interferon (IFN-α/β) production in response to PV infection occurred in an MDA5-dependent but RIG-I-independent manner in primary cultured kidney cells in vitro. These results suggest that, similar to the RNA of other picornaviruses, PV RNA is recognized by MDA5. However, serum IFN-α levels, the viral load in nonneural tissues, and mortality rates did not differ significantly between MDA5-deficient mice and wild-type mice. In contrast, we observed that serum IFN production was abrogated and that the viral load in nonneural tissues and mortality rates were both markedly higher in TIR domain-containing adaptor-inducing IFN-β (TRIF)-deficient and TLR3-deficient mice than in wild-type mice. The mortality rate of MyD88-deficient mice was slightly higher than that of wild-type mice. These results suggest that multiple pathways are involved in the antiviral response in mice and that the TLR3-TRIF-mediated signaling pathway plays an essential role in the antiviral response against PV infection.  相似文献   

10.
Antimicrobial peptides have been suggested as an alternative to classical antibiotics in livestock production and bacteriocin-producing bacteria could be added to animal feeds to deliver bacteriocins in the gastrointestinal (GI) tract of ruminant and monogastric animals. In this study, viable (V) and heat-killed (HK) Streptococcus bovis HC5 cells were orally administered to pre-sensitized mice in order to assess the effects of a bacteriocin-producing bacteria on histological parameters and the immune response of the GI tract of monogastric animals. The administration of V and HK S. bovis HC5 cells during 58 days to BALB/c mice did not affect weight gain, but an increase in gut permeability was detected in animals receiving the HK cells. Viable and heat killed cells caused similar morphological alterations in the GI tract of the animals, but the most prominent effects were detected in the small intestine. The oral administration of S. bovis HC5 also influenced cytokine production in the small intestine, and the immune-mediated activity differed between V and HK cells. The relative expression of IL-12 and INF-γ was significantly higher in the small intestine of mice treated with V cells, while an increase in IL-5, IL-13 and TNF-α expression was only detected in mice treated with HK cells. Considering that even under a condition of severe challenge (pre-sensitization followed by daily exposure to the same bacterial immunogen) the general health of the animals was maintained, it appears that oral administration of S. bovis HC5 cells could be a useful route to deliver bacteriocin in the GI tract of livestock animals.  相似文献   

11.
Virus-infected cells secrete a broad range of interferon (IFN) subtypes which in turn trigger the synthesis of antiviral factors that confer host resistance. IFN-α, IFN-β and other type I IFNs signal through a common universally expressed cell surface receptor, whereas IFN-λ uses a distinct receptor complex for signaling that is not present on all cell types. Since type I IFN receptor-deficient mice (IFNAR10/0) exhibit greatly increased susceptibility to various viral diseases, it remained unclear to which degree IFN-λ might contribute to innate immunity. To address this issue we performed influenza A virus infections of mice which carry functional alleles of the influenza virus resistance gene Mx1 and which, therefore, develop a more complete innate immune response to influenza viruses than standard laboratory mice. We demonstrate that intranasal administration of IFN-λ readily induced the antiviral factor Mx1 in mouse lungs and efficiently protected IFNAR10/0 mice from lethal influenza virus infection. By contrast, intraperitoneal application of IFN-λ failed to induce Mx1 in the liver of IFNAR10/0 mice and did not protect against hepatotropic virus infections. Mice lacking functional IFN-λ receptors were only slightly more susceptible to influenza virus than wild-type mice. However, mice lacking functional receptors for both IFN-α/β and IFN-λ were hypersensitive and even failed to restrict usually non-pathogenic influenza virus mutants lacking the IFN-antagonistic factor NS1. Interestingly, the double-knockout mice were not more susceptible against hepatotropic viruses than IFNAR10/0 mice. From these results we conclude that IFN-λ contributes to inborn resistance against viral pathogens infecting the lung but not the liver.  相似文献   

12.
Schmallenberg virus (SBV), a novel orthobunyavirus, was discovered in Europe in late 2011. It causes mild and transient disease in adult ruminants, but fetal infection can lead to abortion or severe malformations. There is considerable demand for SBV research, but in vivo studies in large animals are complicated by their long gestation periods and the cost of high containment housing. The goal of this study was to investigate whether type I interferon receptor knock-out (IFNAR(-/-)) mice are a suitable small animal model for SBV. Twenty IFNAR(-/-) mice were inoculated with SBV, four were kept as controls. After inoculation, all were observed and weighed daily; two mice per day were sacrificed and blood, brain, lungs, liver, spleen, and intestine were harvested. All but one inoculated mouse lost weight, and two mice died spontaneously at the end of the first week, while another two had to be euthanized. Real-time RT-PCR detected large amounts of SBV RNA in all dead or sick mice; the controls were healthy and PCR-negative. IFNAR(-/-) mice are susceptible to SBV infection and can develop fatal disease, making them a handy and versatile tool for SBV vaccine research.  相似文献   

13.
14.
Type I interferons (IFN-I) are antiviral cytokines that signal through the ubiquitous IFN-I receptor (IFNAR). Following footpad infection with ectromelia virus (ECTV), a mouse-specific pathogen, C57BL/6 (B6) mice survive without disease, while B6 mice broadly deficient in IFNAR succumb rapidly. We now show that for survival to ECTV, only hematopoietic cells require IFNAR expression. Survival to ECTV specifically requires IFNAR in both natural killer (NK) cells and monocytes. However, intrinsic IFNAR signaling is not essential for adaptive immune cell responses or to directly protect non-hematopoietic cells such as hepatocytes, which are principal ECTV targets. Mechanistically, IFNAR-deficient NK cells have reduced cytolytic function, while lack of IFNAR in monocytes dampens IFN-I production and hastens virus dissemination. Thus, during a pathogenic viral infection, IFN-I coordinates innate immunity by stimulating monocytes in a positive feedback loop and by inducing NK cell cytolytic function.  相似文献   

15.
16.
Cells cured of persistent virus infection can be used to investigate cellular pathways of resistance to viral cytopathic effects. Persistent poliovirus (PV) infections were established in human intestinal Caco-2 cells, and spontaneously cured cell cultures were obtained. Two cell clones, cl6 and b13, cured of type 3 PV mutant infection and their parental Caco-2 cells were compared for susceptibility to PV infection, PV receptor CD155 expression, capacity to differentiate into polarized enterocytes, and PV-, staurosporine-, and actinomycin D-induced apoptosis. Our results strongly suggest that cells that are partially resistant to apoptosis can be selected during persistent virus infection.  相似文献   

17.
The plasma profile of indomethacin (IMC) after oral administration of IMC-loaded submicronized chitosan-coated liposomes (ssCS-Lip) was evaluated to reveal the effectiveness of the mucoadhesive function for improving the absorption of this poorly absorbable drug. The stomach and small intestine were removed from rats after 1, 2, and 4 hours of oral administration of submicron-sized liposomes (ssLip) or ssCS-Lip containing fluorescent dye, and the retentive properties were confirmed by measuring the amount of dye in each part of the gastrointestinal (GI) tract. Results showed that ssCS-Lip tended to be better retained in the upper part of the GI tract, compared with ssLip, at 1, 2, and 4 hours after administration, and was significantly better retained in the small intestine at 4 hours. The plasma profile and bioavailability of IMC after oral administration of both types of liposomes were improved, compared with oral administration of IMC solution. The maximum residence time of ssCS-Lip was significantly longer than those of ssLip. The extended plasma profile of ssCS-Lip was attributed to its prolonged retention in the upper region of the GI tract, and its delayed migration to the lower part of the intestine, the neutral pH of which is more soluble for IMC, an acidic drug. Therefore, the chitosan-coated ssLip, with its higher retention in the GI tract, is a promising drug carrier for the oral administration of poorly absorbed compounds.  相似文献   

18.
The plasma profile of indomethacin (IMC) after oral administration of IMC-loaded submicronized chitosan-coated liposomes (ssCS-Lip) was evaluated to reveal the effectiveness of the mucoadhesive function for improving the absorption of this poorly absorbable drug. The stomach and small intestine were removed from rats after 1, 2, and 4 hours of oral administration of submicron-sized liposomes (ssLip) or ssCS-Lip containing fluorescent dye, and the retentive properties were confirmed by measuring the amount of dye in each part of the gastrointestinal (GI) tract. Results showed that ssCS-Lip tended to be better retained in the upper part of the GI tract, compared with ssLip, at 1, 2, and 4 hours after administration, and was significantly better retained in the small intestine at 4 hours. The plasma profile and bioavailability of IMC after oral administration of both types of liposomes were improved, compared with oral administration of IMC solution. The maximum residence time of ssCS-Lip was significantly longer than those of ssLip. The extended plasma profile of ssCS-Lip was attributed to its prolonged retention in the upper region of the GI tract, and its delayed migration to the lower part of the intestine, the neutral pH of which is more soluble for IMC, an acidic drug. Therefore, the chitosan-coated ssLip, with its higher retention in the GI tract, is a promising drug carrier for the oral administration of poorly absorbed compounds.  相似文献   

19.
The effects of epidermal growth factor (EGF), cortisone and thyroxine on deoxyribonucleic acid (DNA) synthesis in the esophagus, stomach, small intestine and colon have been studied in suckling mouse. Daily administration of EGF [4 micrograms/g body weight (bw)/day] during 3 days to 8-day-old mice induced a significant increase of the incorporation of [3H]thymidine into DNA in the stomach, the small intestine, and the two halves of the colon. The DNA synthesis in the esophagus remained unaffected by the EGF treatment. The maximal increase of [3H]thymidine incorporation into DNA was observed in the colon, and represented 112%. Daily administration of cortisone acetate (25 micrograms/g bw/day) or thyroxine (1 microgram/g bw/day) during 3 days to 8-day-old mice had no significant influence of the DNA synthesis of any part of the gastrointestinal tract. These results show that EGF is able to affect the DNA synthesis in the stomach, small intestine and colon of suckling mice.  相似文献   

20.
Poliovirus (PV), when injected intramuscularly into the calf, is incorporated into the sciatic nerve and causes an initial paralysis of the inoculated limb in transgenic mice carrying the human PV receptor (hPVR/CD155) gene. Here, we demonstrated by using an immunoelectron microscope that PV particles exist on vesicle structures in nerve terminals of neuromuscular junctions. We also demonstrated in glutathione S-transferase pull-down experiments that the dynein light chain, Tctex-1, interacts directly with the cytoplasmic domain of hPVR. In the axons of differentiated rat PC12 cells transfected with expression vectors for hPVRs, vesicles composed of PV and hPVR alpha, as well as a mutant hPVR alpha (hPVRM alpha) that had a reduced ability to bind Tctex-1, colocalized with Tctex-1. However, vesicles containing PV, dextran, and hPVR alpha had only retrograde motion, while those containing PV, dextran, and hPVRM alpha had anterograde or retrograde motion. Topical application of the antimicrotubule agent vinblastine to the sciatic nerve reduced the amount of virus transported from the calf to the spinal cord. These results suggest that direct efficient interaction between the cytoplasmic domain and Tctex-1 is essential for the efficient retrograde transport of PV-containing vesicles along microtubules in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号