首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Agouti-related protein (AGRP) is a naturally occurring antagonist of melanocortin action. It is expressed mainly in the arcuate nucleus where it plays an important role in the hypothalamic control of feeding and energy homeostasis by antagonism of central melanocortin 4 receptors in mammals. Besides in the brain, the melanocortin 4 receptor is expressed in numerous peripheral tissues in the chicken. To examine whether or not the peripheral melanocortin 4 receptor signaling could be regulated by AGRP, we cloned and localized the expression of the AGRP gene in the chicken. The chicken AGRP gene was found to encode a 154 or 165 amino acid protein, depending on the usage of two alternative translation initiation sites. The coding sequence consisted of three exons, like that of mammalian species. The C-terminal cysteine-rich region of the predicted AGRP displayed high levels of identity to mammalian counterparts (78-84%) and all 10 cysteine residues conferring functional conformation of AGRP were conserved; however, other regions showed apparently no homology, suggesting that biological activities of AGRP are located in its C-terminal region. RT-PCR analysis detected the AGRP mRNA in all tissues examined: the brain, adrenal gland, heart, liver, spleen, gonads, kidney, uropygial gland, skeletal muscle and adipose tissues. Interestingly, the skin also expressed the AGRP mRNA, where Agouti, another melanocortin receptor antagonist regulating hair pigmentation, is expressed in rodents. Most of those AGRP-expressing tissues have been demonstrated to express melanocortin 4 receptors and/or other subtypes of melanocortin receptor whose mammalian counterparts can bind AGRP. These results imply the possibility that some peripheral melanocortin systems could be regulated by the functional interaction between melanocortins and AGRP at melanocortin receptors in the chicken.  相似文献   

2.
The role of melanocortins in skin homeostasis   总被引:4,自引:0,他引:4  
Böhm M  Luger TA 《Hormone research》2000,54(5-6):287-293
Melanocortins are structurally related bioactive peptides which are produced by many extra-neural tissues including the skin. All of the melanocortins (alpha, beta, and gamma-melanocyte-stimulating hormone and adrenocorticotropin) have melanotropic activity but can elicit many other effects on skin cells. On the basis of in vitro and in vivo findings melanocortins have been shown to regulate immune and inflammatory responses, hair growth, exocrine gland activity and extracellular matrix composition. These effects are mediated by melanocortin receptors among which the melanocortin-1 receptor is most ubiquitously expressed by human skin cells. Simultaneous expression of melanocortins and their receptors suggest a complex autocrine and/or paracrine regulatory network whose disruption invariably affects skin homeostasis. Expression of melanocortin receptors on various skin cell types further indicates novel pharmacological targets for the treatment of skin diseases.  相似文献   

3.
4.
5.
The melanocortin system and energy balance   总被引:7,自引:0,他引:7  
Butler AA 《Peptides》2006,27(2):281-290
The melanocortins, a family of peptides produced from the post-translational processing of pro-opiomelanocortin (POMC), regulate ingestive behavior and energy expenditure. Loss of function mutations of genes encoding POMC, or of either of two melanocortin receptors expressed in the central nervous system (MC3R, MC4R), are associated with obesity. The analyses of MC4R knockout mice indicate that activation of this receptor is involved in the regulation of appetite, the adaptive metabolic response to excess caloric consumption, and negative energy balance associated with cachexia induced by cytokines. In contrast, MC3R knockout mice exhibit a normal, or even exaggerated, response to signals that induce a state of negative energy balance. However, loss of the MC3R also results in an increase in adiposity. This article discusses the regulation of energy balance by the melanocortins. Published and newly presented data from studies analyzing of energy balance of MC3R and MC4R knockout mice indicate that increased adiposity observed in both models involves an imbalance in fat intake and oxidation.  相似文献   

6.
To examine the role of the brain stem melanocortin system in long-term energy regulation, we assessed the effects of overproduction of proopiomelanocortin (POMC) in the caudal brain stem of F344xBN rats with adult-onset obesity. Recombinant adeno-associated viral vector encoding POMC gene was delivered to the nucleus of solitary tract (NTS) in the hindbrain, and food intake, body weight, glucose and fat metabolism, brown adipose tissue thermogenesis, and mRNA levels of neuropeptides and melanocortin receptors were assessed. POMC delivery resulted in sustained reduction in food intake and body weight over 42 days and improved insulin sensitivity. At death, in recombinant adeno-associated viral vector-POMC-treated rats vs. control rats, alpha-melanocyte-stimulating hormone in NTS increased nearly 21-fold, whereas hypothalamic alpha-melanocyte-stimulating hormone remained unchanged. Visceral adiposity decreased by 37%; tissue triglyceride content diminished by 26% and 47% in liver and muscle, respectively; serum triglyceride and nonesterified fatty acids were reduced by 35% and 34%, respectively; phosphorylation of acetyl-CoA carboxylase was elevated by 63% in soleus muscle; brown adipose tissue uncoupling protein 1 increased by 30%; and melanocortin 3 receptor expression declined by 60%, whereas neuropeptide Y, agouti-related protein, and MC4 receptor mRNA levels were unchanged in the NTS. In conclusion, POMC overexpression in the NTS produces a characteristic unabated hypophagia that is uniquely different from the anorexic tachyphylaxis following POMC overexpression in the hypothalamus. The sustained anorectic response may result from absence of compensatory elements in the NTS, such as increased agouti-related protein expression, suggesting melanocortin activation of the brain stem may be a viable strategy to alleviate obesity.  相似文献   

7.
8.
Hypoxia in the tumor microenvironment triggers differential signaling pathways for tumor survival. In this study, we characterize the involvement of hypoxia and reactive oxygen species (ROS) generation in the antineoplastic mechanism of proopiomelanocortin (POMC) gene delivery in a mouse B16-F10 melanoma model in vivo and in vitro. Histological analysis revealed increased TUNEL-positive cells and enhanced hypoxic activities in melanoma treated with adenovirus encoding POMC (Ad-POMC) but not control vector. Because the apoptotic cells were detected mainly in regions distant from blood vessels, it was hypothesized that POMC therapy might render melanoma cells vulnerable to hypoxic insult. Using a hypoxic chamber or cobalt chloride (CoCl2), we showed that POMC gene delivery elicited apoptosis and caspase-3 activation in cultured B16-F10 cells only under hypoxic conditions. The apoptosis induced by POMC gene delivery was associated with elevated ROS generation in vitro and in vivo. Blocking ROS generation using the antioxidant N-acetyl-l-cysteine abolished the apoptosis and caspase-3 activities induced by POMC gene delivery and hypoxia. We further showed that POMC-derived melanocortins, including α-MSH, β-MSH, and ACTH, but not γ-MSH, contributed to POMC-induced apoptosis and ROS generation during hypoxia. To elucidate the source of ROS generation, application of the NADPH oxidase inhibitor diphenyleneiodonium attenuated α-MSH-induced apoptosis and ROS generation, implicating the proapoptotic role of NADPH oxidase in POMC action. Of the NADPH oxidase isoforms, only Nox4 was expressed in B16-F10 cells, and Nox4 was also elevated in Ad-POMC-treated melanoma tissues. Silencing Nox4 gene expression with Nox4 siRNA suppressed the stimulatory effect of α-MSH-induced ROS generation and cell apoptosis during hypoxia. In summary, we demonstrate that POMC gene delivery suppressed melanoma growth by inducing apoptosis, which was at least partly dependent on Nox4 upregulation.  相似文献   

9.
10.
The melanocortins are a family of bioactive peptides derived from proopiomelanocortin. Those peptides, included among hormones and comprising ACTH, alpha-MSH, beta-MSH and gamma-MSH, are best known mainly for their physiological effects, such as the control of skin pigmentation by alpha-MSH, and ACTH effects on pigmentation and steroidogenesis. Melanocortins are released in various sites in the central nervous system and in peripheral tissues, and participate in the regulation of multiple physiological functions. They are involved in grooming behavior, food intake and thermoregulation processes, and can also modulate the response of the immune system in inflammatory states. Research of the past decade provided evidence that melanocortins could elicit their diverse biological effects by binding to a distinct family of G protein-coupled receptors with seven transmembrane domains. To date, five melanocortin receptor genes have been cloned and characterized. Those receptors differ in their tissue distribution and in their ability to recognize various melanocortins. These advances have opened up new horizons for exploring the significance of melanocortins, their ligands and their receptors for a variety of important physiological functions. We reviewed the origin of MSH peptides, the function and distribution of melanocortin receptors and their endogenous and exogenous ligands and the role of melanocortins and their receptors in inflammatory processes, nerve regeneration and nociception. Moreover, we analyzed their interaction with opioid peptides and finally, we discussed the postulated role of the melanocortin system in pain transmission at the spinal cord level.  相似文献   

11.
12.
Fat is delivered to tissues by apoB-containing lipoproteins synthesized in the liver and intestine with the help of an intracellular chaperone, microsomal triglyceride transfer protein (MTP). Leptin, a hormone secreted by adipose tissue, acts in the brain and on peripheral tissues to regulate fat storage and metabolism. Our aim was to identify the role of leptin signaling in MTP regulation and lipid absorption using several mouse models deficient in leptin receptor (LEPR) signaling and downstream effectors. Mice with spontaneous LEPR B mutations or targeted ablation of LEPR B in proopiomelanocortin (POMC) or agouti gene related peptide (AGRP) expressing cells had increased triglyceride in plasma, liver, and intestine. Furthermore, melanocortin 4 receptor (MC4R) knockout mice expressed a similar triglyceride phenotype, suggesting that leptin might regulate intestinal MTP expression through the melanocortin pathway. Mechanistic studies revealed that the accumulation of triglyceride in the intestine might be secondary to decreased expression of MTP and lipid absorption in these mice. Surgical and chemical blockade of vagal efferent outflow to the intestine in wild-type mice failed to alter the triglyceride phenotype, demonstrating that central neural control mechanisms were likely not involved in the observed regulation of intestinal MTP. Instead, we found that enterocytes express LEPR, POMC, AGRP, and MC4R. We propose that a peripheral, local gut signaling mechanism involving LEPR B and MC4R regulates intestinal MTP and controls intestinal lipid absorption.  相似文献   

13.
We have verified the possibility that the POMC gene of the rat hypothalamus might be subject to regulation by glucocorticoids. Adrenalectomy increased the concentration of POMC mRNA in anterior pituitary and in hypothalamus, but not in the neurointermediate lobe of the pituitary gland. Dexamethasone and, to a slightly lesser extent, corticosterone treatments reversed the adrenalectomy-induced increase in POMC mRNA concentrations in both anterior pituitary and hypothalamus. Dexamethasone caused a slight decrease of POMC mRNA levels in the neurointermediate lobe of the pituitary gland, while corticosterone had no effect. These results indicate that the POMC gene of the rat brain hypothalamus is also under negative control by glucocorticoids.  相似文献   

14.
15.
16.
Todorovic A  Haskell-Luevano C 《Peptides》2005,26(10):2026-2036
The melanocortin system (MC) is implicated in the regulation of a variety of physiological pathways including pigmentation, steroid function, energy homeostasis, food intake, obesity, cardiovascular, sexual function, and normal gland regulation. The melanocortin system consists of five receptors identified to date (MC1-5R), melanocortin agonists derived from the pro-opiomelanocortin prohormone (POMC) and two naturally existing antagonists. Melanocortin receptor ligand structure-activity studies have been performed since the 1960s, primarily focused on the pigmentation aspect of physiology. During the 1990s, the melanocortin-4 receptor was identified to play a significant physiological role in the regulation of both food intake and obesity. Subsequently, a concerted drug design effort has focused on the design and discovery of melanocortin receptor small molecules. Herein, we present an overview of melanocortin receptor heterocyclic small molecules.  相似文献   

17.
Increased expression of melanin concentrating hormone (MCH), an orexigenic neuropeptide produced by neurons in the lateral hypothalamic area (LHA), is implicated in the effect of energy restriction to increase food intake. Since melanocortins inhibit Mch gene expression, this effect of energy restriction to increase Mch signaling may involve reduced hypothalamic melanocortin signaling. Consistent with this hypothesis, we detected increased hypothalamic Mch mRNA levels in agouti (Ay) mice (by 102%; P < 0.05), a model of genetic obesity resulting from impaired melanocortin signaling, compared to wild-type controls. If reduced melanocortin signaling mediates the effect of energy restriction, hypothalamic Mch gene expression in Ay mice should not be increased further by energy restriction, since melanocortin signaling is impaired in these animals regardless of nutritional state. We therefore investigated the effects of energy restriction on hypothalamic Mch gene expression in both Ay mice and in wild-type mice with diet-induced obesity (DIO). Responses in these mice were compared to those induced by administration of 17beta-estradiol (E2) at a dose previously shown to reduce food intake and Mch expression in rats. In both Ay and DIO mice, energy restriction increased hypothalamic Mch mRNA levels (P < 0.05 for each) via a mechanism that was fully blocked by E2. However, E2 did not lower levels of Mch mRNA below basal values in Ay mice, whereas it did so in DIO mice. Thus, the effect of energy restriction to increase hypothalamic Mch gene expression involves an E2-sensitive mechanism that is not altered by impaired melanocortin signaling. By comparison, impaired melanocortin signaling increases hypothalamic Mch gene expression via a mechanism that is insensitive to E2. These findings suggest that while both energy restriction and reduced melanocortin signaling stimulate hypothalamic Mch gene expression, they do so via distinct mechanisms.  相似文献   

18.
Proopiomelanocortin (POMC) cDNAs were cloned and sequenced from brain extracts of two species of urodele amphibians: Amphiuma means and Necturus maculosus. Although the two species of urodele amphibians belong to separate families, and do not share a direct common ancestor, the level of primary sequence identity for the open reading of the POMC cDNAs was 90% at the amino acid level and 79% at the nucleotide level. It appears that the POMC gene in these urodele amphibians has been accumulating mutations at the amino acid level at a slower rate than the POMC gene in other sarcopterygian orders.  相似文献   

19.
Summary α-Melanotropin and ACTH, POMC peptides, initiate biological activity by interaction with the classical pigment cell (α-MSH receptor, MC1R) and adrenal gland (ACTH receptor, MC2R) melanocortin receptors, respectively. The recently discovered MC3R, MC4R and MC5R receptors provide new targets and new biological functions for POMC peptides. We have developed conformationally constrained α-melanotropin peptides that interact with all of these receptors as agonists and antagonists and are examining new approaches to obtain highly selective ligands for each of these melanocortin receptors. Previously, we had converted somatostatin-derived peptides into potent and highly selective analogues that act as antagonists at the μ opioid receptors. Using the reverse turn template that came out of these studies, we have designed, de novo, agonist and antagonist peptide analogues that interact with melanocortin receptors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号