首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Syntenin is a scaffolding PDZ domain-containing protein with diverse biological activities, including organization of protein complexes in the plasma membrane, regulation of B-cell development, intracellular trafficking, synaptic transmission, and cancer metastasis. In the present study, we isolated and characterized the cDNA of the olive flounder Paralichthys olivaceus syntenin, designated PoSyntenin. The full-length CDS of PoSyntenin with 5′- and 3′-UTR sequences is 2618 bp long and consists of a 909 bp open reading frame preceded by a 161 bp 5′-UTR and followed by a 1551 bp 3′-UTR. The PoSyntenin cDNA encodes a polypeptide of 302 amino acids containing two PDZ domains, which shares 61–80% homology with those of other species, including humans. Expression of the PoSyntenin mRNA was detectable from 1 day post-hatching and constitutively in the brain, spleen, intestine, stomach, eye, liver, kidney, and gill of normal conditioned fish. Expression of the PoSyntenin mRNA was upregulated in the eye, liver, kidney, spleen, brain, gill, and intestine of flounder under hypoxia and was increased by treatment with the hypoxia-mimic CoCl2 (a HIF-1 inducer) in HINAE cells. Taken together, these results suggest that PoSyntenin is a hypoxia target gene that has a potential role in the hypoxia response mechanism of fish.  相似文献   

2.
PDZ domain proteins play critical roles in binding, clustering and subcellular targeting of membrane receptors and ion channels. PDZ domains in multi-PDZ proteins often are arranged in groups with highly conserved spacing and intervening sequences; however, the functional significance of such tandem arrangements of PDZs is unclear. We have solved the three-dimensional structure of the first two PDZ domains of postsynaptic density protein-95 (PSD-95 PDZ1 and PDZ2), which are closely linked to each other in the PSD-95 family of scaffold proteins. The two PDZs have limited freedom of rotation and their C-terminal peptide-binding grooves are aligned with each other with an orientation preference for binding to pairs of C termini extending in the same direction. Increasing the spacing between PDZ1 and PDZ2 resulted in decreased binding between PDZ12 and its dimeric targets. The same mutation impaired the functional ability of PSD-95 to cluster Kv1.4 potassium channels in heterologous cells. The data presented provide a molecular basis for preferential binding of PSD-95 to multimeric membrane proteins with appropriate C-terminal sequences.  相似文献   

3.
A ubiquitous feature of neurotransmitter transporters is the presence of short C-terminal PDZ binding motifs acting as important trafficking elements. Depending on their very C-terminal sequences, PDZ binding motifs are usually divided into at least three groups; however this classification has recently been questioned. To introduce a 3D aspect into transporter’s PDZ motif similarities, we compared their interactions with the natural collection of all 13 PDZ domains of the largest PDZ binding protein MUPP1. The GABA, glycine and serotonin transporters showed unique binding preferences scattered over one or several MUPP1 domains. On the contrary, the dopamine and norepinephrine transporter PDZ motifs did not show any significant affinity to MUPP1 domains. Interestingly, despite their terminal sequence diversity all three GABA transporter PDZ motifs interacted with MUPP1 domain 7. These results indicate that similarities in binding schemes of individual transporter groups might exist. Results also suggest the existence of variable PDZ binding modes, allowing several transporters to interact with identical PDZ domains and potentially share interaction partners in vivo.  相似文献   

4.
5.
PDZ domains are among the most abundant protein modules in the known genomes. Their main function is to provide scaffolds for membrane-associated protein complexes by binding to the cytosolic, C-terminal fragments of receptors, channels, and other integral membrane proteins. Here, using both heteronuclear NMR and single crystal X-ray diffraction, we show how peptides with different sequences, including those corresponding to the C-termini of syndecan, neurexin, and ephrin B, can simultaneously bind to both PDZ domains of the scaffolding protein syntenin. The PDZ2 domain binds these peptides in the canonical fashion, and an induced fit mechanism allows for the accommodation of a range of side chains in the P(0) and P(-)(2) positions. However, binding to the PDZ1 domain requires that the target peptide assume a noncanonical conformation. These data help explain how syntenin, and perhaps other PDZ-containing proteins, may preferentially bind to dimeric and clustered targets, and provide a mechanistic explanation for the previously reported cooperative ligand binding by syntenin's two PDZ domains.  相似文献   

6.
Lipid-mediated regulatory mechanism of the C-terminal ligand binding to PDZ domains is not fully understood, despite their roles in subcellular organization. Here, we provide structural insights into the phosphatidylinositol 4,5-bisphosphate (PIP2) recognition mode of a PDZ domain, as revealed from the crystal structure of the phosphate-bound PDZ domain. Two adjacent phosphate ions bind to the basic residues close to the amino terminus of the α2 helix in the Tamalin PDZ domain, reflecting an interaction mode of the two phosphate groups of PIP2. Based on the observed location of the two phosphate molecules within the PDZ domain, we built the docking model of PIP2 with the PDZ domain of the well-known PIP2-binding protein, syntenin-1. This model suggests that the hydrophobic diacylglycerol group of PIP2 could contact the ligand-binding groove of the PDZ domain. These structural features well explain biological phenomena, which were previously reported for the PIP2-mediated PDZ ligand-binding regulation.  相似文献   

7.
Cadherins are Ca2+-dependent cell adhesion molecules that play fundamental roles in animal development and homeostasis. A number of cadherins contain conserved binding sites for catenins in their cytoplasmic region that are important for the adhesive function of these cadherins by mediating their interaction to the cytoskeleton. However, most cadherins lack apparent binding sites for catenins and their cytoplasmic interacting partners are mostly unknown. In this paper, we show, using bioinformatics, that a number of insect and vertebrate cadherins lacking catenin-binding sites contain conserved consensus sequences for C-terminal PSD-95/Discs-large/ZO-1 (PDZ)-domain-binding sites. This suggests that PDZ-domain-containing proteins are common cytoplasmic interacting partners for cadherins lacking catenin-binding sites.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible to authorized users.  相似文献   

8.
Junctional adhesion molecule (JAM)-A is an integral membrane protein at tight junctions of epithelial cells which associates with the cell polarity protein PAR-3. Here, we demonstrate that downregulation of JAM-A impairs the ability of MDCK II cells to form cysts in a three-dimensional matrix indicating the requirement of JAM-A for the development of apico-basal polarity. To define the regions of JAM-A important for this function, we have generated MDCK II cell lines stably expressing inducible JAM-A mutants. Mutants of JAM-A which were designed to mislocalize strongly impaired the development of cysts and the formation of functional tight junctions. Surprisingly, similar mutants that lacked the PDZ domain-binding motif at the C-terminus were still impaired in apico-basal polarity formation suggesting that additional regions within the cytoplasmic tail of JAM-A are important for the function of JAM-A. A JAM-A mutant lacking the first Ig-like domain necessary for homophilic binding localized to cell-cell contacts similar to wild-type JAM-A. However, despite this same localization, this mutant interfered with cell polarity and tight junction formation. Together our findings suggest an important role for JAM-A in the development of apico-basal polarity in epithelial cells and identify regions in JAM-A which are critical for this role.  相似文献   

9.
The crystal structure of the second PDZ domain of the scaffolding protein syntenin was solved using data extending to 0.73 A resolution. The crystallographic model, including the hydrogen atoms and the anisotropic displacement parameters, was refined to a conventional R-factor of 7.5% and Rfree of 8.7%, making it the most precise crystallographic model of a protein molecule to date. The model reveals discrete disorder in several places in the molecule, and significant plasticity of the peptide bond, with some omega angles deviating by nearly 20 degrees from planarity. Most hydrogen atoms are easily identifiable in the electron density and weak hydrogen bonds of the C-H...O type are clearly visible between the beta-strands. The study sets a new standard for high-resolution protein crystallography.  相似文献   

10.
Among the various hematopo?̈etic cells, platelets are critical for maintaining the integrity of the vascular system. They must be rapidly activated by sequential and coordinated mechanisms in order to efficiently prevent haemorrhage upon vascular injury. Several signal transduction pathways lead to platelet activation in vitro and in vivo, among them, several are initiated via receptors or co-receptors containing immuno-receptor tyrosine-based activation motifs (ITAM) which trigger downstream signalling like the immune receptors in lymphocytes. However, in contrast to immune cells for which the role of lipid rafts in signalling has largely been described, the involvement of laterally segregated membrane microdomains in platelet activation has been investigated only recently. The results obtained until now strongly suggest that early steps of platelet activation via the collagen receptor GpVI or via FcγRIIa occur preferentially in these microdomains where specific proteins efficiently organize key downstream signalling pathways. In addition, lipid rafts also contribute to platelet activation via heterotrimeric G-protein-coupled receptors. They are sites where the phosphoinositide (PI) metabolism is highly active, leading to a local generation of lipid second messengers such as phosphatidylinositol 3,4,5-trisphosphate. Here, evidence is accumulating that cholesterol-enriched membrane microdomains are part of a general process that contributes to the efficiency and the coordination of platelet activation mechanisms. Here we will discuss the biochemical and functional characterizations of human platelet rafts and their potential impact in platelet physiopathology.  相似文献   

11.
The FYVE zinc finger domain is conserved from yeast (five proteins) to man (27 proteins). It functions in the membrane recruitment of cytosolic proteins by binding to phosphatidylinositol 3-phosphate (PI3P), which is found mainly on endosomes. Here we review recent work that sheds light on the targeting of FYVE finger proteins to PI3P-containing membranes, and how these proteins serve to regulate multiple cellular functions.  相似文献   

12.
Mark H. Ginsberg 《BMB reports》2014,47(12):655-659
Integrin-mediated cell adhesion is important for development, immune responses, hemostasis and wound healing. Integrins also function as signal transducing receptors that can control intracellular pathways that regulate cell survival, proliferation, and cell fate. Conversely, cells can modulate the affinity of integrins for their ligands a process operationally defined as integrin activation. Analysis of activation of integrins has now provided a detailed molecular understanding of this unique form of “inside-out” signal transduction and revealed new paradigms of how transmembrane domains (TMD) can transmit long range allosteric changes in transmembrane proteins. Here, we will review how talin and mediates integrin activation and how the integrin TMD can transmit these inside out signals. [BMB Reports 2014; 47(12): 655-659]  相似文献   

13.
Phosphoinositides are the phosphorylated derivatives of phosphatidylinositol, and play a very significant role in a diverse range of signaling processes in eukaryotic cells. A number of phosphoinositide-metabolizing enzymes, including phosphoinositide-kinases and phosphatases are involved in the synthesis and degradation of these phospholipids. Recently, the function of various phosphatases in the phosphatidylinositol signaling pathway has been of great interest. In the present review we summarize the structural insights and biochemistry of various phosphatases in regulating phosphoinositide metabolism. [BMB Reports 2013; 46(1): 1-8]  相似文献   

14.
Polarity is a fundamental cellular feature that is critical for generating cell diversity and maintaining organ functions during development. In C. elegans, the one-cell embryo is polarized via asymmetric localization of the PAR proteins, which in turn are required to establish the future anterior-posterior axis of the embryo. PAR-3, a conserved PDZ domain-containing protein, acts with PAR-6 and PKC-3 (atypical protein kinase; aPKC) to regulate cell polarity and junction formation in a variety of cell types. To understand how PAR-3 localizes and functions during C. elegans development, we produced targeted mutations and deletions of conserved domains of PAR-3 and examined the localization and function of the GFP-tagged proteins in C. elegans embryos and larvae. We find that CR1, the PAR-3 self-oligomerization domain, is required for PAR-3 cortical distribution and function only during early embryogenesis and that PDZ2 is required for PAR-3 to accumulate stably at the cell periphery in early embryos and at the apical surface in pharyngeal and intestinal epithelial cells. We also show that phosphorylation at S863 by PKC-3 is not essential in early embryogenesis, but is important in later development. Surprisingly neither PDZ1 nor PDZ3 are essential for localization or function. Our results indicate that the different domains and phosphorylated forms of PAR-3 can have different roles during C. elegans development.  相似文献   

15.
The dishevelled (Dvl) PDZ domain is believed to play an essential role in the canonical and noncanonical Wnt signaling pathways, which are involved in embryo development as well as in tumorigenesis. Also, it binds directly to frizzled (Fz) receptors. An organic molecule (NSC668036) from the National Cancer Institute small-molecule library has been identified to be able to bind to the Dvl PDZ domain. Molecular dynamics simulation was used to provide detailed analyses of the binding between them. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
细胞粘附介导的信号分子——粘着斑激酶研究进展   总被引:6,自引:0,他引:6  
粘着斑激酶(focaladhesionkinase,FAK)是整合蛋白介导的信号转导中的重要成员,有酪氨酸蛋白激酶活性,并可自身磷酸化;具有类似FAK作用的FAK家族新成员不断发现。新近发现FAK可抑制细胞凋亡,FAK本身是胱冬肽酶(caspase)的底物。作为信号分子的FAK,还与细胞内其他信号转导通路存在串话(crostalk),直接参与了细胞多种功能的调节。  相似文献   

17.
Prognosis for patients with early stage kidney cancer has improved, but the treatment options for patients with locally advanced disease and metastasis remain few. Understanding the molecular mechanisms that regulate invasion and metastasis is critical for developing successful therapies to treat these patients. Proinflammatory prostaglandin E(2) plays an important role in cancer initiation and progression via activation of cognate EP receptors that belong to the superfamily of G protein-coupled receptors. Here we report that prostaglandin E(2) promotes renal cancer cell invasion through a signal transduction pathway that encompasses EP4 and small GTPase Rap. Inactivation of Rap signaling with Rap1GAP, like inhibition of EP4 signaling with ligand antagonist or knockdown with shRNA, reduces the kidney cancer cell invasion. Human kidney cells evidence increased EP4 and decreased Rap1GAP expression levels in the malignant compared with benign samples. These results support the idea that targeted inhibition of EP4 signaling and restoration of Rap1GAP expression constitute a new strategy to control kidney cancer progression.  相似文献   

18.
We synthesized small organic molecules designed as PDZ ligands. These indole-based compounds were evaluated for their interaction with the PDZ1 domain of the post-synaptic density 95 (PSD-95) protein. Three molecules were found to interact with the targeted PDZ protein by NMR. One of them showed chemical shift perturbations closely related to the natural ligands.  相似文献   

19.
Growth factor-dependent signaling and cell cycle progression   总被引:5,自引:0,他引:5  
Jones SM  Kazlauskas A 《FEBS letters》2001,490(3):110-116
There are three central ideas contained within this review. Firstly, growth factor-stimulated signaling is not restricted to a 30–60 min window, but occurs at a much later time as well. Secondly, the second wave of signaling overlaps temporally with the cell cycle program and may be directly responsible for engaging it. Thirdly, the G1 to S interval appears to encompass two distinct phases of the cell cycle, during which the coordinated activation of distinct sets of signaling enzymes drives cell cycle progression. Each of these concepts is likely to initiate new investigation and hence provide additional insight into the fundamental question of how growth factors drive cell proliferation.  相似文献   

20.
The folding pathway of the third domain of PDZ from the synaptic protein PSD-95 was characterized using kinetic and equilibrium methods by monitoring the fluorescence signal from a Trp residue that is incorporated at a near-surface position. Kinetic folding of this domain showed multiple exponential phases, whereas unfolding showed a single exponential phase. The slow kinetic phases were attributed to isomerization of proline residues, since there are five proline residues in this domain. We found that the logarithms of the rate constants for the fast phase of folding and unfolding are linearly dependent on the concentrations of denaturant. The unfolding free energy derived from these rate constants at zero denaturant was close to the value measured using the equilibrium method, suggesting the absence of detectable sub-millisecond folding intermediates. However, native-state hydrogen exchange experiments detected a partially unfolded intermediate under native conditions. It was further confirmed by a protein engineering study. These data suggest that a hidden intermediate exists after the rate-limiting step in the folding of the third domain of PDZ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号