首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Transposases mediate transposition first by binding specific DNA end sequences that define a transposable element and then by organizing protein and DNA into a highly structured and stable nucleoprotein 'synaptic' complex. Synaptic complex assembly is a central checkpoint in many transposition mechanisms. The Tn5 synaptic complex contains two Tn5 transposase subunits and two Tn5 transposon end sequences, exhibits extensive protein-end sequence DNA contacts and is the node of a DNA loop. Using single-molecule and bulk biochemical approaches, we found that Tn5 transposase assembles a stable nucleoprotein complex in the absence of Tn5 transposon end sequences. Surprisingly, this end sequence-independent complex has structural similarities to the synaptic complex. This complex is the node of a DNA loop; transposase dimerization and DNA specificity mutants affect its assembly; and it likely has the same number of proteins and DNA molecules as the synaptic complex. Furthermore, our results indicate that Tn5 transposase preferentially binds and loops a subset of non-Tn5 end sequences. Assembly of end sequence-independent nucleoprotein complexes likely plays a role in the in vivo downregulation of transposition and the cis-transposition bias of many bacterial transposases.  相似文献   

2.
Genetic organization of transposon Tn10   总被引:60,自引:0,他引:60  
Transposon Tn10 is 9300 bp in length, with 1400 bp inverted repeats at its ends. The inverted repeats are structurally intact IS-like sequences (Ross et al., 1979). Analysis of deletion mutants and structural variants of Tn10, reported below, shows that the two IS10 segments contain all of the Tn10-encoded genetic determinants, both sites and functions, that are required for transposition. Furthermore, the two repeats (IS10-Right and IS10-Left) are not functionally equivalent: IS10-Right is fully functional and is capable by itself of promoting normal levels of Tn10 transposition; IS10-Left functions only poorly by itself, promoting transposition at a very low level when IS10-Right is inactivated. Complementation analysis shows that IS10-Right encodes at least one function, required for Tn10 transposition, which can act in trans and which works at the ends of the element. Also, all of the sites specifically required for normal Tn10 transposition have been localized to the outermost 70 bp at each end of the element; there is no evidence that specific sites internal to the element play an essential role. Finally, Tn10 modulates its own transposition in such a way that transposition-defective point mutants, unlike deletion mutants, are not complemented by functions provided in trans; and wild-type Tn10, unlike deletion mutants, is not affected by functions provided in trans from a "high hopper" Tn10 element.  相似文献   

3.
Genetic organization of the bacterial conjugative transposon Tn916.   总被引:22,自引:18,他引:22       下载免费PDF全文
Tn916, which encodes resistance to tetracycline, is a 16.4-kilobase conjugative transposon originally identified on the chromosome of Streptococcus faecalis DS16. The transposon has been cloned in Escherichia coli on plasmid vectors, where it expresses tetracycline resistance; it can be reintroduced into S. faecalis via protoplast transformation. We have used a lambda::Tn5 bacteriophage delivery system to introduce Tn5 into numerous sites within Tn916. The Tn5 insertions had various effects on the behavior of Tn916. Some insertions eliminated conjugative transposition but not intracellular transposition, and others eliminated an excision step believed to be essential for both types of transposition. A few inserts had no effect on transposon behavior. Functions were mapped to specific regions on the transposon.  相似文献   

4.
5.
A method has been developed for the introduction of Tn5 into Escherichia coli plasmid chimeras containing Streptococcus faecalis DNA. Tn5 could be introduced via a lambda::Tn5 delivery vehicle. The system proved to be particularly efficient and facilitated insertions at numerous sites on DNA containing the 16-kilobase conjugative transposon Tn916. It was possible to introduce some of the resulting Tn916::Tn5 derivatives back into S. faecalis by using a recently developed protoplast transformation procedure. A presumed zygotic induction resulted in insertion of the Tn916 derivatives at multiple sites in the S. faecalis chromosome.  相似文献   

6.
The transposon Tn5 carries a bleomycin-resistance determinant   总被引:13,自引:0,他引:13  
O Genilloud  M C Garrido  F Moreno 《Gene》1984,32(1-2):225-233
Transposon Tn5 carries a determinant for resistance to bleomycin (Bm). Deletion mapping and cloning experiments have shown that this determinant, gene ble, is located between the determinant for kanamycin (Km) and neomycin resistance (gene neo) and the determinant for streptomycin resistance (gene str). Genes neo, ble, and str belong to an operon controlled by the common promoter. The Mr of the ble product, as determined by polyacrylamide gel electrophoresis, is 12000 to 13000.  相似文献   

7.
Insertional specificity of transposon Tn5 in Acinetobacter sp.   总被引:1,自引:4,他引:1       下载免费PDF全文
Suicide plasmid pJB4JI, containing transposon Tn5 and phage Mu, was introduced from Escherichia coli 1830 into Acinetobacter sp. strain HO1-N and Acinetobacter calcoaceticus BD413. Kanamycin-resistant (Kmr) exconjugants of HO1-N and BD413, isolated on complex medium, were screened for auxotrophic requirements. Over 10,000 Kmr clones were examined, but no auxotrophs were detected. Several Kmr exconjugants of BD413 and HO1-N, obtained from independent matings, were chosen for further study. All Tn5-containing strains exhibited kanamycin phosphotransferase activity. Kmr strains lacked plasmid DNA as determined by three plasmid screening procedures, and the Kmr phenotype was not transferable by conjugal matings to kanamycin-sensitive BD413, HO1-N, or E. coli HB101. The chromosomal location of Tn5 insertions in independently isolated Kmr exconjugants of BD413 and HO1-N was characterized by restriction endonuclease mapping and hybridization studies. Results obtained from Southern hybridization studies were consistent with a single Tn5-specific insertion site in HO1-N and two such sites in BD413. Phage Mu sequences were not detected in Tn5-containing Acinetobacter sp.  相似文献   

8.
A method has been developed for the introduction of Tn5 into Escherichia coli plasmid chimeras containing Streptococcus faecalis DNA. Tn5 could be introduced via a lambda::Tn5 delivery vehicle. The system proved to be particularly efficient and facilitated insertions at numerous sites on DNA containing the 16-kilobase conjugative transposon Tn916. It was possible to introduce some of the resulting Tn916::Tn5 derivatives back into S. faecalis by using a recently developed protoplast transformation procedure. A presumed zygotic induction resulted in insertion of the Tn916 derivatives at multiple sites in the S. faecalis chromosome.  相似文献   

9.
Transposable elements induce spontaneous mutations, promote genome rearrangements, regulate gene expression, and participate in the horizontal spread of genes encoding traits such as antibiotic resistance among bacterial genera too distantly related to undergo homologous recombination. Here we review the bacterial transposon Tn5 and focus on those aspects of its functional organization and transposition which provide insights into how it and other elements may have arisen, proliferated, and evolved.   相似文献   

10.
Rhizobium phaseoli symbiotic mutants with transposon Tn5 insertions.   总被引:15,自引:25,他引:15  
Rhizobium phaseoli CFN42 DNA was mutated by random insertion of Tn5 from suicide plasmid pJB4JI to obtain independently arising strains that were defective in symbiosis with Phaseolus vulgaris but grew normally outside the plant. When these mutants were incubated with the plant, one did not initiate visible nodule tissue (Nod-), seven led to slow nodule development (Ndv), and two led to superficially normal early nodule development but lacked symbiotic nitrogenase activity (Sna-). The Nod- mutant lacked the large transmissible indigenous plasmid pCFN42d that has homology to Klebsiella pneumoniae nitrogenase (nif) genes. The other mutants had normal plasmid content. In the two Sna- mutants and one Ndv mutant, Tn5 had inserted into plasmid pCFN42d outside the region of nif homology. The insertions of the other Ndv mutants were apparently in the chromosome. They were not in plasmids detected on agarose gels, and, in contrast to insertions on indigenous plasmids, they were transmitted in crosses to wild-type strain CFN42 at the same frequency as auxotrophic markers and with the same enhancement of transmission by conjugation plasmid R68.45. In these Ndv mutants the Tn5 insertions were the same as or very closely linked to mutations causing the Ndv phenotype. However, in two mutants with Tn5 insertions on plasmid pCFN42d, an additional mutation on the same plasmid, rather than Tn5, was responsible for the Sna- or Ndv phenotype. When plasmid pJB4JI was transferred to two other R. phaseoli strains, analysis of symbiotic mutants was complicated by Tn5-containing deleted forms of pJB4JI that were stably maintained.  相似文献   

11.
Transposon Tn10 and its component insertion sequence IS10 move by non-replicative transposition. We have studied the array of reaction intermediates and products in a high efficiency in vitro IS10/Tn10 transposition reaction. Synapsis of two transposon ends, followed by cleavage and strand transfer, can occur very efficiently irrespective of the relative locations and orientations of the two ends. The two participating ends can occur in inverted or direct orientation on the same molecule or, most importantly, on two different molecules. This behavior contrasts sharply with that of Mu, in which transposition is strongly biased in favor of inverted repeat synapsis. Mechanistically, the absence of discrimination amongst various end configurations implies that the architecture within the IS10/Tn10 synaptic complex is relatively simple, i.e. lacking any significant intertwining of component DNA strands. Biologically these observations are important because they suggest that the IS10 insertion sequence module has considerable flexibility in the types of DNA rearrangements that it can promote. Most importantly, it now seems highly probable that a single non-replicative IS10 element can promote DNA rearrangements usually attributed to replicative transposition, i.e. adjacent deletions and cointegrates, by utilizing transposon ends on two sister chromosomes. Other events which probably also contribute to the diversity of IS10/Tn10-promoted rearrangements are discussed.  相似文献   

12.
B Reiss  R Sprengel    H Schaller 《The EMBO journal》1984,3(13):3317-3322
The gene for the neomycin phosphotransferase II (NPT II) from transposon Tn5 was fused at the amino or carboxy terminus to foreign DNA sequences coding for 3-300 amino acids and the properties of the fused proteins were investigated. All amino-terminal fusions examined conferred kanamycin resistance to their host cell, but profound differences in their enzymatic activity and stability were detected. Short additions to the amino terminus of the NPT II resulted in highly enzymatically active fusion proteins whereas long amino-terminal fusions often had to be proteolytically degraded to release active proteins. Fusions at the carboxy-terminal end of the NPT II protein did not always induce kanamycin resistance and their enzymatic activity depended more stringently on the nature of the junction sequence.  相似文献   

13.
Tn5-rpsL: a new derivative of transposon Tn5 useful in plasmid curing   总被引:1,自引:0,他引:1  
The rpsL gene of Escherichia coli was inserted into the BamHI site of transposon Tn5. This transposon was called Tn5-rpsL. Tn5-rpsL may be useful in microbiological studies when one wants to cure various bacterial genera of certain plasmid(s). A streptomycin-resistant (SmR) derivative of the host bacterial strain is first isolated. The plasmid(s) later to be cured are then labelled with Tn5-rpsL, which makes the cells Sm-sensitive. These cells can regain their resistance to Sm if they lose the Tn5-rpsL-tagged plasmid. Thus, plasmid-free bacteria are easily selected among SmR survivors. The frequency of occurrence of the plasmid-less variants of plasmid-containing wild-type Salmonella typhimurium measured by this method is given as an example.  相似文献   

14.
Systematic sequencing of cDNA clones using the transposon Tn5   总被引:5,自引:0,他引:5       下载免费PDF全文
In parallel with the production of genomic sequence data, attention is being focused on the generation of comprehensive cDNA-sequence resources. Such efforts are increasingly emphasizing the production of high-accuracy sequence corresponding to the entire insert of cDNA clones, especially those presumed to reflect the full-length mRNA. The complete sequencing of cDNA clones on a large scale presents unique challenges because of the generally small, yet heterogeneous, sizes of the cloned inserts. We have developed a strategy for high-throughput sequencing of cDNA clones using the transposon Tn5. This approach has been tailored for implementation within an existing large-scale ‘shotgun-style’ sequencing program, although it could be readily adapted for use in virtually any sequencing environment. In addition, we have developed a modified version of our strategy that can be applied to cDNA clones with large cloning vectors, thereby overcoming a potential limitation of transposon-based approaches. Here we describe the details of our cDNA-sequencing pipeline, including a summary of the experience in sequencing more than 4200 cDNA clones to produce more than 8 million base pairs of high-accuracy cDNA sequence. These data provide both convincing evidence that the insertion of Tn5 into cDNA clones is sufficiently random for its effective use in large-scale cDNA sequencing as well as interesting insight about the sequence context preferred for insertion by Tn5.  相似文献   

15.
Mechanism of F factor-enhanced excision of transposon Tn5   总被引:6,自引:0,他引:6  
D E Berg  C Egner  J B Lowe 《Gene》1983,22(1):1-7
The reversion of lac:: Tn5 insertion mutations was used to examine the control of excision of the kanamycin-resistance transposon Tn5 in Escherichia coli. Earlier work which showed that the fertility factor F enhances Tn5 excision had led another group to suggest that this is due to the product of a putative transposable element-specific "recombination" gene in the F factor which can act on Tn5 located anywhere in the genome. We show, however, that Tn5 is excised from sites in the lac operon of F'lac plasmids several orders of magnitude more efficiently than from the same sites in the chromosomes of F-, F+ or homozygous lac:: Tn5[F'lac:: Tn5] strains. Thus F enhances Tn5 excision, but only if F and Tn5 are in cis in the same DNA molecule. Bacterial crosses showed that transfer of F'lac:: Tn5 plasmids by conjugation stimulates Tn5 excision, and that transfer is frequent even within F' populations. These results suggest that the ability of F to enhance excision is the consequence of DNA transfer in conjugation.  相似文献   

16.
Summary We have demonstrated that precise excision of bacterial transposon Tn5 can occur in the yeast, Saccharomyces cerevisiae. Tn5 insertions in the yeast gene LYS2 were generated by transposon mutagenesis made in Escherichia coli by means of a ::Tn5 vector. Nine insertions of Tn5 into the structural part of the yeast LYS2 gene situated in a shuttle epsiomal plasmid were selected. All the plasmids with a Tn5 insertion were used to transform yeast strains carrying a deletion of the entire LYS2 gene or a deletion of the part of LYS2 overlapping the point of insertion.All insertions inactivated the LYS2 gene and were able to revert with low (about 10-8) frequencies to lysine prototrophy. Restriction analysis of revertant plasmids revealed them to be indistinguishable from the original plasmid without Tn5 insertion. DNA sequencing of the regions containing the points of insertions, made for two revertants, proved that Tn5 excision was completely precise.  相似文献   

17.
Transposon Tn2555 was isolated from a clinical E. coli strain carries the genes for sucrose utilization. Previously it was shown that Tn2555 is very unstable and undergoes structural rearrangements with a high frequency. Several deletion derivatives of Tn2555 and one with an inversion of the internal segment were found. They form the Tn2555 transposon family. This paper describes further structural and functional analysis of Tn2555. In the course of the experiments on pBR325 (Mob-) mobilization by conjugative RP4 derivatives, containing Tn2555 family elements, it was found, that all of them induce cointegrate formation. Some of these cointegrates were able to dissociate in rec+ and recA E. coli cells. Restriction endonuclease analysis of the resulting plasmids have shown, that among them were the end products of the Tn2555 transposition from RP4 to pBR325. Besides, the pBR325 derivatives, containing a discrete DNA segment of approximately 800 b.p., originating from Tn2555, were found. The segment can transpose from pBR325 to RP4 indicating that it is an insertion sequence. This new IS-element was designated IS286. The size and the genetic properties of IS286 resemble those of the IS1 element. However restriction analysis and Southern hybridization data show no significant homology between IS286 and IS1. It was found that the Tn2555 family elements are flanked by directly repeated IS286. One of them (Tn2555.3) contains an additional copy of IS286 in its internal region.  相似文献   

18.
19.
Nonrandom orientation of transposon Tn5supF insertions in phage lambda.   总被引:2,自引:0,他引:2  
D Kersulyte  B R Krishnan  D E Berg 《Gene》1992,114(1):91-96
  相似文献   

20.
The tetracycline-resistance transposon Tn10 inhibits translocation of Tn10   总被引:1,自引:0,他引:1  
Summary Using a set of overlapping deletion mutants in the tetracycline-resistance transposon Tn10, it has been established that certain regions of the Tn10 genome exert a powerful inhibition on translocation of an intact Tn10 element into the bacterial genome. Such inhibition is strongly temperature dependent: at 37° C translocation is inhibited by at least a factor of 100; no inhibition of translocation is detected at 30° C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号