首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The primary structures of the blood vessel inducing protein human angiogenin and human pancreatic ribonuclease (RNase) are 35% identical. Angiogenin catalyzes the limited cleavage of ribosomal RNA (18 and 28 S), yielding a characteristic pattern of polynucleotide products, but shows no significant activity toward conventional pancreatic RNase substrates [Shapiro, R., Riordan, J. F., & Vallee, B. L. (1986) Biochemistry 25, 3527-3532]. Angiogenin/RNase hybrid enzymes--wherein particular regions of primary structure in RNase are replaced by the corresponding segments of angiogenin--serve to explore the structural features underlying angiogenin's characteristic activities. Herein we show that synthetic angiogenin peptides, Ang(1-21) and Ang(108-123), form noncovalent complexes with inactive fragments of bovine RNase A--RNase(21-124) (i.e., S-protein) and RNase(1-118), respectively--with regeneration of activity toward conventional RNase substrates. Maximal activities for the Ang(1-21)/S-protein complex (Kd = 1.0 microM) are 52%, 45%, and 15% toward cytidine cyclic 2',3'-phosphate, cytidylyl(3'----5')adenosine, and yeast RNA, respectively. In contrast, activities of the RNase(1-118)/Ang(108-123) hybrid (Kd = 25 microM) are 1-2 orders of magnitude lower toward cyclic nucleotides and dinucleoside phosphates. However, substitution of phenylalanine for Leu-115 in Ang(108-123) increases activity up to 100-fold. Both His-13 and His-114 in the angiogenin peptides are required for activity since their substitution by alanine yields inactive complexes. Importantly, the pattern of polynucleotide products formed during cleavage of ribosomal RNA by the Ang(1-21)/S-protein hybrid shows a striking resemblance to that formed by angiogenin, demonstrating that the hybrid retains features of both angiogenin and RNase A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Isolation and sequencing of mouse angiogenin DNA   总被引:2,自引:0,他引:2  
The mouse genomic DNA for angiogenin, a potent blood vessel inducing protein, has been isolated from a bacteriophage library using the human angiogenin gene as a probe. The 1129 bp fragment contains 499 bp in the 5' flanking region, 192 bp in the 3' flanking region, and 438 bp coding for the mature protein (121 amino acids) and signal peptide (24 amino acids). Potential TATA box and AATAAA polyadenylation sequences are present, and a consensus sequence for an intron 3' boundary occurs 16 bp upstream of the Met-(24) codon, suggesting the presence of an intron in the 5' region. The protein sequence inferred from the DNA is 76% identical to that of human angiogenin, and matches the sequences obtained previously from tryptic peptides of a serum-derived mouse angiogenin. The critical catalytic residues of human angiogenin are conserved in the mouse protein, as are the six cysteines necessary for disulfide bond formation.  相似文献   

3.
Amino acid sequence of bovine angiogenin   总被引:4,自引:0,他引:4  
M D Bond  D J Strydom 《Biochemistry》1989,28(14):6110-6113
The amino acid sequence and disulfide bridges of bovine plasma derived angiogenin were determined by sequencer analysis of the intact protein and fragments derived by enzymatic and chemical digestion. Bovine angiogenin is a single-chain protein of 125 amino acids; it contains six cysteines and has a calculated molecular weight of 14,595. In contrast to the human protein its amino terminus is unblocked. It has the following sequence: H2N-Ala1-Gln-Asp-Asp-Tyr-Arg-Tyr-Ile-His-Phe10-Leu-Thr-Gln-His-Tyr -Asp-Ala-Lys- Pro-Lys20-Gly-Arg-Asn-Asp-Glu-Tyr-Cys-Phe-Asn-Met30-Met-Lys- Asn-Arg-Arg-Leu-Thr - Arg-Pro-Cys40-Lys-Asp-Arg-Asn-Thr-Phe-Ile-His-Gly-Asn50-Lys- Asn-Asp-Ile-Lys-Ala - Ile-Cys-Glu-Asp60-Arg-Asn-Gly-Gln-Pro-Tyr-Arg-Gly-Asp-Leu70- Arg-Ile-Ser-Lys-Ser - Glu-Phe-Gln-Ile-Thr80-Ile-Cys-Lys-His-Lys-Gly-Ser-Ser-Arg90- Pro-Pro-Cys-Arg-Tyr - Gly-Ala-Thr-Glu-Asp100-Ser-Arg-Val-Ile-Val-Val-Gly-Cys-Glu-Asn1 10-Gly-Leu-Pro- Val-His-Phe-Asp-Glu-Ser-Phe120-Ile-Thr-Pro-Arg-His-OH. Disulfide bonds link Cys(27)-Cys(82), Cys(40)-Cys(93), and Cys(58)-Cys(108). Bovine angiogenin is 64% identical with human angiogenin; like the human protein, it is homologous to the pancreatic ribonucleases, with conservation of active site residues. Two regions, 6-22 and 65-75, are highly conserved between the angiogenins but are significantly different from those of the ribonucleases, suggesting a possible role in the molecules' biological activity.  相似文献   

4.
Human angiogenin (Ang) is an RNase in the pancreatic RNase superfamily that induces angiogenesis. Its catalytic activity is comparatively weak, but nonetheless critical for biological activity. The crystal structure of Ang has shown that enzymatic potency is attenuated in part by the obstructive positioning of Gln117 within the B(1) pyrimidine binding pocket, and that the C-terminal segment of residues 117-123 must reorient for Ang to bind and cleave RNA. The native closed conformation appears to be stabilized by Gln117-Thr44 and Asp116-Ser118 hydrogen bonds, as well as hydrophobic packing of Ile119 and Phe120. Consistent with this view, Q117G, D116H, and I119A/F120A variants are 4-30-fold more active than Ang. Here we have determined crystal structures for these variants to examine the structural basis for the activity increases. In all three cases, the C-terminal segment remains obstructive, demonstrating that none of the residues that has been replaced is essential for maintaining the closed conformation. The Q117G structure shows no changes other than the loss of the side chain of residue 117, whereas those of D116H and I119A/F120A reveal C-terminal perturbations beyond the replacement site, suggesting that the native closed conformation has been destabilized. Thus, the interactions of Gln117 seem to be less important than those of residues 116, 119, and 120 for stabilization. In D116H, His116 does not replicate either of the hydrogen bonds of Asp116 with Ser118 and instead forms a water-mediated interaction with catalytic residue His114; residues 117-121 deviate significantly from their positions in Ang. In I119A/F120A, the segment of residues 117-123 has become highly mobile and all of the interactions thought to position Gln117 have been weakened or lost; the space occupied by Phe120 in Ang is partially filled by Arg101, which has moved several angstroms. A crystal structure was also determined for the deletion mutant des(121-123), which has 10-fold reduced activity toward large substrates. The structure is consistent with the earlier proposal that residues 121-123 form part of a peripheral substrate binding subsite, but also raises the possibility that changes in the position of another residue, Lys82, might be responsible for the decreased activity of this variant.  相似文献   

5.
M D Bond  B L Vallee 《Biochemistry》1990,29(13):3341-3349
The region of human angiogenin containing residues 8-21 is highly conserved in angiogenins from four mammalian species but differs substantially from the corresponding region of the homologous protein ribonuclease A (RNase A). Regional mutagenesis has been employed to replace this segment of angiogenin with the corresponding RNase A sequence, and the activities of the resulting covalent angiogenin/RNase hybrid, designated ARH-III, have been examined. The ribonucleolytic activity of ARH-III is unchanged toward most substrates, including tRNA, naked 18S and 28S rRNA, CpA, CpG, UpA, and UpG. In contrast, the capacity of ARH-III to inhibit cell-free protein synthesis is decreased 20-30-fold compared to that of angiogenin. The angiogenic activity of ARH-III is also different; it is actually more potent. It induces a maximal response in the chick chorioallantoic membrane assay at 0.1 ng per egg, a 10-fold lower dose than required for angiogenin. In addition, binding of ARH-III to the placental ribonuclease inhibitor is increased by at least 1 order of magnitude (Ki less than or equal to 7 x 10(-17) M) compared to angiogenin. Thus, mutation of a highly conserved region of angiogenin markedly affects those properties likely involved in its biological function(s); it does not, however, alter ribonucleolytic activity toward most substrates.  相似文献   

6.
Human placental RNase inhibitor (hRI), a leucine-rich repeat protein, binds the blood vessel-inducing protein human angiogenin (Ang) with extraordinary affinity (Ki <1 fM). Here we report a 2.0 A resolution crystal structure for the hRI-Ang complex that, together with extensive mutagenesis data from earlier studies, reveals the molecular features of this tight interaction. The hRI-Ang binding interface is large and encompasses 26 residues from hRI and 24 from Ang, recruited from multiple domains of both proteins. However, a substantial fraction of the energetically important contacts involve only a single region of each: the C-terminal segment 434-460 of hRI and the ribonucleolytic active centre of Ang, most notably the catalytic residue Lys40. Although the overall docking of Ang resembles that observed for RNase A in the crystal structure of its complex with the porcine RNase inhibitor, the vast majority of the interactions in the two complexes are distinctive, indicating that the broad specificity of the inhibitor for pancreatic RNase superfamily proteins is based largely on its capacity to recognize features unique to each of them. The implications of these findings for the development of small, hRI-based inhibitors of Ang for therapeutic use are discussed.  相似文献   

7.
Characterization of ribonucleolytic activity of angiogenin towards tRNA   总被引:2,自引:0,他引:2  
Yeast tRNA is a convenient substrate for the assay of the ribonucleolytic activity of human angiogenin. The optimal pH, [NaCl], and temperature for tRNA cleavage by angiogenin are approximately 6.8, 15-30 mM, and approximately 55 degrees C, respectively, as compared with approximately 8.0, 100-200 mM, and approximately 65 degrees C, respectively, for RNase A. Polyanions and metals both inhibit angiogenin and RNase A but to different extents.  相似文献   

8.
Human angiogenin was genetically engineered and contained the E. coli Omp A signal sequence for secreting soluble angiogenin to the periplasm under tac promoter control. The angiogenin sequence was encoded in a single gene and expressed as a 14.4 kilodalton soluble protein in E. coli. It was purified by CM-Sepharose ion-exchange chromatography and by a heparin-Sepharose affinity chromatography procedure. The biological activity of angiogenin was established by its ability to inhibit mRNA-dependent rabbit reticulocyte cell-free translation.  相似文献   

9.
Human angiogenin (Ang) is a potent inducer of blood vessel formation and is a member of the pancreatic ribonuclease superfamily. Its enzymatic activity is unusually weak and biased toward cleavage after cytidine nucleotides. As part of an ongoing investigation into the structural basis of Ang's characteristic activity, we have determined the crystal structures of three Ang variants having novel activity. (i) The structure of T44D-Ang indicates that Asp44 can participate directly in pyrimidine binding and that the intrinsic hydrogen-bonding capability of this residue largely governs the pyrimidine specificity of this variant. Unexpectedly, the mutation also causes the most extensive disruption of the C-terminus seen in any Ang variant thus far. This allows the side chain of Arg101 to penetrate the B(1) site, raising the possibility that it participates in substrate binding as occurs in ribonuclease 4. (ii) The structure of T80A-Ang supports the view that Thr80 plays little role in maintaining the obstructive conformation of the C-terminus and that its participation in a hydrogen bond with Thr44 selectively weakens the interaction between Thr44 and N3 of cytosine. (iii) ARH-II is an angiogenin/RNase A chimera in which residues 38-41 of Ang are replaced with the corresponding residues (38-42) of RNase A. Its structure suggests that the guest segment influences catalysis by subtle means, possibly by reducing the pK(a) of the catalytic lysine. The loss of angiogenic activity is not attributable to disruption of known cell-binding or nuclear translocation sites but may be a consequence of the chimera's enhanced ribonucleolytic activity.  相似文献   

10.
J W Harper  B L Vallee 《Biochemistry》1989,28(4):1875-1884
Human angiogenin is a blood vessel inducing protein whose primary structure displays 33% identity to that of bovine pancreatic ribonuclease A (RNase A). Angiogenin catalyzes limited cleavage of 18S and 28S ribosomal RNA and is several orders of magnitude less potent than RNase A toward conventional substrates. A striking structural difference between angiogenin and RNase is the virtual absence of sequence similarity within the region of RNase that contains the Cys-65--Cys-72 disulfide bond. Indeed, angiogenin lacks this disulfide linkage. The present report describes the use of regional mutagenesis to generate a covalent angiogenin/RNase hybrid protein, ARH-I, where residues 58-70 of angiogenin have been replaced by the corresponding segment of RNase A (residues 59-73). The protein expressed in Escherichia coli readily folds at pH 8.5 to form the four expected disulfide bonds. The in vivo angiogenic potency of ARH-I is markedly diminished compared with that of angiogenin when examined using the chick chorioallantoic membrane assay. In contrast, its enzymatic activity is dramatically increased. With high molecular weight wheat germ RNA and tRNA, ARH-I is 660- and 300-fold more active than angiogenin, respectively, while with poly(uridylic acid), poly(cytidylic acid), cytidylyl(3'----5')adenosine (CpA), and uridylyl(3'----5')adenosine (UpA) activity is enhanced by about 200-fold. In addition, the specificity of ARH-I toward dinucleoside 3',5'-phosphates is qualitatively similar to RNase A; while angiogenin prefers cytidylyl(3'----5')guanosine (CpG) to UpA, both RNase and the hybrid prefer UpA to CpG. ARH-I also displays greater than 10-fold enhanced activity toward rRNA in intact ribosomes, while abolishing the capacity of the ribosome to support cell-free protein synthesis. The enhanced enzymatic properties of ARH-I parallel a 2-fold increase in chemical reactivity of active-site lysine and histidine residues based on rates of chemical modification. The data indicate that introduction of a region of RNase A containing the Cys-65--Cys-72 disulfide bond into angiogenin dramatically increases RNase-like enzymatic activity while reducing its angiogenicity.  相似文献   

11.
J W Harper  E A Fox  R Shapiro  B L Vallee 《Biochemistry》1990,29(31):7297-7302
The primary structure of the blood vessel inducing protein angiogenin is 35% identical with that of pancreatic ribonuclease (RNase) and contains counterparts for the critical RNase active-site residues His-12, Lys-41, and His-119. Although angiogenin is a ribonucleolytic enzyme, its activity toward conventional substrates is lower than that of pancreatic RNase by several orders of magnitude. Comparison of the amino acid sequences of RNase and angiogenin reveals several striking differences in the region flanking the active-site lysine, including a deletion and a transposition of aspartic acid and proline residues. In order to examine how these sequence changes alter the functional properties of angiogenin, an angiogenin/RNase hybrid protein (ARH-II), in which residues 38-41 of angiogenin (Pro-Cys-Lys-Asp) have been replaced by the corresponding segment of bovine pancreatic RNase (Asp-Arg-Cys-Lys-Pro), was prepared by regional mutagenesis. Compared to angiogenin, ARH-II has markedly diminished angiogenic activity on the chick embryo chorioallantoic membrane but 5-75-fold greater enzymatic activity toward a variety of polynucleotide and dinucleotide substrates. In addition, the specificity of ARH-II toward dinucleotide substrates differs from that of angiogenin and is qualitatively similar to that of pancreatic RNase. Thus, non-active-site residues near Lys-40 in angiogenin appear to play a significant role in determining enzymatic specificity and reactivity as well as angiogenic potency. An additional angiogenin/RNase hybrid protein (ARH-IV), in which residues 59-71 of ARH-II have been replaced by the corresponding segment of pancreatic RNase, was also prepared.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Novel properties of the nucleolar targeting signal of human angiogenin   总被引:4,自引:0,他引:4  
The polypeptide ligand angiogenin, a potent inducer of angiogenesis, localizes in the nucleus/nucleolus subsequent to endocytosis by relevant cell types. This study examines the kinetic properties of the nucleolar targeting signal (NTS) of angiogenin (IMRRRGL(35)) at the single cell level. We show that the NTS is sufficient to target green fluorescent protein (GFP), but not beta-galactosidase, to the nucleolus of rat hepatoma cells. Mutation of Arg(33) to Ala within the NTS abolishes targeting activity. Nuclear/nucleolar import conferred by the NTS of angiogenin is reduced by cytosolic factors as well as ATP and is independent of importins and Ran. The NTS also confers the ability to bind to nuclear/nucleolar components which is inhibited by ATP hydrolysis; nonhydrolysable GTP analogs prevent nuclear accumulation in the absence of an intact nuclear envelope through an apparent cytoplasmic retention mechanism. Since the lectin wheat germ agglutinin does not inhibit transport, we postulate a mechanism for angiogenin nuclear/nucleolar import involving passive diffusion of angiogenin through the nuclear pore and NTS-mediated nuclear/nucleolar retention, and with cytoplasmic retention modulating the process. This pathway is clearly distinct from that of conventional signal-mediated nuclear protein import.  相似文献   

13.
F S Lee  B L Vallee 《Biochemistry》1989,28(8):3556-3561
The importance of specific residues in angiogenin for binding to placental ribonuclease inhibitor (PRI) has been assessed by examining the interaction of angiogenin derivatives with PRI. PRI binds native angiogenin with a Ki value of 7.1 X 10(-16) M [Lee, F. S., Shapiro, R., & Vallee, B. L. (1989) Biochemistry 28, 225-230]. Substitution of a Gln for Lys-40 in angiogenin by site-specific mutagenesis decreases the association rate constant 3-fold and increases the dissociation rate constant 440-fold, resulting in a 1300-fold weaker Ki value. The half-life of the mutant.PRI complex is 3.4 h compared to approximately 60 days for the native angiogenin.PRI complex. The magnitude of the change in Ki value suggests that in the complex, Lys-40 forms a salt bridge or hydrogen bond with an anionic moiety in PRI. Carboxymethylation of His-13 or His-114 with bromoacetate increases the Ki value 15-fold, and oxidation of Trp-89 by means of dimethyl sulfoxide and hydrochloric acid increases it 2.4-fold, suggesting that these residues also form part of the contact region with PRI. The changes in Ki value reflect an increase in the dissociation rate constant. On the other hand, dinitrophenylation of either Lys-50 or Lys-60 with 1-fluoro-2,4-dinitrobenzene does not significantly alter the Ki value, suggesting that these residues are not part of the contact region. These results indicate that PRI inhibition minimally involves the three residues critical for the activity of angiogenin--Lys-40, His-13, and His-114--and to a lesser extent its single tryptophan, Trp-89.  相似文献   

14.
It has been suggested that angiogenin binds to an actin-like molecule present on the surface of endothelial cells. Actin inhibits plasmin activity, but the angiogenin-actin complex is not active. In this report, we found that plasmin inhibits the interaction between angiogenin and actin suggesting a possibility that both angiogenin and plasmin may bind to a similar site on actin. Here we report that chANG, an antiangiogenin peptide that binds to the actin-binding site of angiogenin, inhibits the proteolytic activity of plasmin without any apparent effect on the activities of plasminogen activators and matrix metalloproteases. Its antiplasmin activity is comparable with that of actin. chANG inhibits plasmin activity via its binding to plasmin kringle domains while scrambled chANG does not bind to plasmin. chANG also inhibits the invasion of angiogenin-secreting human fibrosarcoma and colorectal carcinoma cells without effecting migration. Furthermore, chANG blocks angiogenesis induced by fibrosarcoma cells and metastasis of colorectal carcinoma cells to the liver. Therefore, the 11-amino acid peptide chANG has both antiangiogenin and antiplasmin activity, and could be useful in the development of anticancer agents.  相似文献   

15.
R Shapiro  E A Fox  J F Riordan 《Biochemistry》1989,28(4):1726-1732
The role of lysines in the ribonucleolytic and angiogenic activities of human angiogenin has been examined by chemical modification and site-directed mutagenesis. It was demonstrated previously [Shapiro, R., Weremowicz, S., Riordan, J.F., & Vallee, B.L. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 8783-8787] that extensive treatment with lysine reagents markedly decreases the ribonucleolytic activity of angiogenin. In the present study, limited chemical modification with 1-fluoro-2,4-dinitrobenzene followed by C18 high-performance liquid chromatography yielded several (dinitrophenyl)angiogenin derivaties. The major derivative formed had slightly increased enzymatic activity compared with the unmodified protein. Tryptic peptide mapping demonstrated the site of modification to be Lys-50. A second derivative, modified at Lys-60, was 34% active. Analysis of a third derivative indicated that modification of Lys-82 did not decrease activity. Thus, Lys-50 and Lys-82 are unessential for enzymatic activity while Lys-60 may play a minor role. No pure derivative modified at Lys-40, corresponding to the active-site residue Lys-41 of the homologous protein ribonuclease A, could be obtained by chemical procedures. Therefore, we employed oligonucleotide-directed mutagenesis to replace this lysine with glutamine or arginine. The Gln-40 derivative had less than 0.05% enzymatic activity compared with the unmodified protein and substantially reduced angiogenic activity when examined with the chick embryo chorioallantoic membrane assay. These results suggest that the angiogenic activity of the protein is dependent on an intact enzymatic active site. The Arg-40 derivative had 2.2% ribonucleolytic activity compared with unmodified angiogenin. The effects of reductive methylation of this derivative indicate that no lysines other than Lys-40 are critical.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The potential of angiogenin (Ang) for clinical use has been highlighted in view of its important roles in inducing angiogenesis, facilitating cell proliferation, and inhibiting cell apoptosis. To produce soluble, correctly folded recombinant protein with a high yield, a DNA fragment encoding human Ang was inserted into eukaryotic expression vector pPIC9 and transformed into Pichia pastoris. The expression of recombinant human Ang (rhAng) accounted for about 70% of total secreted proteins. Purifying the Ang from the culture supernatant yielded 30 mg/L at 90% purity by chromatography with a SP Sepharose FF column. Biological assays indicated that rhAng can induce new blood-vessel formation, promote HeLa cell proliferation, increase Erk1/2 phosphorylation, and upregulate c-myc expression. Preparation of bioactive rhAng might lay the basis for further functional study, and might provide an effective strategy for large-scale production of soluble human Ang.  相似文献   

17.
Transducin is a multi-subunit guanine-nucleotide-binding protein that mediates signal coupling between rhodopsin and cyclic GMP phosphodiesterase in retinal rod outer segments. Whereas the T alpha subunit of transducin binds guanine nucleotides and is the activator of the phosphodiesterase, the T beta gamma subunit may function to link physically T alpha with photolysed rhodopsin. In order to determine the binding sites of rhodopsin to transducin, we have synthesized eight peptides (Rhod-1 etc.) that correspond to the C-terminal regions of rhodopsin and to several external and one internal loop region. These peptides were tested for their inhibition of restored GTPase activity of purified transducin reconstituted into depleted rod-outer-segment disc membranes. A marked inhibition of GTPase activity was observed when transducin was pre-incubated with peptides Rhod-1, Rhod-2 and Rhod-3. These peptides correspond to opsin amino acid residues 332-339, 324-331 and 317-321 respectively. Peptides corresponding to the three external loop regions or to the C-terminal residues 341-348 did not inhibit reconsituted GTPase activity. Likewise, Rhod-8, a peptide corresponding to an internal loop region of rhodopsin, did not inhibit GTPase activity. These findings support the concept that these specific regions of the C-terminus of rhodopsin serve as recognition sites for transducin.  相似文献   

18.
Angiogenin (Ang), one of the most potent angiogenic factor, is related with the growth and metastasis of numerous tumors. This paper presents a very simple and label-free square-wave voltammetry (SWV) aptasensor to detect angiogenin, in which an anti-angiogenin-aptamer was used as a molecular recognition element, and the couple ferro/ferricyanide as a redox probe. At the bare gold electrode, the redox couple (K4[Fe(CN)6]/K3[Fe(CN)6]) can be very easily accessed to the electrode surface to give a very strong SWV signal. At the anti-angiogenin/Au electrode surface, when angiogenin was added to the electrochemical cell, the binding of the analyte results in less availability for a redox reaction, which led to smaller SWV current. To quantify the amount of angiogenin, current suppressions of SWV peak were monitored using the redox couple of an [Fe(CN)6]4−/3− probe. The plot of signal suppression against the logarithm of angiogenin concentration is linear with over the range from 0.01 nM to 30 nM with a detection limit of 1 pM. The aptasensor also showed very good selectivity for angiogenin without being affected by the presence of other proteins in serum. It is the first time to use a very simple method to detect the cancer marker. Such an aptasensor opens a rapid, selective and sensitive route for angiogenin detection and provides a promising strategy for other protein detections.  相似文献   

19.
The complete amino acid sequence of bovine milk angiogenin   总被引:9,自引:0,他引:9  
The amino acid sequence of angiogenin isolated from bovine milk was deduced by gas-phase sequencing of the protein and its fragments. The protein contains 125 residues and has a calculated molecular mass of 14,577 Da. The sequence is highly homologous (65% identity) to the sequence of human angiogenin, most of the differences being the result of conservative replacements. Like human angiogenin, the bovine protein is also homologous to bovine pancreatic RNase A (34% identity) and the three major active site residues known to be involved in the catalytic process, His-14, Lys-41 and His-115, are conserved. When tested against conventional substrates for RNase A activity, bovine angiogenin displays the same selective ribonucleolytic activity as human angiogenin. The sequence of bovine angiogenin contains the cell recognition tripeptide Arg-Gly-Asp which is not present in the human protein.  相似文献   

20.
Characteristic ribonucleolytic activity of human angiogenin   总被引:29,自引:0,他引:29  
R Shapiro  J F Riordan  B L Vallee 《Biochemistry》1986,25(12):3527-3532
Angiogenin, a blood vessel inducing protein isolated from a human tumor cell line, has been found to exhibit ribonucleolytic activity. It catalyzes the cleavage of both 28S and 18S ribosomal RNA as determined by agarose gel electrophoresis. The major products formed with these substrates are 100-500 nucleotides in length. In contrast, angiogenin is inactive toward all of the more conventional substrates of the homologous pancreatic ribonucleases. In particular, it does not produce detectable amounts of acid-soluble fragments from high molecular weight wheat germ RNA, poly(C), or poly(U), nor does it hydrolyze cytidine or uridine cyclic 2',3'-phosphate. The high degree of sequence homology between angiogenin and the pancreatic ribonucleases, which includes all three catalytic residues, His-12, Lys-41, and His-119, has thus identified the chemical nature of a potential angiogenin substrate. These results may bear importantly on the physiological function of angiogenin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号