首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Biosynthesis of the c-series gangliosides GT3, GT2 and GP1c was studied in Golgi derived from rat liver. Competition experiments show that the synthesis of ganglioside GT2 (GalNAc beta 1----4-(NeuAc alpha 2----8NeuAc alpha 2----8NeuAc alpha 2----3)Gal- beta 1----4Glc beta 1----1Cer) from GT3 (NeuAc alpha 2----8NeuAc alpha 2----8-NeuAc alpha 2----3Gal beta 1----4Glc beta 1----1Cer) seems to be catalysed by the same N-acetylgalactosaminyl-transferase (GalNAc-T), which converts GM3 (NeuAc alpha 2----3Gal beta 1----4Glc beta 1----1Cer) to GM2 (GalNAc beta 1----4(NeuAc alpha 2----3)Gal beta 1----4Glc beta 1----1Cer). Similar competition experiments suggest moreover that the sialytransferase V (SAT V), which catalyses the synthesis of GT1a (NeuAc alpha 2----8NeuAc alpha 2----3Gal beta 1----3GalNAc beta 1----4- (NeuAc alpha 2----3)-Gal beta 1----4Glc beta 1----1Cer) from GD1a (NeuAc alpha-2----3Gal beta 1----3GalNAc beta 1----4(NeuAc alpha 2----3)Gal beta 1----4Glc beta 1----1-Cer) appears to be identical to the enzyme that catalyses the synthesis of GP1c (NeuAc alpha 2----8NeuAc alpha 2----3Gal beta 1----3-GalNAc beta 1----4(NeuAc alpha 2----8-NeuAc alpha 2----8NeuAc alpha 2----3)Gal beta-1----4Glc beta 1----4Glc beta 1----1Cer) from GQ1c (NeuAc alpha 2----3Gal beta 1----3Gal-NAc beta 1----4 (NeuAc alpha 2----8NeuAc alpha 2----8NeuAc alpha 2----3)Gal beta 1----4-Glc beta 1----1Cer).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Eleven oligosaccharides were purified form the urine of sheep with swainsonine toxicosis induced by the feeding of Astragalus lentiginosus. Oligosaccharides were extracted by charcoal adsorption, chromatographed on Bio-Gel P-2, and partially fractionated by preparative-layer chromatography. Separation into individual compounds was completed by semi-preparative high pressure liquid chromatography. Structures were determined by a combination of high pressure liquid chromatography and exo- and endo- glycosidase action, methanolysis followed by gas-liquid chromatography, methylation analysis, and high resolution nuclear magnetic resonance spectroscopy. Two homologous series of oligosaccharides were identified: (a) alpha-D-Manp-(1----6)-beta-D-Manp-(1----4)-D-GlcpNAc, alpha-D-Manp(1----3)-[alpha-D-Manp-(1----6)]-beta-D-Manp+ ++-(1----4)-D-GlcpNAc, alpha-D-Manp-(1----2)-alpha-D-Manp(1----3)-[alpha-D-Manp+ ++-(1----6)]-beta-D-Manp-(1----4)-D-GlcpNAc, and alpha-D-Manp-(1----2)-alpha-D-Manp-(1----2)-alpha-D-Manp+ ++-(1----3)-[alpha- D-Manp-(1----6)]-beta-D-Manp-(1----4)-D-GlcpNAc (minor series); (b) alpha-D-Manp-(1----6)-beta-D-Manp-(1----4)-beta-D-GlcpNAc- (1----4)-D-GlcpNAc, alpha-D-Manp-(1----3)-[alpha-D-Manp-(1----6)]-beta-D-Manp -(1----4)-beta-D-GlcpNAc-(1----4)-D-GlcpNAc, alpha-D-Manp(1----3)-alpha-D-Manp-(1----6)-beta-D-Manp -(1----4)-beta-D-GlcpNAc- (1----4)-D-GlcpNAc, alpha-D-Manp-(1----6)-alpha-D-Manp-(1----6)-beta-D-Manp++ +-(1----4)-beta-D-GlcpNAc - (1----4)-D-GlcpNAc, alpha-D-Manp-(1----3)-alpha-D-Manp-(1----6)-[alpha-D-Manp -(1----3)]-beta-D- Manp-(1----4)-beta-D-GlcpNAc-(1----4)-D-GlcpNAc, alpha-D-Manp-(1----3)-[alpha-D-Manp-(1----6)]-alpha-D-Man p-(1----6)-beta-D- Manp-(1----4)-beta-D-GlcpNAc-(1----4)-D-GlcpNAc, and alpha-D-Manp-(1----3)-[alpha-D-Manp-(1----6)]-alpha-D-Man p-(1----6)- [alpha-D-Manp-(1----3)]-beta-D-Manp-(1----4)-beta-D-GlcpNAc- (1----4)-D- GlcpNAc (major series).  相似文献   

3.
The structures of one tri-(1), two tetra-(2 and 3), and one hexa-saccharide (4) produced by treatment of barley flour, after removal of the starch components, with a fungal beta-D-glucanase (Finizyme) have been assigned on the basis of 1H- and 13C-n.m.r. data as follows: beta-D-Glcp-(1----3)-beta-D-Glcp-(1----4)-D-Glcp (1), beta-D-Glcp-(1----4)-beta-D-Glcp-(1----3)-beta-D-Glcp-(1----4)-D-Glcp (2), beta-D-Glcp-(1----3)-beta-D-Glcp-(1----4)-beta-D-Glcp-(1----4)-D-Glcp (3), and beta-D-Xylp-(1----4)-[alpha-L-Araf-(1----3)]-[alpha-L-Ara f-(1----2)-beta-D-Xylp-(1----4)-beta-D-Xylp- (1----4)-D-Xylp (4).  相似文献   

4.
The capsular polysaccharide of Streptococcus pneumoniae serotype 6B [----2)-alpha-D-Galp-(1----3)-alpha-D-Glcp-(1----3)-alpha-L-Rhap-( 1----4)- D-RibOH-(5-P----]n was depolymerised under alkaline (NaOH) and acidic (HF) conditions. The former treatment yielded, as the major component, alpha-2-P-Galp-(1----3)-alpha-Glcp-(1----3)-alpha-Rhap-(1----4)-5- P-RibOH. The latter treatment at -16 degrees gave alpha-Galp-(1----3)-alpha-Glcp-(1----3)-alpha-Rhap-(1----4)-Rib OH-(5-P----2)- alpha-Galp-(1----3)-alpha-Glcp-(1----3)-alpha-Rhap-(1----4)-Rib OH and at 4 degrees gave alpha-Galp-(1----3)-alpha-Glcp-(1----3)-alpha-Rhap-(1----4)-Rib OH. These oligosaccharides were characterised by sugar analysis, f.a.b.-m.s., and 1H- and 13C-n.m.r. spectroscopy.  相似文献   

5.
The structure of sialylated carbohydrate units of bronchial mucins obtained from cystic fibrosis patients was investigated by 500-MHz 1H NMR spectroscopy in conjunction with sugar analysis. After subjecting the mucins to alkaline borohydride degradation, sialylated oligosaccharide-alditols were isolated by anion-exchange chromatography and fractionated by high performance liquid chromatography. Five compounds could be obtained in a rather pure state; their structures were established as the following: A-1, NeuAc alpha(2----3)Gal beta(1----4) [Fuc alpha(1----3)]GlcNAc beta(1----3)Gal-NAc-ol; A-2, NeuAc alpha(2----3)Gal beta(1----4)GlcNAc beta(1----6)-[GlcNAc beta (1----3)]GalNAc-o1; A-3, NeuAc alpha(2----3)Gal beta-(1----4)[Fuc alpha(1----3)]GlcNAc beta(1----3)Gal beta(1----3) GalNAc-o1; A-4, NeuAc alpha(2----3)Gal beta(1----4)[Fuc alpha(1----3)]Glc-NAc NAc beta(1----6)[GlcNAc beta(1----3)]GalNAc-o1; A-6,NeuAc alpha-(2----3) Gal beta(1----4)[Fuc alpha(1----3)]GlcNAc beta(1----6)[Gal beta-(1----4) GlcNAc beta(1----3)]GalNAc-o1. The simultaneous presence of sialic acid in alpha(2----3)-linkage to Gal and fucose in alpha(1----3)-linkage to GlcNAc of the same N-acetyllactosamine unit could be adequately proved by high resolution 1H NMR spectroscopy. This sequence constitutes a novel structural element for mucins.  相似文献   

6.
Two new saponins were isolated from Mimosa tenuiflora and their structures established as 3-O-[alpha-L-rhamnopyranosyl(1----2)-beta-D-glucopyranosyl-(1----3]-(alp ha-L- arabinopyranosyl-(1----4]-beta-D-xylopyranosyl-(1----2)]-[beta-D- xylopyranosyl-(1----4)]-beta-D-glucopyranosyl)-28-O-alpha-L-rhamnopyrano syl oleanolic acid and 3-O-[alpha-L-rhamnopyranosyl-(1----2)-beta-D-glucopyranosyl-(1----3]-(al pha- L-arabinopyranosyl-(1----4]beta-D-xylopyranosyl-(1----2)]-[beta-D- xylopyranosyl-(1----4)]-beta-D-glucopyranosyl) oleanolic acid.  相似文献   

7.
Four triterpenoid saponins from dried roots of Gypsophila species.   总被引:3,自引:0,他引:3  
Four new triterpenoid saponins were isolated from the roots of Gypsophila paniculata and G. arrostii. Their structures were elucidated using a combination of homo- and heteronuclear 2D NMR techniques, without having recourse to chemical degradation or modification. The saponins investigated are: 3-O-beta-D-galactopyranosyl-(1----2)-[beta-D-xylopyranosyl-(1----3)]-bet a-D- glucuronopyranosyl quillaic acid 28-O-beta-D-glucopyranosyl-(1----3)-[beta-D-xylopyranosyl-(1----4)]-alph a- L-rhamnopyranosyl-(1----2)-beta-D-fucopyranoside; 3-O-beta-D-galactopyranosyl-(1----2)-[beta-D-xylopyranosyl-(1----3)]-bet a- D-glucuronopyranosyl quillaic acid 28-O-beta-D-arabinopyranosyl-(1----4)-beta-D-arabinopyranosyl++ +-(1----3)-beta-D- xylopyranosyl-(1----4)-alpha-L-rhamnopyranosyl-(1----2)-beta-D-fucopyran oside; 3-O-beta-D-glucopyranosyl-(1----2)-beta-D-glucuronopyranosyl gypsogenin 28-O-beta-D-glucopyranosyl-(1----3)-[beta-D-xylopyranosyl-(1----4)]-alph a- L-rhamnopyranosyl-(1----2)-beta-D-fucopyranoside; 3-O-beta-D-xylopyranosyl-(1----3)-[beta-D-galactopyranosyl-(1----2)]-bet a- D-glucuronopyranosyl gypsogenin 28-O-beta-D-glucopyranosyl-(1----3)-[beta-D-xylopyranosyl-(1----4)-alpha -L- rhamnopyranosyl-(1----2)-beta-D-fucopyranoside.  相似文献   

8.
The structures of two octasaccharides, one nonasaccharide, and one undecasaccharide, isolated from human milk, have been investigated by 1H- and 13C-nuclear magnetic resonance spectroscopy. The structures of these oligosaccharides are: beta-D-Galp-(1----4)-[alpha-L-Fucp- (1----3)]-beta-D-GlcpNAc-(1----3)-beta-D-Galp-(1----4)-[alpha-L-Fucp+ ++- (1----3)]-beta-D-GlcpNAc-(1----3)-beta-D-Galp-(1----4)-D-Glc; beta-D-GALp-(1----3)-[alpha-L-Fucp-(1----4)]-beta-D-GlcpNAc-(1---- 3)-beta-D - Galp-(1----4)-[alpha-L-Fucp-(1----3)]-beta-D-GlcpNAc-(1----3)-beta -D-Galp- (1----4)-D-Glc; beta-D-Galp-(1----4)-[alpha-L-Fucp-(1----3)]-beta-D-GlcpNAc-(1---- 6)-(alpha - L-Fucp-(1----2)-beta-D-Gal-(1----3)-[alpha-L-Fucp-(1----4)]- beta-D-GlcpNAc- (1----3))-beta-D-Galp-(1----4)-D-Glc; and alpha-L-Fucp-(1----2)-beta-D-Galp-(1----3)-beta-D-GlcpNAc-(1----3) -beta-D- Galp-(1----4)-[alpha-L-Fucp-(1----3)]-beta-D-GlcpNAc-(1----6)-[alp ha-L- Fucp-(1----2)-beta-D-Galp-(1----3)-beta-D-GlcpNAc-(1----3)]-beta-D -Galp- (1----4)-D-Glc. The two octasaccharides have been previously isolated from human milk as a mixture, and in a pure form from new-born feces, but the n.m.r. data were not provided. These two octasaccharides display the di-Lewis X and the composite Lewis A-Lewis X antigenic determinant, previously described as neo-antigens of adenocarcinoma cell lines.  相似文献   

9.
O-(alpha-D-Mannopyranosyl)-(1----2)-O-(alpha-D-mannopyranosyl)-(1----3)- O- [(alpha-D-mannopyranosyl)-(1----2)-O-(alpha-D-mannopyranosyl)-(1----6)]- O- (alpha-D-mannopyranosyl)-(1----6)-O-(beta-D-mannopyranosyl)-(1----4)-O-( 2- acetamido-2-deoxy-beta-D-glucopyranosyl)-(1----4)-2-acetamido-2-deoxy- glucopyranose, an octasaccharide fragment of high-mannose type glycan of glycoproteins, was synthesized. Crucial glycosylation of trisaccharide intermediate, benzyl O-(2,4-di-O-benzyl-beta-D-mannopyranosyl)-(1----4)-O-(2-acetamido-3,6-di -O- benzyl-2-deoxy-beta-D-glucopyranosyl)-(1----4)-2-acetamido-3,6-di-O-benz yl-2- deoxy-beta-D-glucopyranoside, was successful only with a di-O-acetyltetradeca-O-benzyl-D-mannopentaosyl chloride. The use of the corresponding hexadeca-O-acetyl-D-mannopentaosyl bromide did not give the desired product.  相似文献   

10.
The conformational analysis of the recently synthesized tetrasaccharides alpha-D-Manp (1----3)-[alpha-D-Manp-(1----6)]-4-deoxy-beta-D-lyx-hexp+ ++-(1----4)-D-GlcNAc (2) and alpha-D-Manp-(1----3)-[alpha-D-Manp-(1----6)]-beta-D-Talp -(1----4)-D-GlcNAc (3) will be described. The preferred solution conformation of 2 and 3 is a gt-conformation, which is nearly identical with the preferred conformation of the naturally occurring tetrasaccharide alpha-D-Manp-(1----3)-[alpha-D-Manp-(1----6)]-beta-D-Manp -(1----4)-D-GlcNAc (1). The main structural feature is the backfolding of the alpha-(1----6)-linked D-Man to the reducing D-GlcNAc unit. Conformational analysis of the tetrasaccharides alpha-D-Manp-(1----3)-[alpha-D-Manp-(1----6)]-beta-D-Manp -(1----4)-1,6- anhydro-beta-D-GlcNAc (4), alpha-D-Manp-(1----3)-alpha-D-Manp-(1----6)]-4-deoxy-beta-D- lyx-hexp-(1----4)- 1,6-anhydro-beta-D-GlcNAc (5), and alpha-D-Manp-(1----3)-[alpha-D-Manp-(1----6)]-beta-D-Talp -(1----4)- 1,6-anhydro-beta-D-GlcNAc (6) gave additional proof for this backfolding. The substitution of the reducing unit leads to a smaller amount of gt- and a greater amount of gg-conformers. The method used for conformational analysis of 2-6 is a combination of n.m.r.-experiments and HSEA-calculations with the program GESA. Concerning the application of new 2D-techniques, the COLOC-experiment turned out to be extremely useful in sequencing oligosaccharides.  相似文献   

11.
Partial reactions catalyzed by a (1----3)-N-acetyl-beta-D- glucosaminyltransferase (EC2.4.1.149), known to be present in human serum, were studied by use of biantennary "backbone" saccharides of oligo-N-acetyllactosamine-type as acceptors. Incubation of the radiolabeled blood-group I-active hexasaccharide, beta-D-Galp-(1----4)-beta-D-GlcpNAc-(1----3)-[beta-D-Galp- (1----4)-beta-D-GlcpNAc-(1----6)]-beta-D-Galp-(1----4)-D-GlcNAc (1) and UDP-GlcNAc with serum gave first a transient 1:1 mixture of two isomeric heptasaccharides, beta-D-GlcpNAc-(1----3)-beta-D-Galp-(1----4)-beta-D- GlcpNAc-(1----3)-[beta-D-Galp-(1----4)-beta-D-GlcpNAc-(1----6)]-beta-D- Galp-(1----4)-D-GlcNAc (2) and beta-D-Galp-(1----4)-beta-D-GlcpNAc-(1----3)-[beta-D-GlcpNAc-(1----3)- beta-D-Galp-(1----4)-beta-D-GlcpNAc-(1----6)]-beta-D-Galp-(1----4)-D-Glc NAc (3), showing that both branches of 1 react equally well. The two heptasaccharides reacted further in the incubation mixture to form the radiolabeled octasaccharide, beta-D-GlcpNAc-(1----3)-beta-D-Galp-(1----4)-beta-D-GlcpNAc-(1----3)-[be ta-D- GlcpNAc-(1----3)-beta-D-Galp-(1----4)-beta-D-GlcpNAc-(1----6)]-beta-D-Ga lp- (1----4)-D-GlcNAc (4); during this second reaction, the composition of the heptasaccharide mixture remained unchanged, indicating that 2 and 3 reacted at approximately equal rates. The heptasaccharides 2 and 3 could not be separated from each other, but they could be detected, identified, and quantitatively determined by stepwise enzymic degradations. Partial (1----3)-N-acetyl-beta-D-glucosaminylation reactions, carried out with another acceptor, the branched pentasaccharide, beta-D-Galp-(1----4)-beta-D-GlcpNAc-(1----3)-[beta-D-Galp-(1----4)-beta- D- GlcpNAc-(1----6)]-beta-D-Gal (11), revealed that it reacted also equally well at both branches.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
S Takasaki  A Kobata 《Biochemistry》1986,25(19):5709-5715
Asparagine-linked sugar chains were quantitatively released from fetuin by hydrazinolysis. Structural analysis of the sugar chains by sequential exoglycosidase digestion in combination with methylation analysis and Smith degradation revealed that most of them have typical biantennary (8%) and triantennary (74%) structures containing different amounts of N-acetylneuraminic acid residues. In addition, an unusual tetrasialyl triantennary sugar chain (17%) containing the Gal beta 1----3GlcNAc sequence in the outer chain moiety was detected, and its structure was elucidated as NeuAc alpha 2----3Gal beta 1----3(NeuAc alpha 2----6)-GlcNAc beta 1----4(NeuAc alpha 2----6Gal beta 1----4GlcNAc beta 1----2)Man alpha 1----3(NeuAc alpha 2----3Gal beta 1----4GlcNAc beta 1----2Man alpha 1----6)Man beta 1----4GlcNAc beta 1----4GlcNAc.  相似文献   

13.
Stereoselective, total synthesis of O-alpha-D-galactopyranosyl-(1----4) -O-beta-D-galactopyranosyl-(1----4)-O-beta-D-glucopyranosyl-(1----1)-N -tetracosanoyl-[2S,3R,4E (and 4Z)]-sphingenine and O-alpha-D -galactopyranosyl-(1----3)-O-beta-D-galactopyranosyl-(1----4)-O-beta-D -glucopyranosyl-(1----1)-N-tetracosanoyl-(2S,3R,4E)-sphin gen ine was achieved by using O-(2,3,4,6-tetra-O-acetyl-alpha-D-galactopyranosyl) -(1----4)-O-(2,3,6-tri-O-acetyl-beta-D-galactopyranosyl)-(1----4)-2,3,6- tri-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate, O-(2,3,4,6-tetra-O-acetyl-alpha-D-galactopyranosyl) -(1----4)-O-(2,3,6-tri-O-acetyl-beta-D-galactopyranosyl)-(1----4)-2,3,6- tri-O-acetyl-alpha (and beta)-D-glucopyranosyl fluoride, and O-(2,3,4,6-tetra-O-acetyl-alpha-D -galactopyranosyl)-(1----3)-O-(2,3,6-tri-O-acetyl-beta-D-galactopyran osyl)-(1----4)-2,3,6-tri-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate.  相似文献   

14.
The isomeric sialyl-Lea-terminating pentasaccharide derivatives, alpha-Neup5Ac-(2----3)-beta-D-Galp-(1----3)-[alpha-L-Fucp-(1 ----4)]-beta- D-GlcpNAc-(1----3)-beta-D-Galp-O(CH2)8COOMe and alpha-Neup5Ac-(2----3)-beta-D-Galp-(1----3)-[alpha-L-Fucp-(1 ----4)]- beta-D-GlcpNAc-(1----6)-beta-D-Galp-O(CH2)8COOMe, have been prepared by the action in sequence of a porcine submaxillary (2----3)-alpha-sialyltransferase and a human-milk (1----3/4)-alpha-fucosyltransferase on the chemically synthesized trisaccharides beta-D-Galp-(1----3)-beta-D-GlcpNAc-(1----3)- and -(1----6)-beta-D-Galp- O(CH2)8COOMe, respectively.  相似文献   

15.
Two key synthons for the title pentasaccharide derivative, methyl O-(methyl 2-O-benzoyl-3-O-benzyl-alpha-L-idopyranosyluronate)-(1----4)-6-O-acetyl- 2-azido - 3-O- benzyl-2-deoxy-beta-D-glucopyranoside and O-(methyl 2,3-di-O-benzyl-4-O- chloroacetyl-beta-D-glucopyranosyluronate)-(1----4)-3,6-di-O-acetyl-2-az ido-2- deoxy-alpha-D- glucopyranosyl bromide, were prepared from a common starting material, cellobiose. They were coupled to give a tetrasaccharide derivative that underwent O-dechloroacetylation to the corresponding glycosyl acceptor. Its condensation with the known 6-O-acetyl-2-azido-3,4-di-O-benzyl-2-deoxy-alpha-D-glucopyranosyl bromide afforded a 77% yield of suitably protected pentasaccharide, methyl O-(6-O- acetyl-2-azido-3,4-di-O-benzyl-2-deoxy-alpha-D-glucopyranosyl)-(1----4)- O- (methyl 2,3- di-O-benzyl-beta-D-glucopyranosyluronate)-(1----4)-O-(3,6-di-O-acetyl-2- azido-2 - deoxy-alpha-D-glucopyranosyl)-(1----4)-O-(methyl 2-O-benzoyl-3-O-benzyl-alpha-L- idopyranosyluronate)- (1----4)-6-O-acetyl-2-azido-3-O-benzyl-2-deoxy-beta-D-glucopyranoside. Sequential deprotection and sulfation gave the decasodium salt of methyl O-(2- deoxy-2-sulfamido-6-O-sulfo-alpha-D-glucopyranosyl)-(1----4)-O-(be ta-D- glucopyranosyl-uronic acid)-(1----4)-O-(2-deoxy-2-sulfamido-3,6-di-O-sulfo-alpha-D-gluco pyranosyl)- (1----4)-O-(2-O-sulfo-alpha-L-idopyranosyluronic acid)-(1----4)-2-deoxy-2- sulfamido-6-O- sulfo-beta-D-glucopyranoside (3). In a similar way, the trisaccharide derivative, the hexasodium salt of methyl O-(2-deoxy-2-sulfamido-6-O-sulfo-alpha-D- glucopyranosyl)- (1----4)-O-(beta-D-glucopyranosyluronic acid)-(1----4)-2-deoxy-2-sulfamido-3,6- di-O- sulfo-alpha-D-glucopyranoside (4) was synthesized from methyl O-(6-O-acetyl-2- azido- 3,4-di-O-benzyl-2-deoxy-alpha-D-glucopyranosyl)-(1----4)-O-(methyl 2,3-di-O- benzyl-beta- D-glucopyranosyluronate)-3,6-di-O-acetyl-2-azido-2-deoxy-alpha-D- glucopyranoside. The pentasaccharide 3 binds strongly to antithrombin III with an association constant almost equivalent to that of high-affinity heparin, but the trisaccharide 4 appears not to bind.  相似文献   

16.
Glycoprotein 71 from Friend murine leukemia virus was digested with proteases and the glycopeptides obtained were isolated and assigned, by amino acid sequencing, to the eight N-glycosylated asparagines in the molecule; only Asn334 and Asn341 could not be separated. The oligosaccharides liberated from each glycopeptide by endo-beta-N-acetylglucosaminidase H, or by peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase F, were fractionated and subjected to structural analysis by one- and two-dimensional 1H NMR, as well as by methylation/gas-liquid-chromatography/mass-fragmentography. At each glycosylation site, the substituents were found to be heterogeneous including, at Asn334/341 and Asn410, substitution by different classes of N-glycans: oligomannosidic oligosaccharides, mainly Man alpha 1----6(Man alpha 1----3)Man alpha 1----6(Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4GlcNAc beta 1----, were detected at Asn168, Asn334/341 and Asn410. Hybrid species, partially sialylated, intersected and (proximally) funcosylated Man alpha 1----6(Man alpha 1----3)Man alpha 1----6 and Man alpha 1----3Man alpha 1----6 and Man alpha 1----3Man alpha 1----6(Gal beta 1----4GlcNAc beta 1----2Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4GlcNAc beta 1----, were found at Asn12, as previously published [Schlüter, M., Linder, D., Geyer, R., Hunsmann, H., Schneider, J. & Stirm, S. (1984) FEBS Lett. 169, 194-198] and at Asn334/341. N-Acetyllactosaminic glycans, mainly partially intersected and fucosylated NeuAc alpha 2----3 or Gal alpha 1----3Gal beta 1----4GlcNAc beta 1----2Man alpha 1----6(NeuAc alpha 2----6 or NeuAc alpha 2----3Gal-beta 1----4GlcNAc beta 1----2Man alpha 1----3)Man beta 1----4GlcNac beta 1----4GlcNAc beta 1---- with some bifurcation at ----6Man alpha 1----6, were obtained from Asn266, Asn302, Asn334/341, Asn374 and Asn410. In addition, Thr268, Thr277, Thr279, Thr304/309, as well as Ser273 and Ser275, were found to be O-glycosidically substituted by Gal beta 1----3GalNAc alpha 1----, monosialylated or desialylated at position 3 of Gal or/and position 6 of GalNAc.  相似文献   

17.
W G Ma  D Z Wang  Y L Zeng  C R Yang 《Phytochemistry》1992,31(4):1343-1347
Four new oleanane triterpenoid saponins named triplosides D-G were isolated from the roots of Triplostegia grandiflora. Their structures were elucidated on the basis of chemical degradation and spectral evidence. The saponins investigated were: oleanolic acid 3-O-beta-D-xylopyranosyl(1----4)-beta-D-xylopyranosyl(1----3)-beta-D- xylopyranosyl(1----4)-alpha-L-rhamnopyranosyl(1----3)-beta-D- xylopyranosyl(1----3)-alpha-L-rhamnopyranosyl(1----2)-beta-D-xylopyranos ide, oleanolic acid 3-O-beta-D-glucopyranosyl(1----6)-[beta-D- xylopyranosyl(1----4)]-beta-D-glucopyranosyl(1----3)-beta-D- xylopyranosyl(1----4)-alpha-L-rhamnopyranosyl(1----3)-beta-D- xylopyranosyl(1----3)-alpha-L-rhamnopyranosyl(1----2)-beta-D-xylopyranos ide, oleanolic acid 3-O-beta-D-xylopyranosyl(1----3)-beta-D-xylopyranosyl(1----4)- alpha-L-rhamnopyranosyl(1----3)-beta-D-xylopyranosyl(1----3)-alpha-L- rhamnopyranosyl(1----2)-beta-D-xylopyranoside and oleanolic acid 3-O-alpha-L-rhamnopyranosyl(1----3)-beta-D-xylopyranosyl(1---3)-alpha-L- rhamnopyranosyl(1----2)-beta-D-xylopyranoside, respectively. All of them have a common aglycone and are monodesmosides.  相似文献   

18.
The 1H- and 13C-NMR parameters, chemical shifts and coupling constants, for the pentasaccharide of the genus-specific epitope of Chlamydia lipopolysaccharide and related di-, tri-, and tetra-saccharides have been measured and assigned completely using 1D and 2D techniques, and their structures have been confirmed. NOE experiments indicated the preferred conformation of the pentasaccharide and the component oligosaccharides. The 3JH,H demonstrate a change in conformation by rotation of the C-6-C-7 bond of the side chain of the (2----8)-linked Kdo (unit b) in alpha-Kdo-(2----8)-alpha-Kdo-(2----4)-alpha-Kdo-(2----6)-beta-GlcN-(1--- -6)- GlcNol, alpha-Kdo-(2----8)-alpha-Kdo-(2----4)-alpha-Kdo-(2----6)-beta-GlcNAc-(1- ---O)- allyl, and alpha-Kdo-(2----8)-alpha-Kdo-(2----4)-alpha-Kdo-(2----O)-allyl relative to that preferred in alpha-Kdo-(2----4)-alpha-Kdo-(2----6)-beta-GlcNAc-(1----O)-allyl, alpha-Kdo-(2----8)-alpha-Kdo-(2----O)-allyl, alpha-Kdo-(2----4)-alpha-Kdo-(2----O)-allyl, and alpha-Kdo-(2----6)-beta-GlcNAc-(1----O)-allyl, irrespective of the size of the aglycon, e.g., allyl or beta-D-GlcN residues. The conformational results have been substantiated by computer calculations using the HSEA approach.  相似文献   

19.
Oligosaccharides formed by a transgalactosylation reaction during lactose hydrolysis with Bifidobacterium bifidum were separated into eight fractions by gel-permeation chromatography and their structures studies determined by trimethylsilylation analysis, methylation analysis, f.a.b.-m.s., g.l.c.-m.s. and enzymic hydrolysis as beta-D-Galp-(1----3)-D-Glc, beta-D-Galp-(1----6)-D-Glc, beta-D-Galp-(1----6)-D-Gal, beta-D-Galp-(1----3)-beta-D-Galp-(1----4)-D-Glc, beta-D-Galp-(1----6)[beta-D-Galp-(1----4)]-D-Glc, beta-D-Galp-(1----2)[beta-D-Galp-(1----6)]-D-Glc, beta-D-Galp-(1----3)-beta-D-Galp-(1----3)-beta-D-Galp-(1----4)-D-Glc, beta-D-Galp-(1----3)-beta-D-Galp-(1----3)-beta-D-Galp-(1----3)-beta-D-Ga lp- (1----4)-D-Glc, beta-D-Galp-(1----3)-beta-D-Galp-(1----3)-beta-DGalp-(1----3)-beta -D-Galp-(1----3)-beta-D-Galp-(1----4)-D-Glc, and beta-D-Galp-(1----3)-beta-D-Galp-(1----3)-beta-D-Galp-(1----3)-beta-D-Ga lp-(1----3)-beta-D-G-alp-(1----3) beta-D-Galp-(1----4)-D-Glc.  相似文献   

20.
Glycoprotein MII2, the major cell surface glycoprotein (molecular mass 110 kDa) of Zajdela hepatoma ascites cells, contains about 25 O-glycosidic oligosaccharide chains per molecule. They were released as oligosaccharide-alditols by alkaline borohydride treatment of MII2, and purified by gel filtration on Bio-Gel P-6 followed by high-voltage paper electrophoresis. Four oligosaccharide-alditol fractions (A-D) were obtained in relative yields of 8:6:3:3. The structure of the components of fractions A-C was determined by 500-MHz 1H-NMR spectroscopy in combination with sugar composition analysis, to be as follows. (A) NeuAc alpha(2----3)Gal beta(1----3)[NeuAc alpha(2----3)Gal beta(1----4)GlcNAc beta(1----6)]GalNAc-ol; (B1) NeuAc alpha(2----3)Gal beta(1----3)[Gal beta(1----4)GlcNAc beta(1----6)]GalNAc-ol; (B2) Gal beta(1----3)[NeuAc alpha(2----3)Gal beta(1----4)GlcNAc beta(1----6)]GalNAc-ol; (C) NeuAc alpha(2----3)Gal beta(1----3)GalNAc-ol. On the basis of sugar composition and characteristics on Bio-Gel P-6 filtration, paper electrophoresis and thin-layer chromatography, the structure of the carbohydrate component of fraction D is proposed to be as follows. (D) NeuAc alpha(2----3)Gal beta(1----3)[NeuAc alpha(2----6)]GalNAc-ol  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号