首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 783 毫秒
1.
Accumulative phases for heavy metals in limnic sediments   总被引:3,自引:1,他引:2  
Förstner  Ulrich 《Hydrobiologia》1982,91(1):269-284
Data from mechanical concentrates of recent sediments indicate that clay minerals, clay-rich aggregates and heavy minerals are the major carriers of heavy metals in detrital sediment fractions. Hydrous Fe/Mn oxides and carbonates and sulfides, in their specific environments, are the predominant accumulative phases for heavy metals in autochthonous fractions. Sequential chemical extraction techniques permit the estimation of characteristic heavy metal bonding forms: exchangeable metal cations, easily reducible, moderately reducible, organic and residual metal fractions, whereby both diagenetic processes and the potential availability of toxic compounds can be studied. The data from lakes affected by acid precipitation indicate that zinc, cobalt and nickel are mainly released from the easily reducible sediment fractions and cadmium from organic phases. In contrast at pH 4.4, neither lead nor copper seem to be remobilized to any significant extent. Immobilization by carbonate precipitation seems to provide an effective mechanism for the reduction of dissolved inputs 9f metals such as zinc and cadmium in pH-buffered, hard water systems.  相似文献   

2.
Microbially mediated leaching and solubilization of zinc ore concentrate by native aquatic microbial communities incubated under aerobic and oxygen‐limited conditions were examined in static microcosms consisting of stream sediment and water. Sterile controls provided information on abiotic sulfide oxidation and leaching of zinc, lead, cadmium, and copper. The flux of these heavy metals from the sediments to the water column was greatest under biotic oxygen‐limited conditions. When calculated as the percentage of total metal available in zinc concentrate‐amended microcosms, the order of metal solubilization under oxygen‐limited conditions was lead, copper, zinc, and cadmium. Under biotic aerobic conditions, the order of solubilization was zinc, lead, cadmium, and copper. This study indicates that aquatic heterotrophs are capable of leaching and solubilizing metallic sulfides under conditions of neutral to slightly acidic pH and are effective in releasing heavy metals to the water column under oxygen‐limited conditions.  相似文献   

3.
Acid mine drainage (AMD), an acidic metal-bearingwastewater, poses a severe pollution problem attributedto post mining activities. The metals usuallyencountered in AMD and considered of concern for riskassessment are arsenic, cadmium, iron, lead, manganese,zinc, copper and sulfate. The pollution generated byabandoned mining activities in the area of Butte, Montanahas resulted in the designation of the Silver Bow Creek–ButteArea as the largest Superfund (National Priorities List) sitein the U.S. This paper reports the results of bench-scalestudies conducted to develop a resource recovery basedremediation process for the clean up of the Berkeley Pit.The process utilizes selective, sequential precipitation (SSP)of metals as hydroxides and sulfides, such as copper, zinc,aluminum, iron and manganese, from the Berkeley Pit AMDfor their removal from the water in a form suitable foradditional processing into marketable precipitates and pigments.The metal biorecovery and recycle process is based on completeseparation of the biological sulfate reduction step and themetal precipitation step. Hydrogen sulfide produced in the SRBbioreactor systems is used in the precipitation step to forminsoluble metal sulfides. The average metal recoveries usingthe SSP process were as follows: aluminum (as hydroxide) 99.8%,cadmium (as sulfide) 99.7%, cobalt (as sulfide) 99.1% copper(as sulfide) 99.8%, ferrous iron (sulfide) 97.1%, manganese(as sulfide) 87.4%, nickel (as sulfide) 47.8%, and zinc (as sulfide)100%. The average precipitate purity for metals, copper sulfide,ferric hydroxide, zinc sulfide, aluminum hydroxide and manganesesulfide were: 92.4, 81.5, 97.8, 95.6 , 92.1 and 75.0%, respectively.The final produced water contained only calcium and magnesiumand both sulfate and sulfide concentrations were below usablewater limits. Water quality of this agriculturally usable watermet the EPA's gold standard criterion.  相似文献   

4.
This paper presents the results of research on heavy metals removal from water by filtration using low cost coarse media which could be used as an alternative approach to remove heavy metals from water or selected wastewater. A series of batch studies were conducted using different particle media (particle size 2.36-4.75 mm) shaken with different heavy metal solutions at various pH values to see the removal behaviour for each metal. Each solution of cadmium (Cd), lead (Pb), zinc (Zn), nickel (Ni), copper (Cu) and chromium (Cr(III)) with a concentration of 2 mg/L was shaken with the media. At a final pH of 8.5, limestone has significantly removed more than 90% of most metals followed by 80% and 65% removals using crushed bricks and gravel, respectively. The removal by aeration and settlement methods without solid media was less than 30%. Results indicated that the removal of heavy metals was influenced by the media and not directly by the pH. Investigations on the removal behaviour of these metals indicated that rough solid media with the presence of carbonate were beneficial for the removal process. Adsorption and precipitation as metals oxide and probably as metals carbonate were among the two mechanisms that contributed to the removal of metals from solution.  相似文献   

5.
Summary Thiobacillus thiooxidans is capable of oxidizing sulfur in digested sludge, while decreasing the pH value from about 5.5 to, say, 1.0 to 1.5. Insoluble metal sulfides can be solubilized through this acidification. Thiobacillus ferrooxidans oxidises pyritic ore in the presence of 6% centrifuged sludge if the pH value is adjusted to about 2.5. When mixing T. thiooxidans and T. ferrooxidans with sludge and 1% sulfur, the former acidifies the sludge and the latter oxidizes metal sulfides; together they solubilize more metal than T. thiooxidans alone. The following metals solubilized from their sulfides have been investigated so far: iron, copper, zinc, nickel, and cadmium. The possibility of recycling metals from sewage sludge with this method is discussed.  相似文献   

6.
The cadmium, zinc, lead and copper concentrations in benthic invertebrates and sediment were determined during two consecutive winters in the Maarsseveen Lakes system. A sequential extraction procedure was applied to estimate the bioavailability of the trace metals in the sediment. Based on the trace metal analyses of organisms and sediment, it is concluded that the Maarsseveen Lakes system has background levels of cadmium, zinc, lead and copper. As the majority of metals was present in geochemically more stable sediment phases, the sequential extractions provided limited additional information on trace metal bioavailability.  相似文献   

7.
We have used accumulated metal concentration data to investigate variability in the bioavailabilities of cadmium, copper, lead, zinc and iron to the amphipod Gammarus fossarum inhabiting the Biala Przemsza river system draining an area of lead and zinc mining. The highest bioavailabilities of most of the metals were found in a stream carrying water from mine drainage and flotation processes. Significant amounts of bioavailable cadmium entered via another stream receiving waters from ore processing. The bioavailabilities of copper varied little, indicating the lack of a local point source of entry. All metals other than copper showed seasonal variations with the highest concentrations recorded in October. Comparative data show the Biala Przemsza system to be contaminated with cadmium, lead, zinc and iron. The data presented exemplify metal concentration ranges in G. fossarum inhabiting industrial areas, and can be used as a reference for future surveys involving this species in Central Europe.  相似文献   

8.
Two continuous‐flow bench‐scale bioreactor systems populated by mixed communities of acidophilic sulfate‐reducing bacteria were constructed and tested for their abilities to promote the selective precipitation of transition metals (as sulfides) present in synthetic mine waters, using glycerol as electron donor. The objective with the first system (selective precipitation of copper from acidic mine water containing a variety of soluble metals) was achieved by maintaining a bioreactor pH of ~2.2–2.5. The second system was fed with acidic (pH 2.5) synthetic mine water containing 3 mM of both zinc and ferrous iron, and varying concentrations (0.5–30 mM) of aluminium. Selective precipitation of zinc sulfide was possible by operating the bioreactor at pH 4.0 and supplementing the synthetic mine water with 4 mM glycerol. Analysis of the microbial populations in the bioreactors showed that they changed with varying operational parameters, and novel acidophilic bacteria (including one sulfidogen) were isolated from the bioreactors. The acidophilic sulfidogenic bioreactors provided ‘proof of principle’ that segregation of metals present in mine waters is possible using simple online systems within which controlled pH conditions are maintained. The modular units are versatile and robust, and involve minimum engineering complexity.  相似文献   

9.
Separation of heavy metals from water solutions at the laboratory scale   总被引:1,自引:0,他引:1  
Separation of heavy metals from water may be done by sulphide precipitation. In order to make the metal sulphides more valuable for reuse, they should be as pure as possible. To separate the metals from each other during the precipitation process different parameters as pH, sulphide concentration and redox potential may be controlled. Adjustment of the redox potential to specific values results in separation of copper from cadmium even at the same pH. In the copper precipitation step 98.7 +/- 0.5% was precipitated and the remaining part was transferred to the cadmium precipitation step where 0.7 +/- 0.5% of the copper precipitated. The main part of cadmium (95.6 +/- 1.3%) was precipitated in the second step. These results show that it is possible to separate copper from cadmium by the use of redox potential control.  相似文献   

10.
Sediment bioassays with larvae of the midge, Chironomus tentans, were used to evaluate influences on the bioavailability and toxicity of copper (Cu) in sediments with a wide range of concentrations of metals, acid-volatile sulfide (AVS), and other physicochemical characteristics. Sediments were collected from sixteen lakes in Michigan, USA, and from twelve sites in the Clark Fork River drainage of Montana, USA, which are contaminated with metals from mining activities and from other anthropogenic sources. Bioassays with C. tentans larvae were conducted for ten days in a static-renewal test system, with endpoints of survival, growth, and metal bioaccumulation. Bioaccumulation of copper (Cu) was strongly correlated with Cu concentrations in porewater, and was increased significantly at Cu concentrations less than those affecting growth or survival. Midge survival and growth were not significantly correlated with concentrations of Cu in sediment or porewater, and were poorly predicted by ratios of acid-extractable metals to AVS in sediments. Principal components analysis indicated that Cu concentrations in porewater and bioaccumulation of Cu by midge larvae were influenced by AVS, sediment organic carbon, and porewater pH, and that toxicity was associated with high concentrations of Cu, high concentrations of zinc (Zn) and ammonia. No toxicity was observed in several sediments which contained low concentrations of AVS and high concentrations of Cu and Zn. In sediments which contain little AVS, bioavailability of metals may be controlled by constituents other than sulfides, such as organic matter and metal hydrous oxides. These results indicate that assessments of toxicity in metal-contaminated sediments should evaluate the importance of metal-binding phases other than sulfides, and the possible contributions of ammonia or other toxicants to toxicity in sediment bioassays.The U.S. Government right to retain a non-exclusive, royalty-free licence in and to any copyright is acknowledged.  相似文献   

11.
Four different experimental approaches were used to evaluate the microbiological leaching of ore material containing metal sulfides (Fe, Zn, Ni, Cu, Co) and aluminum silicates. A shake flask technique required the shortest contact time for the complete solubilization of the most readily leachable metals (Ni and Zn). Air-lift reactors and aerated column reactors required longer contact times and complete solubilization of either zinc or nickel was not achieved. The air-lift reactor approach was somewhat more effective than the aerated slurry technique. A percolation system was the least effective and yielded the lowest recoveries. Shake flasks (easily autoclavable) offered the advantage of comparison of the microbiological and solely chemical leaching. Aseptic conditions could not be maintained with the air-lift and aerated column reactors because of contamination via aerosol formation. In a relative scale the leaching patterns were similar in that the precipitation of Fe(III) occurred regardless of the technique; zinc and nickel sulfides were solubilized more quantitatively than those of copper and cobalt; aluminum concentrations, although high, indicated low leaching yields relative to aluminum silicates in the ore material; and the pH reached similar final values in the presence of bacteria.  相似文献   

12.
Tinto River (Huelva, Spain) is a natural acidic rock drainage (ARD) environment produced by the bio-oxidation of metallic sulfides from the Iberian Pyritic Belt. This study quantified the abundance of diverse microbial populations inhabiting ARD-related sediments from two physicochemically contrasting sampling sites (SN and JL dams). Depth profiles of total cell numbers differed greatly between the two sites yet were consistent in decreasing sharply at greater depths. Although catalyzed reporter deposition fluorescence in situ hybridization with domain-specific probes showed that Bacteria (>98%) dominated over Archaea (<2%) at both sites, important differences were detected at the class and genus levels, reflecting differences in pH, redox potential, and heavy metal concentrations. At SN, where the pH and redox potential are similar to that of the water column (pH 2.5 and +400 mV), the most abundant organisms were identified as iron-reducing bacteria: Acidithiobacillus spp. and Acidiphilium spp., probably related to the higher iron solubility at low pH. At the JL dam, characterized by a banded sediment with higher pH (4.2 to 6.2), more reducing redox potential (-210 mV to 50 mV), and a lower solubility of iron, members of sulfate-reducing genera Syntrophobacter, Desulfosporosinus, and Desulfurella were dominant. The latter was quantified with a newly designed CARD-FISH probe. In layers where sulfate-reducing bacteria were abundant, pH was higher and redox potential and levels of dissolved metals and iron were lower. These results suggest that the attenuation of ARD characteristics is biologically driven by sulfate reducers and the consequent precipitation of metals and iron as sulfides.  相似文献   

13.
Summary The influence of heavy metal additions on availability and uptake of cadmium, lead, zinc, copper, manganese and iron by oat was studied. The experiments were carried out as pot experiments using sandy loam, sandy soil and organic soil. Selective extractants were used to remove metals held in different soil fractions.Lead and copper were preferently bound by organics and oxides, zinc by oxides and inorganics, and cadmium by inorganics and organics.Addition of cadmium to the soils resulted in higher cadmium concentrations in all plant parts but lower concentrations of lead, zinc, copper, manganese and iron, and the accumulation indexes of these metals were also lower when cadmium was added to the soil.Addition of cadmium plus lead, zinc and copper resulted in higher cadmium concentrations in leaves and straw of plants grown in sandy loam and sandy soil, but lower concentrations when plants were grown in organic soil as compared with the results when cadmium was added separately. The transfer of cadmium, lead, zinc and copper from soil to plant was greatest from sandy soil, and zinc and cadmium were more mobile in the plant than were lead and copper.Cadmium concentrations in leaves correlated significantly with CaCl2 and CH3COOH extractions in sandy loam and sandy soil and with CH3COOH extractions in organic soil.Generally, the total metal uptake was lowest from organic soil.  相似文献   

14.
Bioleaching of heavy metals from contaminated soil was carried out using indigenous sulfur oxidizing bacterium Acidithiobacillus thiooxidans. Experiments were carried out by varying sulfur/soil ratio from 0.03 to 0.33 to evaluate the optimum ratio for efficient bioleaching of heavy metals from soil. The influence of sulfur/soil ratio on the bioleaching efficiency was assessed based on decrease in pH, increase in oxidation–reduction potential, sulfate production and solubilization of heavy metals from the soil. Decrease in pH, increase in oxidation–reduction potential and sulfate production was found to be better with the increase in sulfur/soil ratio. While the final pH of the system with different sulfur/soil ratio was in the range of 4.1–0.7, oxidation reduction potential varied from 230 to 629 mV; sulfate production was in the range of 2,786–8,872 mg/l. Solubilization of chromium, zinc, copper, lead and cadmium from the contaminated soil was in the range of 11–99%. Findings of the study will help to optimize the ratio of sulfur/soil to achieve effective bioleaching of heavy metals from contaminated soils.  相似文献   

15.
Heavy metal levels of cadmium, copper, mercury, manganese, and zinc were examined in the mummichog, Fundulus heteroditus from industrialized and non-industrialized environments. With one exception, the environment with the highest trace metal in its waters, had the fishes with the highest metal concentration. Except for mercury, the concentration factor varied inversely with the metal concentrations of the fish and water, suggesting a possible regulatory mechanism for metals in the tissues of mummichogs from environments with high metal concentrations. There was an inverse relationship between standard length and concentrations of zinc, manganese, copper and cadmium in whole male and female fishes. The viscera contained significantly greater concentrations of these metals than somatic muscle tissue. There were also significant differences between males and females with respect to whole-body zinc and copper concentrations, but no sex differences for manganese and cadmium.  相似文献   

16.
Understanding relationships between cationic metals such as cadmium, copper, nickel, lead and zinc, and amorphous iron sulfides, measured as acid volatile sulfide (AVS), is key to predicting metal bioavailability and toxicity insediments. The objective of the present study was to assess seasonal and spatial variations of AVS in freshwater sediments contaminated with zinc. Sediments were sampled from three streams with varying levels of zinc contamination at two different times, March and June of 1995, representing cold- and warm-weather situations. Interstitial (pore) water concentrations of zinc, and solid phase concentrations of AVS and zinc were measured in surficial and deep sediment horizons. Toxicity tests (10-d) with the amphipodHyalella azteca were conducted using intact cores. Sediment zinc concentrations from six sites within the primary test stream differed by about five-fold, and also varied seasonally. Acid volatile sulfide concentrations were generally lower than those of zinc, and pore water zinc concentrations typically were elevated. There was a positive correlation between solid-phase AVS and zinc concentrations, suggesting that the system was dominated by zinc, as opposed to iron sulfides. In contrast to expectations arising from some studies of seasonal variations of AVS in iron-dominated systems, AVS concentrations were smaller in June than in March. However, this was likely due to a major storm event and associated sediment scouring before the June sampling, rather than to seasonal processes related to variations in temperature and dissolved oxygen. Based upon an indirect analysis of depth variations in AVS, there was some indication that zinc sulfide might be less prone to oxidation than iron sulfide. There was a strong correlation between toxicity of the sediment samples toH. azteca and interstitial water concentrations of zinc; however, the possible contribution of other contaminants to sediment toxicity cannot be dismissed.  相似文献   

17.
The leachability of metals from fly ash produced by a coal‐fired electric plant and a municipal waste incinerator under acidic conditions was experimentally investigated. The results of these column‐leaching experiments show that a decrease in the pH of the leachant favors the extraction of metal ions from solid particles of both coal combustion fly ash and municipal waste incinerator fly ash. The significant increase in the extraction of cadmium, chromium, zinc, lead, mercury, and silver ions from the ash is attributed to the instability of the mineral phases that contain these metals under acidic conditions.  相似文献   

18.
Summary The concentrations of zinc, cadmium, lead and copper have been determined in the hepatopancreas, hindgut and rest of the body tissues of Oniscus asellus collected from eight sites in the U.K. The hepatopancreas is by far the most important storage organ of heavy metals, particularly cadmium, and at each site, contains a mean of at least 89% of the total body load of this element. Specimens of Oniscus asellus from contaminated sites may contain concentrations of zinc, cadmium, lead and copper in the hepatopancreas of about 1%, 0.5%, 2.5% and 3% of the dry weight respectively, which are among the highest so far recorded in the soft tissues of any animal.There is a significant positive correlation between the mean relative dry weight of the hepatopancreas of Oniscus asellus and the concentrations of zinc or cadmium in leaf litter from all eight sites. It is suggested that animals from sites which are contaminated heavily with zinc or cadmium have a large hepatopancreas because this enables them to de-toxify a greater amount of the metal.  相似文献   

19.
Heavy metal resistance by bacteria is a topic of much importance to the bioremediation of contaminated soils and sediments. We report here the isolation of a highly cadmium-resistant Klebsiella planticola strain, Cd-1, from reducing salt marsh sediments. The strain grows in up to 15 mM CdCl(2) under a wide range of NaCl concentrations and at acidic or neutral pH. In growth medium amended with thiosulfate, it precipitated significant amounts of cadmium sulfide (CdS), as confirmed by x-absorption spectroscopy. In comparison with various other strains tested, Cd-1 is superior for precipitating CdS in cultures containing thiosulfate. Thus, our results suggest that Cd-1 is a good candidate for the accelerated bioremediation of systems contaminated by high levels of cadmium.  相似文献   

20.
Metal cofactors are required for many enzymes in anaerobic microbial respiration. This study examined iron, cobalt, nickel, copper, and zinc in cellular and abiotic phases at the single-cell scale for a sulfate-reducing bacterium (Desulfococcus multivorans) and a methanogenic archaeon (Methanosarcina acetivorans) using synchrotron X-ray fluorescence microscopy. Relative abundances of cellular metals were also measured by inductively coupled plasma mass spectrometry. For both species, zinc and iron were consistently the most abundant cellular metals. M. acetivorans contained higher nickel and cobalt content than D. multivorans, likely due to elevated metal requirements for methylotrophic methanogenesis. Cocultures contained spheroid zinc sulfides and cobalt/copper sulfides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号