首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chloroplasts were prepared from peas (Pisum sativum) in glucose-phosphate medium. In the presence of dl-glyceraldehyde, they catalyzed nitrite-dependent O2 evolution (mean of 13 preparations, 17.5 μmole per mg chlorophyll per hour, sd 3.64). The optimum concentration of nitrite was 0.5 mm; 0.12 mm nitrite supported Vmax/2. The reaction was accompanied by the consumption of nitrite; 55 to 80% of the nitrite-N consumed was recovered as ammonia. In short experiments (less than 10 minutes) the O2 to nitrite ratio approached 1.5, but thereafter decreased. There was no nitrite-dependent O2 evolution with chloroplasts from plants grown without added nitrate but such chloroplasts could assimilate ammonia at about the usual rate. The results are consistent with the reduction of nitrite to ammonia involving nitrate-induced nitrite reductase and a reductant generated by the chloroplast electron transport chain.  相似文献   

2.
A Light-dependent Protein Kinase Activity of Chloroplasts   总被引:4,自引:2,他引:2       下载免费PDF全文
A protein kinase activity from spinach chloroplasts, tightly associated with the thylakoid membranes, has been solubilized and partially characterized. This membrane-bound protein kinase is stimulated by light and electron transport activity through photosystem II appears to be required for stimulation.  相似文献   

3.
Disalicylidenepropanediamine (DSPD) at 0.1 to 1 mm levels inhibited light-dependent (14)CO(2) assimilation in intact spinach chloroplasts about 50 to 80%, and this inhibition was accompanied by an increased ratio of (14)C-glycerate 3-phosphate to (14)C-glyceraldehyde 3-phosphate. Enzymatic analysis established that DSPD also inhibited the light-dependent reduction of glycerate 3-phosphate in intact spinach chloroplasts. DSPD at 0.5 mm did not inhibit ribose 5-phosphate isomerase, ribulose 5-phosphate kinase, glycerate 3-phosphate kinase, NADP(+)-linked glyceraldehyde 3-phosphate dehydrogenase or ribulose 1,5-diphosphate carboxylase. The inhibition of chloroplast (14)CO(2) assimilation by DSPD appeared to be related to the inhibition of the photosynthetic electron transport chain. These observations are consistent with experimental results which demonstrated that DSPD inhibited directly the chloroplast lamellar membrane-mediated, light-dependent reduction of ferredoxin (Trebst, A. and M. Burba, 1967, Z. Pflanzenphysiol. 57: 419-433 and Ben-Amotz, A. and M. Avron, 1972, Plant Physiol. 49: 244-248).  相似文献   

4.
The inorganic sulfane tetrathionate (-O3SSSSO3-) resembles glutathione trisulfide (GSSSG) in that it remarkably activates the reduction of cytochrome c by GSH, both under aerobic and anaerobic conditions. These observations can be explained by the formation of the persulfide GSS-, due to nucleophilic displacements of sulfane sulfur. The GSS- species has previously been proposed to act as a chain carrier in the catalytic reduction of cytochrome c, and perthiyl radicals GSS·, formed in the reduction step, were thought to recycle to sulfane via dimerization to GSSSSG.2 The present study provides some arguments in favour of a chain mechanism involving the GSS· + GS- ⇄ (GSSSG)- equilibrium and sulfane regeneration by a second electron transfer from (GSSSG)· - to cytochrome c.

Thiosulfate sulfurtransferase (rhodanese) is shown to act as a cytochrome c reductase in the presence of thiosulfate and GSH, and again the generation of GSS- can be envisaged to explain this result.  相似文献   

5.
This paper reports inhibition of Na+ + K+-stimulated, ouabain-inhibited adenosine triphosphatase (S-ATPase) in sheep red cell membranes by oxidized glutathione (GSSG). The results are consistent with the hypothesis that this inhibition depends upon the formation of a mixed disulfide between glutathione and -SH group(s) in the enzyme protein. Thus, inhibition of S-ATPase by GSSG proceeds more rapidly at alkaline than at neutral pH and is reversed by the addition of an excess of a compound containing reduced -SH groups (e.g. dithiothreitol). ATP protects S-ATPase against inhibition by GSSG and this protection depends on both the monovalent and divalent cation composition of the medium. Protection by ATP is more complete in the presence of K+ than in the presence of Na+.  相似文献   

6.
7.
8.
Barr R  Crane FL 《Plant physiology》1981,67(6):1190-1194
Ferricyanide can be reduced in Photosystem II of spinach chloroplasts at 2 separate sites, both of which are sensitive to 3-(3,4-dichlorophenyl)-1,1-dimethylurea, but only one of which is sensitive to dibromothymoquinone. Data presented in this paper emphasize ferricyanide site II of Photosystem II, which is sensitive to thiol inhibition and may reflect a cyclic pathway around Photosystem II. Ferricyanide reduction sites 1 and 2 also differ from each other in fractions isolated from discontinuous sucrose gradients, from fragmented chloroplasts, and upon trypsin treatment. Sucrose density gradient centrifugation shows that ferricyanide reduction site 1 activity at pH 6 decreases from 30 to 50% in various isolated fractions, while the dibromothymoquinone-insensitive activity at pH 8 (site 2) is stimulated from 15 to 35%.  相似文献   

9.
Arguments are given for a ferredoxin-mediated reduction of TcO4, preponderantly into extractable Tc(V) complexes, by illuminated, broken chloroplasts. Photosynthetic O2- and NADP-reduction competitively inhibit Tc incorporation. As for O2, the reaction can be stimulated by the auto-oxidizable electron acceptor methyl viologen. Furthermore TcO4 can function as terminal acceptor in the diaphorase reaction, with NADPH as electron donor.  相似文献   

10.
Nitrite reduction in either whole, isolated spinach chloroplasts (Spinacia oleracea L.) or in reconstituted spinach chloroplasts is stimulated by a short period of photosynthetic CO2 fixation in the light prior to nitrite addition. With reconstituted chloroplasts, a similar stimulation can be obtained in nitrite reduction without CO2 fixation by the addition of dihydroxyacetone phosphate or fructose 6-phosphate. Specific intermediate metabolites of the photosynthetic carbon reduction cycle may have a regulatory role in nitrite reduction in chloroplasts in the light.  相似文献   

11.
Summary The effect of glucose and the uncoupler Cl-CCP upon hydrogen production was studied in adapted cells of Scenedesmus obliquus D3. Cl-CCP at 10-5M concentration completely inhibited the evolution of H2 in the dark and increased the apparent rate of H2 evolution in the light. At 10-5M Cl-CCP, photosynthesis and photoreduction by anaerobically adapted algae were only temporarily inhibited; O2 evolution reappeared after approximately 1 hr of illumination if CO2 was present. Increasing the Cl-CCP concentration to 5 x 10-5M led to a maximum rate of photohydrogen production and fully inhibited H2 evolution, photoreduction and dark H2 evolution. H2 evolution was accompanied by a release of varying amounts of CO2 in the light, as well as in the dark. Dark CO2 production was stimulated by Cl-CCP. H2 evolution in the light was stimulated by adding glucose to autotrophically grown cells or by growing the cells heterotrophically with glucose; starvation had an opposite effect. Adapted cells released 14CO2 from the 3 and/or 4 position of specifically labeled glucose, indicating that degradation occurred via the Embden-Meyerhof pathway. The amount of H2 released by autotrophically grown cells was the same either with continuous illumination or with short periods of light, followed by darkness. Scenedesmus mutant No. 11, which is unable to evolve O2 was not inhibited in its capacity to evolve H2 in the light. These data indicate that the evolution of H2 in the light by adapted Scenedesmus depends upon the degradation of organic material and does not require the production of free O2 by photosystem II.The following abbreviations are used: Cl-CCP = carbonyl cyanide m-chlorophenylhydrazone; DCMU = 3-(3,4-dichlorophenyl)-1,1-dimethylurea, DNP = 2,4-dinitrophenol.This work was supported by contract AT-(40-1)-2687 from the U.S. Atomic Energy Commission.  相似文献   

12.
13.
14.
15.
A method for determination of the redox level of plastoquinoneA in spinach chloroplasts is described. Plastoquinone A andits reduced form plastoquinol A were extracted from chloroplastson a sample-preparation cartridge (SEP-PAK C18 Cartridge, WatersAssoc. Inc.) with a mixture of ethanol and diethyl ether ( 1: 1, vv). Extracts were separated by reversed-phase high-performanceliquid chromatography and examined with an electrochemical detectorequipped with dual electrodes. Plastoquinone A was determinedby its reductive current on one electrode, and plastoquinolA by its oxidative current on the other electrode. This method was applied to the determination of the redox potentialof plastoquinone A in chloroplasts. The midpoint potential atpH 7.8 of plastoquinone A was +20 mV with an n number of 2. (Received March 30, 1987; Accepted August 3, 1987)  相似文献   

16.
Jin  Ming-Xian  Mi  Hualing 《Photosynthetica》2002,40(2):161-164
Kinetics of non-photochemical reduction of the photosynthetic intersystem electron transport chain by exogenous NADPH was examined in osmotically lysed spinach chloroplasts by chlorophyll (Chl) fluorescence measurements under anaerobic condition. Upon the addition of NADPH, the apparent F0 increased sigmoidally, and the value of the maximal slope was calculated to give the reduction rate of plastoquinone (PQ) pool. Application of 5 µM antimycin A lowered significantly both the ceiling and the rate of the NADPH-induced Chl fluorescence increase, while the suppressive effect of 10 µM rotenone was slighter. This indicated that dark reduction of the PQ pool by NADPH in spinach chloroplasts under O2-limitation condition could be attributed mainly to the pathway catalysed sequentially by ferredoxin-NADP+ oxidoreductase (FNR) and ferredoxin-plastoquinone reductase (FQR), rather than that mediated by NAD(P)H dehydro- genase (NDH).  相似文献   

17.
外源GSH对盐胁迫下水稻叶绿体活性氧清除系统的影响   总被引:6,自引:0,他引:6  
研究了外源GSH对盐胁迫下耐盐性不同的水稻品种Pokkali(耐盐)和Peta(盐敏感)叶绿体中抗氧化酶活性和抗氧化剂含量的影响.结果表明:盐胁迫下,外源GSH可以提高水稻叶绿体中活性氧清除系统中SOD、APX、GR的活性以及AsA、GSH的含量,降低叶绿体中H2O2和MDA的含量,从而降低了叶绿体膜脂过氧化的水平,缓解盐胁迫对叶绿体膜的伤害.外源GSH对盐胁迫下盐敏感品种Peta叶绿体中上述指标增加或减少的幅度大于耐盐品种Pokkali.  相似文献   

18.
A rapid, and sensitive high performance liquid chromatographymethod for quantifying both the reduced and oxidized forms ofglutathione simultaneously in woody plant tissues is reported.Samples were extracted in 10% perchloric acid with 1 mM bathophenanthrolinedisulfonic acid, homogenized, and centrifuged. The supernatantwas carboxy-methylated with iodoacetic acid, and derivatizedwith 2,4-dinitro-l-fluorobenzene. A 3-aminopropyl-Spherisorbcolumn was used, for separations. Dinitrophenol derivativeswere detected at 365 nm. The retention times were 13.9 min and15.1 min and the lowest limits of detection were 10 pmol and5 pmol for reduced and oxidized glutathione, respectively. This HPLC method was applicable to a variety of woody plantspecies and different tissues. Total glutathione content inthe bark tissue of seven of the woody plant species tested werelower during the period of active plant growth, and higher duringthe dormant stage. Such change was not observed in grape. Reducedglutathione always represented a high percentage of the totalglutathione. All tested tissues of peach plants contained glutathione.The highest and lowest levels were found in the leaves and roots,respectively. Both cherry and sugar pine seeds contained highlevels of reduced glutathione. 1Oregon Agricultural Experiment Station Technical paper No.9560. (Received April 3, 1991; Accepted August 17, 1991)  相似文献   

19.
20.
Sonicated chloroplasts in the presence of catalytic concentrations of NADP(H) and GSSG supported light-dependent reduction of SeO32? with the  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号