首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The diffusivities of glucose and ethanol in cell-free and cell-occupied membranes of calcium alginate were measured in a diffusion cell. The lag time analysis was used. Diffusivities decreased with increasing alginate concentration and were comparable with those in water for a 2% alginate membrane. Glucose and ethanol concentrations had no effect on the respective diffusion coefficients. The ratio of ethanol diffusivity to glucose diffusivity in 2 and 4% alginate agreed closely with the inverse ratio of the hydrodynamic raii for the two molecules in water, indicating that the hydrodynamic theory of diffusion in liquids may be applicable to diffusion in dilute alginate gels. Also, the presence of 20% dead yeast cells had no effect on the diffusivities. The data reported can be used to study reaction and diffusion in immobilized cell reactors and cell physiology under immobilized conditions.  相似文献   

2.
Recovery of copper and cobalt by biopolymer gels   总被引:1,自引:0,他引:1  
The recovery of copper from synthetic aqueous media circulating in a loop fluidized bed reactor operated batchwise was investigated by using the following biopolymer systems: (1) a viscous solution of sodium alginate (from kelp) dispensed directly into the reactor fluid containing dissolved copper (sulfate salt) at initial concentrations of 60-200 ppm, (2) partially coagulated calcium alginate spheres for absorbing dissolved copper at initial concentrations of 10-40 ppm, and (3) a mixture of green algae Microcystis and sodium alginate dispensed directly into the reactor fluid. The recovery of copper and cobalt, a strategic metal, from cobalt ore leachate was achieved by a two-step approach: direct dispensing of sodium alginate to absorb the bulk of metals followed by the addition of partially coagulated calcium alginate spheres to "polish" the leachate. Metal binding capacity and conditional stability constant of each biopolymer system as well as the effective diffusivity of cupric ion in the matrix of biopolymer gels are reported.  相似文献   

3.
采用非稳态法测定FeSO4在包埋和未包埋氧化亚铁硫杆菌的凝胶中的有效扩散系数。结果表明,FeSO4在凝胶中的有效扩散系数De随着海藻酸钠浓度的升高而降低,当海藻酸钠浓度为2%时最优;凝胶剂CaCl2的浓度对扩散系数的影响较小。包埋的氧化亚铁硫杆菌在10h达到增殖平衡,而FeSO4在包埋细菌的凝胶内扩散系数明显减少。  相似文献   

4.
Diffusion characteristics of calcium alginate gels.   总被引:3,自引:0,他引:3  
The diffusivity of a protein solute (bovine serum albumin) within calcium alginate gels made from sodium alginate of different guluronic acid content was determined. It was found that protein diffusion within alginate gels, prepared to be isotropic in structure, was greatest for gels prepared from sodium alginate of low guluronic acid content as opposed to those prepared from sodium alginate of high guluronic acid content. This finding was explained in terms of the difference in flexibility of the polymer backbone of the two alginates. The greater the polymer backbone flexibility, the greater the solute diffusivity within the gel.  相似文献   

5.
The diffusivity of several monosaccharides and disaccharides in calcium alginate gels was determined using a specially designed diaphragm cell. The diffusion coefficients of the tested sugars are 4 to 18% smaller in alginate gel than in water and, with the exception of fructose, this difference increases with increasing sugar molecular weight. Also the position of the carbonyl group seems to be determined in the value of the diffusion coefficient - ketoses have lower diffusion coefficients than aldoses.  相似文献   

6.
The effective diffusivity of O2 inside immobilised cell particles has been much discussed. Most reported estimates are based on fitting a mass-transfer reaction model to measured total oxygen uptake rates. The particle diameter has the largest single influence in such models, but its accurate measurement has probably recieved insufficient attention. We have studied sorbitol and glucose oxidation by cells of Gluconobacter suboxydans entrapped in calcium alginate gel beads. These beads were found to shrink rapidly in air, so that size measurement under water is essential. By comparison with rigid particles of similar known size, it was shown that measurement of the microscopic image gives a systematic underestimate. In consequence, the fitted oxygen diffusivity will be around 20% too low. Careful attention to size measurement gave good agreement between diffusivity estimates from beads with different mean sizes and cell loadings, with a best value of 2.51 × 109 m2s–1, 92% of the value for pure water. The estimated diffusivity is not significantly affected by a distribution of bead sizes with up to 10% standard deviation about the same mean.  相似文献   

7.
The diffusivity of Cu(2+) in calcium alginate beads calculated by the shrinking core model (SCM) was reevaluated in this work. The results obtained in this work were significantly different than those by the original authors. There were excellent agreements between the results obtained by the SCM in this work and those by the more rigorous linear absorption model (LAM) by the original authors. (c) 1994 John Wiley & Sons, Inc.  相似文献   

8.
The overall diffusion coefficients for several low molecular weight solutes, such as glucose, fructose, sucrose, lactose, and vitamin B(12) have been determined in Ca-alginate membrane liquid-core capsules using the unsteady-state method following the release of solutes from the capsules to a well-stirred solution of limited volume. The diffusion coefficients obtained for saccharides were 5-20% lower than the corresponding diffusivity in water while for vitamin B(12) about 50% that of water. The diffusion coefficients of the investigated capsules were not influenced by the change in alginate concentration in the capsule membrane from 0.5 to 1.0%. Lower diffusivities and higher deviations from the diffusivity in water were obtained for higher molecular weight solutes.  相似文献   

9.
The diffusion characteristics of sucrose, a nutrient, and yohimbine, a secondary metabolite, in alginate gel beads, with or without entrapped periwinkle (Catharanthus roseus) or apple (Malus domestica) cells, were investigated. Effective diffusivities of both solutes in the gel beads were determined by two different methods from transient concentration changes in well-stirred solutions where the beads were suspended. The linear plot method developed in this work is easy to use and requires no data from the initial periods of diffusion experiments. It was found that while the cell-free beads provided only minor diffusional resistance to both solutes, the effective diffusivities of both solutes decreased significantly with the presence of cells in the beads and the amount of reduction was proportional to the amount of cell loading. Further, the effective diffusivity of sucrose appeared to be slightly larger than that of yohimbine under identical conditions. It was also observed that permeabilization of apple cells with dimethyl sulfoxide (DMSO) led to an increase in effective diffusivity with the effect being more significant for yohimbine.  相似文献   

10.
A microscopic technique has been developed to obtain the protein profiles inside calcium alginate gel. To do this, the diffusion of BSA, previously marked with FITC, inside calcium alginate beads was observed using confocal laser microscopy, thus obtaining the spatio-temporal evolution of the protein concentration. The technique, however, presents certain limitations and zones where it is impossible to obtain experimental data. Wavelets analysis, commonly used in signal processing and statistics, was employed to reconstruct and subsequently analyse the experimental results. Once the diffusion model was defined, the substrate profiles obtained were used to calculate a diffusivity value for BSA in alginate gel. Received 09 February 1999/ Accepted in revised form 14 May 1999  相似文献   

11.
The effective diffusivity of galactose was measured for calcium alginate gel membranes containing immobilized live Zymomonas mobilis cells at concentrations ranging from 0 to 150 g dry wt/L of gel. Since galactose is not taken up by living Z. mobilis organisms, the diffusion of this representative six-carbon sugar could be studied independently of sugar consumption. Various immobilized biomass loadings were achieved by two different techniques: addition of biomass at known concentrations to the sodium alginate solution before membrane formation and growth of cells in the gel to various biomass concentrations. The highest immobilized cell concentration, attained by in situ growth, corresponds to the maximum of this system, as growth beyond this maximum concentration led to disintegration of the gel membrane. The galactose effective diffusivity measurements for both methods of immobilized cell loading overlap within experimental error and follow the same general monotonic decline with entrapped biomass concentration. Most of the data fall below the upper bound predicted by Hashin and Shtrikman (1962) and show good agreement with the random pore model of Wakao and Smith (1962, 1964). Available effective diffusivity data from the literature provide evidence that the random pore model is an excellent predictor of sugar effective diffusivity in gel immobilized cell systems in general.  相似文献   

12.
A gene for a polyMG-specific alginate lyase possessing a novel structure was identified and cloned from Stenotrophomas maltophilia KJ-2 by using PCR with homologous nucleotide sequences-based primers. The recombinant alginate lyase consisting of 475 amino acids was purified on Ni-Sepharose column and exhibited the highest activity at pH 8 and 40?°C. Interestingly, the recombinant alginate lyase was expected to have a similar catalytic active site of chondroitin B lyase but did not show chondroitin lyase activity. In the test of substrate specificity, the recombinant alginate lyase preferentially degraded the glycosidic bond of polyMG-block than polyM-block and polyG-block. The chemical structures of the degraded alginate oligosaccharides were elucidated to have mannuronate (M) at the reducing end on the basis of NMR analysis, supporting that KJ-2 polyMG-specific alginate lyase preferably degraded the glycosidic bond in M-G linkage than that in G-M linkage. The KJ-2 polyMG-specific alginate lyase can be used in combination with other alginate lyases for a synergistic saccharification of alginate.  相似文献   

13.
It has been previously demonstrated that calcium alginate gels prepared by dialysis often exhibit a concentration inhomogeneity being the polymer concentration considerably lower in the center of the gel than at the edges. Inhomogeneity may be a preferred structure in microcapsules due to low porosity and higher stability so that it is interesting to evaluate the polymer gradient in spherically symmetrical small alginate beads (1.0-0.7 mm diameter) obtained in different conditions. In this paper, two complementary techniques have been used to investigate this aspect. The concentration gradient of alginate has been analyzed by measuring both the spatial distribution of calcium ions in sections of alginate gel spheres, by means of x-ray fluorescence spectroscopy, and the T2 relaxation behavior on intact gel beads using magnetic resonance microimaging. The experimentally determined gradients from three-dimensional gels provide data to reevaluate the parameter estimates in the recently reported mathematical model for alginate gel formation (A. Mikkaelsen and A. Elgsaeter, Biopolymers, 1995, Vol. 36, pp. 17-41). The model may account for the gels being less inhomogeneous when nongelling sodium or magnesium ions are added during gelation.  相似文献   

14.
A mathematical model which describes ethanol production in a packed bed fermenter containing. Zymomonas mobilis entrapped in small spheres of calcium alginate within a packed bed fermenter has been developed. The equations combine simultaneous diffusion and reaction as well as a complex flow pattern to calculate glucose and ethanol profiles in the column type reactor. As part of the study, diffusivity values for glucose and ethanol in cell-loaded calcium alginate were determined. Also a freecell kinetic expression for Z. mobilis at 33 degrees C and ph 6.0 was developed. Comparison of the model with actual experimental results were made showing average deviations of ca. 30-40%.  相似文献   

15.
A mathematical model is proposed to analyze the mass transfer limitations in phenol biodegradation using Pseudomonas putida immobilized in calcium alginate. The model takes into account internal and external mass transfer limitations, substrate inhibition kinetics and the dependence of the effective diffusivity of phenol in alginate gel on cell concentration. The model is validated with the experimental data from batch fermentation. The effect of various operating conditions such as initial phenol concentration, initial cell loading, alginate gel loading on the biodegradation of phenol is experimentally demonstrated. Phenol degradation time is found to decrease initially and reach stationary value with increase in cell loading as well as gel loading. The model predicts these trends reasonably well and shows the presence of external mass transfer limitations. A new concept of effectiveness factor is introduced to analyze the overall performance of batch fermentation.  相似文献   

16.
We previously reported the isolation and cDNA cloning of an endolytic alginate lyase, HdAly, from abalone Haliotis discus hannai [Carbohydr. Res.2003, 338, 2841-2852]. Although HdAly preferentially degraded mannuronate-rich substrates, it was incapable of degrading unsaturated oligomannuronates smaller than tetrasaccharide. In the present study, we used conventional chromatographic techniques to isolate a novel unsaturated-trisaccharide-degrading enzyme, named HdAlex, from the digestive fluid of the abalone. The HdAlex showed a molecular weight of 32,000 on SDS-PAGE and could degrade not only unsaturated trisaccharide but also alginate and mannuronate-rich polymers at an optimal pH and temperature of 7.1 and 42 degrees C, respectively. Upon digestion of alginate polymer, HdAlex decreased the viscosity of the alginate at a slower rate than did HdAly, producing only unsaturated disaccharide without any intermediate oligosaccharides. These results indicate that HdAlex degrades the alginate polymer in an exolytic manner. Because HdAlex split saturated trisaccharide producing unsaturated disaccharide, we considered that this enzyme cleaved the alginate at the second glycoside linkage from the reducing terminus. The primary structure of HdAlex was deduced with cDNAs amplified from an abalone hepatopancreas cDNA library by the polymerase chain reaction. The translational region of 822 bp in the total 887-bp sequence of HdAlex cDNA encoded an amino-acid sequence of 273 residues. The N-terminal sequence of 16 residues, excluding the initiation methionine, was regarded as the signal peptide of this enzyme. The amino-acid sequence of the remaining 256 residues shared 62-67% identities with those of the polysaccharide lyase family-14 (PL14) enzymes such as HdAly and turban-shell alginate lyase SP2. To our knowledge, HdAlex is the first exolytic oligoalginate lyase belonging to PL14.  相似文献   

17.
Diffusion of proteases from Bacillus subtilis and Serratia marcescens within calcium alginate beads has been assayed, and the experimental data fitted into a mathematical model for diffusion into a finite volume liquid medium. Values of effective diffusivity were calculated for the studied proteases and compared with the available data in the literature for molecules of lower molecular weight.  相似文献   

18.
Biocompatible capsules consisting of a liquid starch core with calcium alginate membranes have been developed and their formulation conditions were chosen on the basis of membrane strength and diffusivity measurements. Acidification activity of the encapsulatedLactobacillus acidophilus cells was similar to that achieved in free cell fermentation and increased with subsequent reuse.  相似文献   

19.
It was more than 50 years ago that an appearance of birefringence in alginate gels prepared under cation flow was reported for the first time, however, the anisotropic structure of the alginate gel has not been studied in detail. In the present study, anisotropic Ca-alginate gels were prepared within dialysis tubing in a high Ca(2+)-concentration external bath, and optical and small-angle X-ray scattering (SAXS) measurements were performed to characterize the structure of the gel. The observations of the gel with crossed polarizers and with circular polarizers revealed the molecular orientation perpendicular to the direction of Ca(2+) flow. Analyses of the SAXS intensity profiles indicated the formation of rod-like fibrils consisting of a few tens of alginate molecules and that the anisotropy of the gel was caused by the circumferential orientation of the large fibrils. From the observed asymmetric SAXS pattern, it was found that the axis of rotational symmetry of the anisotropic structure was parallel to the direction of Ca(2+) flow. The alignment factor (A(f)) calculated from the SAXS intensity data confirmed that the orientation of the fibrils was perpendicular to the direction of Ca(2+) flow.  相似文献   

20.
The antifungal properties and cytotoxicity of alginate fibers were investigated to widen their application in tissue engineering. Calcium, zinc, and copper alginate fibers were separately prepared by replacing Na(+) with Ca(2+), Zn(2+), or Cu(2+). The antifungal properties of the three alginate fibers were studied after coming into contact with Candida albicans. Then, the fungal inhibitory rates were measured using the plate-count method following shake-flask test. Moreover, an inhibition-zone test and observation by scanning electron microscopy were carried out. The inhibitory rate of the calcium, copper, and zinc alginate fibers were, respectively, 49.1, 68.6, and 92.2 %. The results from inhibition-zone test and shake-flask test show that zinc alginate fibers have the most significant antifungal action and that copper alginate fibers have obvious inhibitory action, but the calcium alginate fibers have weak inhibitory effects. The scanning electron micrographs similarly illustrate that the fungal surfaces show most scraggly after the interaction between C. albicans and zinc alginate fibers. Moreover, the relative growth rates of zinc or calcium alginate fibers in human embryonic kidney cells and human fibroblast cells were more than 100 %. No significant results were obtained (P>0.05). The calcium alginate fibers in human fibroblast cells were not much different from the negative control group (P>0.05). However, zinc alginate fibers had a significant change (P<0.05). Therefore, the excellent antifungal property of zinc alginate fibers demonstrates potential application in skin tissue engineering comparing with calcium or copper alginate fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号