首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H2-M3-restricted presentation of N-formyl methionine (f-Met) peptides to CD8(+) T cells provides a mechanism for selective recognition of bacterial infection. In this report we demonstrate that Listeria monocytogenes infection induces distinct CD8(+) T cell populations specific for each of the known Listeria-derived formyl methionine peptides presented by M3. The sum H2-M3-restricted, Listeria-specific T cell response constitutes a major fraction of the total CD8(+) T cell response to primary infection. H2-M3-restricted T cell populations expand synchronously in vivo and achieve peak frequencies approximately 2 days earlier than MHC class Ia-restricted T cell populations. Although cross-recognition of different f-Met peptides by M3-restricted T cells was previously described, costaining of CD8(+) T cells ex vivo with H2-M3 tetramers complexed with different f-Met peptides shows that the majority of Listeria-specific, M3-restricted CD8(+) T cells are peptide specific. In contrast to the highly predictable size and immunodominance hierarchies of MHC class Ia-restricted T cell responses, the magnitudes of T cell responses specific for H2-M3-restricted peptides are remarkably variable between genetically identical mice. Our findings demonstrate that H2-M3-restricted T cell responses are distinct from classically restricted T cell responses to bacterial infection.  相似文献   

2.
Murine infection with the Gram-positive intracellular bacterium Listeria monocytogenes activates CD8(+) T cells that recognize bacterially derived N-formyl methionine peptides in the context of H2-M3 MHC class Ib molecules. Three peptides, fMIGWII, fMIVIL, and fMIVTLF, are targets of L. monocytogenes-specific CD8(+) T cells. To investigate epitope cross-recognition by H2-M3-restricted CD8(+) T cells, we deleted the sequence encoding fMIGWII from a virulent strain of L. monocytogenes. Infection with fMIGWII-deficient L. monocytogenes unexpectedly primed CD8(+) T cells that stain with fMIGWII/H2-M3 tetramers and lyse fMIGWII-coated target cells in vivo. Because the fMIGWII sequence is nonredundant, we speculated that other bacterially derived Ags are priming these responses. HPLC peptide fractionation of bacterial culture supernatants revealed several distinct L. monocytogenes-derived peptides that are recognized by fMIGWII-specific T cells. Our results demonstrate that the dominant H2-M3-restricted CD8(+) T cell population, although reactive with fMIGWII, is primed by other, non-fMIGWII peptides derived from L. monocytogenes. Although this degree of Ag receptor promiscuity is unusual for the adaptive immune system, it may be a more common feature of T cell responses restricted by nonpolymorphic MHC class Ib molecules.  相似文献   

3.
The leading model for class I-b evolution suggests non-polymorphic I-b genes evolve by gene duplication from polymorphic I-a genes. We recently found N-formyl peptide-specific orthologs of the class I-b gene H2-M3 in the rodent subfamily Sigmodontinae. To test if sigmodont M3 is a I-b gene, we sequenced M3 from wild cotton rats (Sigmodon hispidus) diverse at the class II locus, Sihi-DQA. These haplotypes carry a single allele of M3 that closely resembles H2-M3. However, peptide-binding assays showed that cotton rat M3 bound the chemotactic N-formylpeptide fMLF better than did rat or mouse M3. The Ala116Lys substitution in cotton rat M3 might enhance binding of fMLF and is one of eight residues of M3 that interact with ligand residues P3 and P4 and that are positively selected, with a dN/dS ratio of 1.8. Thus, M3 is a class I-b gene in both sigmodontine and murine murids, but positive selection operates on a small subset of residues in the traditionally defined antigen recognition site.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

4.
"Classical" MHC class I (I-a) genes are extraordinarily polymorphic, but "nonclassical" MHC class I (I-b) genes are monomorphic or oligomorphic. Although diversifying (positive) Darwinian selection is thought to explain the origin and maintenance of MHC class I-a polymorphisms, genetic mechanisms underlying MHC class I-b evolution are uncertain. In one extreme model, MHC class I-b loci are derived by gene duplication from MHC class I-a alleles but rapidly drift into functional obsolescence and are eventually deleted. In this model, extant MHC class I-b genes are relatively young, tend to be dysfunctional or pseudogenic, and orthologies are restricted to close taxa. An alternative model proposed that the mouse MHC class I-b gene thymus leukemia Ag (TL) arose approximately 100 million years ago, near the time of the mammalian radiation. To determine the mode of evolution of TL, we cloned TL from genomic DNA of 11 species of subfamily Murinae: Every sample we tested contained TL, suggesting this molecule has been maintained throughout murine evolution. The sequence similarity of TL orthologs ranged from 85-99% and was inversely proportional to taxonomic distance. The sequences showed high conservation throughout the entire extracellular domains with exceptional conservation in the putative Ag recognition site. Our results strengthen the hypotheses that TL has evolved a specialized function and represents an ancient MHC class I-b gene.  相似文献   

5.
H2-M3-restricted T cells respond more rapidly to primary Listeria monocytogenes infection than conventional MHC class Ia-restricted T cells. Reinfection with L. monocytogenes, while inducing explosive proliferation of H2-K(d)-restricted T cells, does not stimulate significant expansion of H2-M3-restricted CTL. These disparate responses to reinfection are apparent within 5 days of primary L. monocytogenes infection. However, H2-M3-restricted memory T cells are generated, and are indistinguishable from classically restricted T cells in terms of cell surface memory markers and longevity. Early responses of H2-M3- and H2-K(d)-restricted memory T cells to reinfection are similar, with increases in size and expression of activation markers. Interestingly, priming of H2-M3-restricted T cells with an L. monocytogenes-derived N-formyl peptide plus anti-CD40 generates memory T cells that expand upon re-exposure to Ag during L. monocytogenes infection. Our data indicate that disparate H2-M3- and MHC class Ia-restricted memory T cell responses reflect intrinsic differences between these T cell populations. Although distinct proliferative programs appear to be hardwired in these populations during primary L. monocytogenes infection, under different inflammatory circumstances M3-restricted T cell populations can maintain the ability to expand upon re-exposure to Ag.  相似文献   

6.
H2-M3 is a MHC class Ib molecule with a high propensity to bind N-formylated peptides. Due to the paucity of endogenous Ag, the majority of M3 is retained in the endoplasmic reticulum (ER). Upon addition of exogenous N-formylated peptides, M3 trafficks rapidly to the cell surface. To understand the mechanism underlying Ag presentation by M3, we examined the role of molecular chaperones in M3 assembly, particularly TAP and tapasin. M3-specific CTLs fail to recognize cells isolated from both TAP-deficient (TAP(o)) and tapasin-deficient mice, suggesting that TAP and tapasin are required for M3-restricted Ag presentation. Impaired M3 expression in TAP(o) mice is due to instability of the intracellular pool of M3. Addition of N-formylated peptides to TAP(o) cells stabilizes M3 in the ER and partially restores surface expression. Surprisingly, significant amounts of M3 are retained in the ER in tapasin-deficient mice, even in the presence of N-formylated peptides. Our results define the role of TAP and tapasin in the assembly of M3-peptide complexes. TAP is essential for stabilization of M3 in the ER, whereas tapasin is critical for loading of N-formylated peptides onto the intracellular pool of M3. However, neither TAP nor tapasin is required for ER retention of empty M3.  相似文献   

7.
To investigate the evolutionary pressures that drive the generation of polymorphism in primate MHC class I molecules, three cDNA that encode MHC class I alleles from a New World monkey, the cotton-top tamarin (Saguinus oedipus), were cloned and sequenced. These tamarin MHC class I alleles contained amino acid substitutions not found in any of the previously sequenced human MHC class I alleles. Moreover, the majority of these unique amino acid substitutions was located in the Ag recognition site at positions that have been shown to be critical in the presentation of viral peptides to T cells in mice and humans. These data suggest that selective pressures on MHC class I molecules preferentially act on the Ag recognition site and that the peptide binding or presenting functions of these molecules may drive the generation of MHC class I polymorphism. The novel Ag recognition sites of the tamarin MHC class I molecules, in addition to their restricted polymorphism, might account for the unusual susceptibility of the cotton-top tamarin to human pathogens.  相似文献   

8.
The maternally transmitted Ag is a cell surface product of three gene products: 1) H-2M3a (formerly Hmta), a class I MHC heavy chain; 2) beta 2-microglobulin; and 3) maternally transmitted factor (Mtf), the N-terminus of the mitochondrially encoded ND1 subunit of the reduced form of nicotinamide-adenine dinucleotide dehydrogenase. This class I molecule has been shown to be an N-formyl peptide receptor. Although the N-formyl moiety is necessary for binding to M3a, it is not sufficient. We proposed that the R group of the amino acid in position 1 plays a pivotal role in peptide binding to M3a. To test this hypothesis, analogues differing in size and stereospecificity of the R group were synthesized. Substitutions with other hydrophobic amino acids such as N-formyl phenylalanine and N-formyl valine had no significant effect on the ability of these Mtf alpha analogues to sensitize target cells (M3a, Mtf beta) to M3a, Mtf alpha-specific CTL. In contrast, the nonsubstituted, N-formylated, and N-acetylated glycyl analogues of Mtf beta bound equivalently to M3a in a peptide competition assay. Moreover, the alanine analogue bound in an N-formyl-dependent manner. To determine the limitations of the putative N-formyl pocket, peptide analogues were constructed incorporating D-isomer amino acids. When formylated D-alanine or D-methionine replaced the native methionine, these peptide derivatives did not show significant binding to M3a. Therefore, the presence of a space-filling R group (greater than hydrogen) is necessary for an antigenic peptide to bind M3a in an N-formyl-dependent manner. Additionally, the ability of M3a to discriminate between the optical forms of methionine and alanine demonstrates that this N-formyl pocket is stereospecific in its ability to bind peptide. Thus, we have defined three requirements for peptide binding to M3a: an N-formyl moiety at the amino terminus of the peptide, a space-filling R group at position 1 to maintain this N-formyl specificity, and the correct stereoisomer of the first amino acid.  相似文献   

9.
Both TCRs and Ab molecules are capable of MHC-restricted recognition of peptide/MHC complexes. However, such MHC restriction is the predominant mode of recognition by T cells, but is extremely rare for B cells. The present study asks whether the dichotomy in Ag recognition modes of T and B cells could be due to fundamental differences in the methods by which TCRs and Abs recognize peptide/MHC complexes. We have compared MHC and peptide recognition by panels of CTL lines specific for the Tax and M1 peptides presented by HLA-A2 plus Tax and M1 peptide/HLA-A2-specific human Fabs that were selected from a naive phage display library. Collectively, the results indicate both striking similarities and important differences between Fab and TCR recognition of MHC and peptide components of the Tax and M1/HLA-A2 complexes. These findings suggest that these two classes of immunoreceptors have solved the problem of specific recognition of peptide/MHC complexes by nonidentical mechanisms. This conclusion is important in part because it indicates that Ab engineering approaches could produce second-generation Ab molecules that more closely mimic TCR fine specificity. Such efforts may produce more efficacious diagnostic and therapeutic agents.  相似文献   

10.
In vitro stimulation of mouse splenocytes with hemagglutinin (HA) 173-190, a peptide derived from influenza virus hemagglutinin (A/JAP/305/57, H2N2), induces CTLs that are directed to the MHC class Ib molecule, H2-M3. M3 preferably binds peptides bearing an N-terminal formylmethionine. In this study, we show that several related nonformylated peptides can induce anti-HA CTLs in vitro: MLIIW (the minimal epitope), derived from HA186-190 at the C-terminal end of HA173-190; MLIIWG; MLIIWGV; and MLIIWGI, as well as formylated MLIIW. The heptamer peptides correspond to a polymorphism of HA192 in H2 strains of influenza; they have the highest relative affinities for M3 of the nonformylated peptides and higher affinities than some formylated mitochondrial peptides. Depending on the affinity of the peptide, a range of concentrations can be used to induce CTLs. One nanomolar of the high affinity f-MLIIW peptide can induce anti-HA CTLs, whereas 100-fold more of the lower affinity MLIIW peptide is needed. Lines induced with high concentrations (1 microM or greater) of f-MLIIW recognize Ag poorly, and the most efficient CTLs are induced with the lowest concentrations of peptide. Analysis with a panel of anti-TCRVbeta Abs shows that different T cells respond to high vs low peptide; the repertoire of cells responding to higher concentrations is more diverse, consistent with the expansion of more, but less efficient, clones. Thus, peptide affinity and concentration should be considered together for generating efficient antipeptide CTLs in vitro.  相似文献   

11.
H2-M3-restricted T cell response to infection   总被引:1,自引:0,他引:1  
H2-M3 is a major histocompatibility complex class Ib molecule that presents N-formylated peptides to specific CD8+ T cells. Prokaryotic, but not eukaryotic, translation begins with the addition of N-formyl methionine, suggesting a role for these H2-M3-restricted T cells in response to bacterial infection. Indeed, these cells constitute a non-redundant "early" component of anti-microbial response.  相似文献   

12.
Pathogenic mycobacteria infect macrophages where they replicate in phagosomes that minimize contact with late endosomal/lysosomal compartments. Loading of Ags to MHC class II molecules occurs in specialized compartments with late endosomal characteristics. This points to a sequestration of mycobacteria-containing phagosomes from the sites where Ags meet MHC class II molecules. Indeed, in resting macrophages MHC class II levels decreased strongly in phagosomes containing M. avium during a 4-day infection. Phagosomal MHC class II of early (4 h) infections was partly surface-derived and associated with peptide. Activation of host macrophages led to the appearance of H2-M, a chaperon of Ag loading, and to a strong increase in MHC class II molecules in phagosomes of acute (1 day) infections. Comparison with the kinetics of MHC class II acquisition by IgG-coated bead-containing phagosomes suggests that the arrest in phagosome maturation by mycobacteria limits the intersection of mycobacteria-containing phagosomes with the intracellular trafficking pathways of Ag-presenting molecules.  相似文献   

13.
Class I molecules of the MHC bind foreign and endogenous peptides allowing recognition by the TCR on CTL. The recognition and killing of cells infected with lymphocytic choriomeningitis virus (LCMV) depends on the recognition of LCMV peptides bound to class I MHC. Mutations in class I MHC molecules have enabled the delineation of regions in the class I molecule important for binding peptides and for interaction with the TCR. We have constructed a library of class I mutants using saturation mutagenesis and report a phenotypic change resulting from a single amino acid substitution that results in the heteroclitic (increased) killing of LCMV-infected cells. This amino acid change, asparagine to serine at position 30, is in a conserved region of the class I molecule contacting the alpha 3 domain. This mutation does not result in increased expression of the class I molecule on the cell surface, does not affect the binding of CD8, and does not affect allogeneic recognition. Cold target experiments show that this heteroclitic killing is due to increased recognition by CTL. These data point toward a critical function for this region of the class I molecule in the binding of peptides or their presentation to CTL.  相似文献   

14.
One of the oligopolymorphic MHC class Ib molecules, H2-M3, presents N-formylated peptides derived from bacteria. In this study, we tested the ability of an H2-M3-binding peptide, TB2, to induce protection in C57BL/6 mice against Mycobacterium tuberculosis. Immunization with bone marrow-derived dendritic cell (BMDC) pulsed with TB2 or a MHC class Ia-binding peptide, MPT64(190-198) elicited an expansion of Ag-specific CD8+ T cells in the spleen and the lung. The number of TB2-specific CD8+ T cells reached a peak on day 6, contracted with kinetics similar to MPT64(190-198)-specific CD8+ T cells and was maintained at an appreciable level for at least 60 days. The TB2-specific CD8+ T cells produced less effector cytokines but have stronger cytotoxic activity than MPT64(190-198)-specific CD8+ T cells. Mice immunized with TB2-pulsed BMDC as well as those with MPT64(190-198)-pulsed BMDC showed significant protection against an intratracheal challenge with M. tuberculosis H37Rv. However, histopathology of the lung in mice immunized with TB2-pulsed BMDC was different from mice immunized with MPT64(190-198)-pulsed BMDC. Our results suggest that immunization with BMDC pulsed with MHC class Ib-restricted peptides would be a useful vaccination strategy against M. tuberculosis.  相似文献   

15.
Antigen-presenting cells degrade endocytosed antigens, e.g. collagen type II, into peptides that are bound and presented to arthritogenic CD4(+) helper T cells by major histocompatibility complex (MHC) class II molecules. Efficient loading of many MHC class II alleles with peptides requires the assistance of H2-M (HLA-DM in humans), a heterodimeric MHC class II-like molecule that facilitates CLIP removal from MHC class II molecules and aids to shape the peptide repertoire presented by MHC class II to CD4(+) T cells. In contrast to the HLA-DM region in humans, the beta-chain locus is duplicated in mice, with the H2-Mb1 beta-chain distal to H2-Mb2 and the H2-Ma alpha-chain gene. H2-M alleles appear to be associated with the development of autoimmune diseases. Recent data showed that Mbeta1 and Mbeta2 isoforms are differentially expressed in isolated macrophages and B cells, respectively. The tissue expression and functional role of these heterodimers in promoting CLIP removal and peptide selection have not been addressed. We utilized the human T2 cell line, which lacks part of chromosome 6 encompassing the MHC class II and DM genes, to construct transgenic cell lines expressing the MHC class II heterodimer I-A(q) alone or in the presence of H2-Malphabeta1 or H2-Malphabeta2 heterodimers. Both H2-M isoforms facilitate the exchange of CLIP for cognate peptides on I-A(q) molecules from arthritis-susceptible DBA/1 mice and induce a conformational change in I-A(q) molecules. Moreover, I-A(q) cell-surface expression is not absolutely dependent on H2-M molecules. These data suggest that I-A(q) exhibits a high affinity for CLIP since virtually all I-A(q) molecules on T2 cells were found to be associated with CLIP in the absence of both H2-M isoforms.  相似文献   

16.
Quantitative aspects of the endogenous pathway of Ag processing and presentation by MHC class I molecules to CD8+ CTL were analyzed over a wide range of Ag expression in recombinant vaccinia virus-infected cells expressing beta-galactosidase as model Ag. Only the amount of starting Ag was varied, leaving other factors unaltered. Below a certain level of Ag synthesis, increasing protein amounts led to a sharp rise in recognition by CTL. Higher levels of Ag expression led to a saturation point, which intracellularly limited the number of naturally processed peptides bound to MHC and thereby also CTL recognition. The rate-limiting step was located at the binding of the antigenic peptide to MHC inside the vaccinia virus-infected cell or before this event.  相似文献   

17.
Neurons in the murine vomeronasal organ (VNO) express a family of class Ib major histocompatibility complex (MHC) proteins (M10s) that interact with the V2R class of VNO receptors. This interaction may play a direct role in the detection of pheromonal cues that initiate reproductive and territorial behaviors. The crystal structure of M10.5, an M10 family member, is similar to that of classical MHC molecules. However, the M10.5 counterpart of the MHC peptide-binding groove is open and unoccupied, revealing the first structure of an empty class I MHC molecule. Similar to empty MHC molecules, but unlike peptide-filled MHC proteins and non-peptide-binding MHC homologs, M10.5 is thermally unstable, suggesting that its groove is normally occupied. However, M10.5 does not bind endogenous peptides when expressed in mammalian cells or when offered a mixture of class I-binding peptides. The F pocket side of the M10.5 groove is open, suggesting that ligands larger than 8-10-mer class I-binding peptides could fit by extending out of the groove. Moreover, variable residues point up from the groove helices, rather than toward the groove as in classical MHC structures. These data suggest that M10s are unlikely to provide specific recognition of class I MHC-binding peptides, but are consistent with binding to other ligands, including proteins such as the V2Rs.  相似文献   

18.
CD8+ T cells are important for immunity to the intracellular bacterial pathogen Chlamydia pneumoniae (Cpn). Recently, we reported that type 1 CD8+ (Tc1) from Cpn-infected B6 mice recognize peptides from multiple Cpn Ags in a classical MHC class Ia-restricted fashion. In this study, we show that Cpn infection also induces nonclassical MHC class Ib-(H2-M3)-restricted CD8+ T cell responses. H2-M3-binding peptides representing the N-terminal formylated sequences from five Cpn Ags sensitized target cells for lysis by cytolytic effectors from the spleens of infected B6 mice. Of these, only peptides fMFFAPL (P1) and fMLYWFL (P4) stimulated IFN-gamma production by infection-primed splenic and pulmonary CD8+ T cells. Studies with Cpn-infected Kb-/-/Db-/- mice confirmed the Tc1 cytokine profile of P1- and P4-specific CD8+ T cells and revealed the capacity of these effectors to exert in vitro H2-M3-restricted lysis of Cpn-infected macrophages and in vivo pulmonary killing of P1- and P4-coated splenocytes. Furthermore, adoptive transfer of P1- and P4-specific CD8+ T cells into naive Kb-/-/Db-/- mice reduced lung Cpn loads following challenge. Finally, we show that in the absence of MHC class Ia-restricted CD8+ T cell responses, CD4+ T cells are largely expendable for the control of Cpn growth, and for the generation, memory maintenance, and secondary expansion of P1- and P4-specific CD8+ T cells. These results suggest that H2-M3-restricted CD8+ T cells contribute to protective immunity against Cpn, and that chlamydial Ags presented by MHC class Ib molecules may represent novel targets for inclusion in anti-Cpn vaccines.  相似文献   

19.
CD8 T cell populations restricted by H2-M3 MHC class Ib molecules expand rapidly during primary Listeria monocytogenes infection but only minimally upon reinfection. In contrast, CD8 T cells restricted by MHC class Ia molecules undergo more delayed expansion during primary infection but rapid and robust expansion following reinfection. In this study we demonstrate that primary H2-M3-restricted CD8 T cell responses are unaffected by the frequency of naive MHC class Ia-restricted T cells during L. monocytogenes infection. The magnitude of H2-M3-restricted memory responses, in contrast, is down-modulated by increasing frequencies of MHC class Ia-restricted effector T cells following secondary systemic infection. Suppression by MHC class Ia-restricted T cells, however, is not a universal feature of MHC class Ib-restricted memory responses. Primary systemic L. monocytogenes infection followed by secondary tissue infection, for example, results in robust expansion of H2-M3-restricted memory T cells in draining lymph nodes, despite the activation of MHC class Ia-restricted memory T cell responses. Thus, whereas MHC class Ia-restricted memory T cell populations predominate in spleens following systemic reinfection, H2-M3-restricted memory T cell responses remain prominent in lymph nodes draining localized infections. Our studies demonstrate that interactions between CD8 T cell populations can differ, depending on the status of the responding T cells (naive vs memory) and the route of reinfection. These results may have important implications for prime-boost vaccination strategies.  相似文献   

20.
Previous studies have shown that glutaraldehyde-fixed cells can present fragmented, but not native, Ag to class II-restricted T cells. This presumably occurs via direct binding of peptides to class II molecules at the cell surface. More recently, it has been shown that viable target cells can present peptides and endogenous, but not exogenous, protein Ag in association with class I MHC molecules to CTL. We have derived CTL specific for a chicken OVA peptide (OVA258-276) recognized in association with H-2Kb. These CTL recognize target cells that endogenously synthesize OVA and cells "loaded" with native OVA but fail to recognize target cells in the presence of exogenous native OVA. Thus, OVA must be intracellularly located to be processed and presented for CTL recognition. It remains unclear, however, whether exogenous peptides require internalization and further processing by target cells or are able to associate directly with class I molecules at the cell surface for CTL recognition. We provide evidence that glutaraldehyde-fixed cells can present synthetic peptides to H-2Kb- and H-2Db-restricted CTL and that such presentation does not require internalization or processing. The peptides used range in size from 16 to 48 amino acids in length. In contrast, glutaraldehyde-fixed cells are incapable of presenting Ag to CTL specific for influenza nucleoprotein and OVA if the cells are fixed within 1 h of viral influenza infection or loading with OVA. Thus, CTL recognition of antigenic peptides appears to occur via direct binding of peptides to class I molecules at the cell surface and does not require any intracellular processing events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号