首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Twenty-two methyl epoxyoctadecenoates and four methyl epoxyoctadecynoates were converted to bis(trimethylsilyloxy) and methoxy trimethylsilyloxy derivatives for mass spectroscopic examination at 17 eV. From the results the position of the ether groups (and hence of the epoxide functions) can be determined. Additionally it is possible to discover whether the unsaturated group lies between the ether groups and the ester function or between the ether groups and the terminal methyl and to differentiate those esters of the type -CH(OR)CH(OR)(CH2)nCH=CH- where n = 1 from those in which n > 1. The major fragmentation pathways are outlined.  相似文献   

2.
Methyl chloride (CH(3)Cl) and methyl bromide (CH(3)Br) are the primary carriers of natural chlorine and bromine, respectively, to the stratosphere, where they catalyze the destruction of ozone, whereas methyl iodide (CH(3)I) influences aerosol formation and ozone loss in the boundary layer. CH(3)Br is also an agricultural pesticide whose use is regulated by international agreement. Despite the economic and environmental importance of these methyl halides, their natural sources and biological production mechanisms are poorly understood. Besides CH(3)Br fumigation, important sources include oceans, biomass burning, tropical plants, salt marshes, and certain crops and fungi. Here, we demonstrate that the model plant Arabidopsis thaliana produces and emits methyl halides and that the enzyme primarily responsible for the production is encoded by the HARMLESS TO OZONE LAYER (HOL) gene. The encoded protein belongs to a group of methyltransferases capable of catalyzing the S-adenosyl-L-methionine (SAM)-dependent methylation of chloride (Cl(-)), bromide (Br(-)), and iodide (I(-)) to produce methyl halides. In mutant plants with the HOL gene disrupted, methyl halide production is largely eliminated. A phylogenetic analysis with the HOL gene suggests that the ability to produce methyl halides is widespread among vascular plants. This approach provides a genetic basis for understanding and predicting patterns of methyl halide production by plants.  相似文献   

3.
Biochemistry of methanogenesis.   总被引:9,自引:0,他引:9  
Methane is a product of the energy-yielding pathways of the largest and most phylogenetically diverse group in the Archaea. These organisms have evolved three pathways that entail a novel and remarkable biochemistry. All of the pathways have in common a reduction of the methyl group of methyl-coenzyme M (CH3-S-CoM) to CH4. Seminal studies on the CO2-reduction pathway have revealed new cofactors and enzymes that catalyze the reduction of CO2 to the methyl level (CH3-S-CoM) with electrons from H2 or formate. Most of the methane produced in nature originates from the methyl group of acetate. CO dehydrogenase is a key enzyme catalyzing the decarbonylation of acetyl-CoA; the resulting methyl group is transferred to CH3-S-CoM, followed by reduction to methane using electrons derived from oxidation of the carbonyl group to CO2 by the CO dehydrogenase. Some organisms transfer the methyl group of methanol and methylamines to CH3-S-CoM; electrons for reduction of CH3-S-CoM to CH4 are provided by the oxidation of methyl groups to CO2.  相似文献   

4.
Methyl bromide (CH3Br) and methyl chloride (CH3Cl) are important precursors for destruction of stratospheric ozone, and oceanic uptake is an important component of the biogeochemical cycle of these methyl halides. In an effort to identify and characterize the organisms mediating halocarbon biodegradation, we surveyed the effect of potential cometabolic substrates on CH3Br biodegradation using a 13CH3Br incubation technique. Toluene (160 to 200 nM) clearly inhibited CH3Br and CH3Cl degradation in seawater samples from the North Atlantic, North Pacific, and Southern Oceans. Furthermore, a marine bacterium able to co-oxidize CH3Br while growing on toluene was isolated from subtropical Western Atlantic seawater. The bacterium, Oxy6, was also able to oxidize o-xylene and the xylene monooxygenase (XMO) pathway intermediate 3-methylcatechol. Patterns of substrate oxidation, lack of acetylene inhibition, and the inability of the toluene 4-monooxygenase (T4MO)-containing bacterium Pseudomonas mendocina KR1 to degrade CH3Br ruled out participation of the T4MO pathway in Oxy6. Oxy6 also oxidized a variety of toluene (TOL) pathway intermediates such as benzyl alcohol, benzylaldehyde, benzoate, and catechol, but the inability of Pseudomonas putida mt-2 to degrade CH3Br suggested that the TOL pathway might not be responsible for CH3Br biodegradation. Molecular phylogenetic analysis identified Oxy6 to be a member of the family Sphingomonadaceae related to species within the Porphyrobacter genus. Although some Sphingomonadaceae can degrade a variety of xenobiotic compounds, this appears to be the first report of CH3Br degradation for this class of organism. The widespread inhibitory effect of toluene on natural seawater samples and the metabolic capabilities of Oxy6 indicate a possible link between aromatic hydrocarbon utilization and the biogeochemical cycle of methyl halides.  相似文献   

5.
Treatment of methyl 3-O-benzyl-2-O-(2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl)-alpha-D- mannopyranoside (1) with tert-butyldiphenylsilyl chloride in N,N-dimethylformamide afforded methyl 3-O-benzyl-6-O-tert-butyldiphenylsilyl-2-O-(2,3,4,6-tetra-O-acetyl -alpha-D- mannopyranosyl)-alpha-D-mannopyranoside (2). Oxidation of 2 with pyridinium chlorochromate, followed by reduction of the carbonyl group, and subsequent O-deacetylation afforded methyl 3-O-benzyl-6-O-tert-butyldiphenylsilyl-2-O-alpha-D-mannopyranosyl- alpha-D- talopyranoside (5). Cleavage of the tert-butyldiphenylsilyl group of 5 with tetrabutylammonium fluoride in oxolane, followed by hydrogenolysis, gave methyl 2-O-alpha-D-mannopyranosyl-alpha-D-talopyranoside (7). O-Deacetylation of 1 gave methyl 3-O-benzyl-2-O-alpha-D-mannopyranosyl-alpha-D-mannopyranoside (8). Treatment of 8 with tert-butyldiphenylsilyl chloride afforded a 6,6'-disilyl derivative, which was converted into a 2',3'-O-isopropylidene derivative, and then further oxidized with pyridinium chlorochromate. The resulting diketone was reduced and removal of the protecting groups gave methyl 2-O-alpha-D-talopyranosyl-alpha-D-talopyranoside (15). The structures of both 7 and 15 were established by 13C-n.m.r. spectroscopy.  相似文献   

6.
Washed cell suspensions of the facultative methylotroph strain IMB-1 grown on methyl bromide (MeBr) were able to consume methyl chloride (MeCl) and methyl iodide (MeI) as well as MeBr. Consumption of >100 microM MeBr by cells grown on glucose, acetate, or monomethylamine required induction. Induction was inhibited by chloramphenicol. However, cells had a constitutive ability to consume low concentrations (<20 nM) of MeBr. Glucose-grown cells were able to readily oxidize [(14)C]formaldehyde to (14)CO(2) but had only a small capacity for oxidation of [(14)C]methanol. Preincubation of cells with MeBr did not affect either activity, but MeBr-induced cells had a greater capacity for [(14)C]MeBr oxidation than did cells without preincubation. Consumption of MeBr was inhibited by MeI, and MeCl consumption was inhibited by MeBr. No inhibition of MeBr consumption occurred with methyl fluoride, propyl iodide, dibromomethane, dichloromethane, or difluoromethane, and in addition cells did not oxidize any of these compounds. Cells displayed Michaelis-Menten kinetics for the various methyl halides, with apparent K(s) values of 190, 280, and 6,100 nM for MeBr, MeI, and MeCl, respectively. These results suggest the presence of a single oxidation enzyme system specific for methyl halides (other than methyl fluoride) which runs through formaldehyde to CO(2). The ease of induction of methyl halide oxidation in strain IMB-1 should facilitate its mass culture for the purpose of reducing MeBr emissions to the atmosphere from fumigated soils.  相似文献   

7.
Marine bacteria that oxidized methyl bromide and methyl chloride were enriched and isolated from seawater samples. Six methyl halide-oxidizing enrichments were established from which 13 isolates that grew on methyl bromide and methyl chloride as sole sources of carbon and energy were isolated and maintained. All isolates belonged to three different clades in the Roseobacter group of the alpha subdivision of the Proteobacteria and were distinct from Leisingera methylohalidivorans, the only other identified marine bacterium that grows on methyl bromide as sole source of carbon and energy. Genes encoding the methyltransferase/corrinoid-binding protein CmuA, which is responsible for the initial step of methyl chloride oxidation in terrestrial methyl halide-oxidizing bacteria, were detected in enrichments and some of the novel marine strains. Gene clusters containing cmuA and other genes implicated in the metabolism of methyl halides were cloned from two of the isolates. Expression of CmuA during growth on methyl halides was demonstrated by analysis of polypeptides expressed during growth on methyl halides by SDS-PAGE and mass spectrometry in two isolates representing two of the three clades. These findings indicate that certain marine methyl halide degrading bacteria from the Roseobacter group contain a methyltransferase pathway for oxidation of methyl bromide that may be similar to that responsible for methyl chloride oxidation in Methylobacterium chloromethanicum. This pathway therefore potentially contributes to cycling of methyl halides in both terrestrial and marine environments.  相似文献   

8.
The biology of methyl ketones   总被引:3,自引:0,他引:3  
Examples of the biological occurrence of methyl ketones are reviewed. The lack of significant accumulations of these compounds in the biosphere indicates that a recycling of these organic molecules is occurring. Evidence for biodegradation of acetone by mammals and longer methyl ketones by microorganisms via terminal methyl-group oxidation is discussed. A new mechanism for the subterminal oxidation of methyl ketones by microorganisms is proposed whereby the first intermediate produced is an acetate ester which subsequently is cleaved to acetate and a primary alcohol two carbons shorter than the original ketone substrate. Methyl ketones can be produced by mammals and fungi by decarboxylation of beta-keto acids. Some bacteria are able to form methyl ketones via the oxidation of aliphatic hydrocarbons at the methylene carbon alpha to the methyl group. Speculations on the biosynthesis of methyl ketones by insects and plants and a discussion of the possible biological roles of methyl ketones in diverse biological systems are presented.  相似文献   

9.
An enzyme assay was developed to determine the activities of methyl chloride dehalogenase and O-demethylase of the homoacetogen strain MC. The formation of methyl tetrahydrofolate from tetrahydrofolate and methyl chloride or from tetrahydrofolate and vanillate was coupled to the oxidation of methyl tetrahydrofolate to methylene tetrahydrofolate mediated by methylene tetrahydrofolate reductase purified from Peptostreptococcus productus (strain Marburg) and to the subsequent oxidation of methylene tetrahydrofolate to methenyl tetrahydrofolate catalyzed by methylene tetrahydrofolate dehydrogenase purified from the same organism. To drive the endergonic methyl tetrahydrofolate oxidation with NAD+ as an electron acceptor, the NADH formed in this reaction was reoxidized in the exergonic lactate dehydrogenase reaction. The formation of NADPH and methenyl tetrahydrofolate in the methylene tetrahydrofolate dehydrogenase reaction was followed photometrically at 350 nm; ε350 was about 29.5 mM–1cm–1 (pH 6.5). Using the coupled enzyme assay, the cofactor requirements, the apparent kinetic parameters, the pH and temperature optima of both enzymes, and the effect of inhibitors were determined. The activity of methyl chloride dehalogenase and of O-demethylase was dependent on the presence of ATP; arsenate severely inhibited both enzyme activities in the absence of ATP. The coupled enzyme assay described allows purification and characterization of methyl chloride dehalogenase and O-demethylase and is also appropriate for the enzymatic determination of methyl tetrahydrofolate. Received: 2 August 1995 / Accepted: 28 September 1995  相似文献   

10.
Buffer-soluble extracts of acetate-grown Methanosarcina barkeri catalyzed methanogenesis from acetate in the presence of hydrogen and ATP. The rates of methane formation from either acetate plus ATP, or acetylphosphate without ATP added, were approximately doubled by the addition of coenzyme A (CoA). In vitro methyl group transfer from [2-14C]acetate to form [14CH3]methyl coenzyme M (14CH3S-CoM) was monitored by causing the accumulation of 14CH3S-CoM (14CH3-SCH2CH2SO3-) in the presence of 2-bromoethanesulfonate. The rate of 14CH3S-CoM formation was increased 2.5-fold by 0.2 mM CoA.  相似文献   

11.
Methionine methyl group metabolism in lemna   总被引:6,自引:6,他引:0       下载免费PDF全文
Mudd SH  Datko AH 《Plant physiology》1986,81(1):103-114
To provide information upon the ways in which Lemna paucicostata uses the methyl group of methionine, plants were grown for various periods (from 1 minute to 6.8 days) in the presence of a tracer dose of radioactive methyl-labeled methionine. Protein methionine accounted for approximately 19% of the accumulated methyl moieties; other methylated products, about 81%. The latter group included (percent of total methyl in parentheses): methylated ethanolamine derivatives (46%); methyl esters of the pellet (chiefly, or solely, pectin methyl esters) (15%); chlorophyll methyl esters (8%); unidentified neutral lipids (6%); nucleic acid derivatives (2-5%); methylated basic amino acids (2%). No other major methylated compounds were observed in any plant fraction. Available evidence suggests that little, if any, oxidation of the methyl group of methionine, directly or indirectly, occurs in Lemna. Our results indicate that S-methyl-methionine sulfonium is formed relatively rapidly, but does not accumulate at a commensurate rate, probably being reconverted to methionine. To our knowledge, this is the first time a reasonably complete accounting of the metabolic fate of methionine methyl has been obtained for any plant. The extent to which the results with Lemna may be representative of the situation for other higher plants is discussed.  相似文献   

12.
Light-harvesting antenna core (LH1-RC) complexes isolated from Rhodoseudomonas palustris were self-assembled on a gold electrode modified with self-assembled monolayers (SAMs) of the alkanethiols NH2(CH2)nSH, n = 2, 6, 8, 11; HOOC(CH2)7SH; and CH3(CH2)7SH, respectively. Adsorption of the LH1-RC complexes on the SAMs depended on the terminating group of the alkanethiols, where the adsoption increased in the following order for the terminating groups: amino groups > carboxylic acid groups > methyl groups. Further, the adsorption on a gold electrode modified with SAMs of NH2(CH2)nSH, n = 2, 6, 8, 11, depended on the methylene chain length, where the adsorption increased with increasing the methylene chain length. The presence of the well-known light-harvesting and reaction center peaks of the near infrared (NIR) absorption spectra of the LH1-RC complexes indicated that these complexes were only fully stable on the SAM gold electrodes modified with the amino group. In the case of modification with the carboxyl group, the complexes were partially stable, while in the presence of the terminal methyl group the complexes were extensively denatured. An efficient photocurrent response of these complexes on the SAMs of NH2(CH2)nSH, n = 2, 6, 8, 11, was observed upon illumination at 880 nm. The photocurrent depended on the methylene chain length (n), where the maximum photocurrent response was observed at n = 6, which corresponds to a distance between the amino terminal group in NH2(CH2)6SH and the gold surface of 1.0 nm.  相似文献   

13.
Methyl santalbate (methyl trans-11-octadecen-9-ynoate) from Sandal wood seed oil, Santalbum alum) was epoxidized to methyl trans-11,12-epoxy-octadec-9-ynoate (1). Treatment of compound 1 with tetrabutylammonium dihydrogentrifluoride, and boron trifluoride etherate gave the corresponding anti- (2a) (57%) and syn- (2b) (35%) fluorohydrin derivatives, respectively. These reactions were regio- and stereoselective in nature. The structures of the anti- and syn- isomers were confirmed by NMR spectroscopy. Ring opening of the epoxy system of compound 1 with lithium chloride gave the anti-chlorohydrin derivative (3) (89%). Oxidation of either compound 2a or 2b gave the same fluoro-keto acetylenic fatty ester (4) (75%), and compound 3 on chromic acid oxidation yielded the corresponding chloro-keto acetylene (5) (73%). Isomerization of compounds 4 and 5 with potassium carbonate in dichloromethane furnished the requisite fluoro-allenic (6) (63%, methyl 11-fluoro-12-oxo-9,10-octadecadienoate) and chloro-allenic (7) (80%, methyl 11-chloro-12-oxo-9,10-octadecadienoate) C(18) fatty esters. All products were confirmed by a combination of spectrometric and spectroscopic techniques.  相似文献   

14.
The methyl chloride metabolism of the homoacetogenic, methyl chloride-utilizing strain MC was investigated with cell extracts and cell suspensions of the organism. Cell extracts were found to contain all enzyme activities required for the conversion of methyl chloride or of H2 plus CO2 to acetate. They catalyzed the dechlorination of methyl chloride with tetrahydrofolate as the methyl acceptor at a rate of 20 nmol/min × mg of cell protein. Also, the O-demethylation of vanillate with tetrahydrofolate could be measured at a rate of 40 nmol/min × mg. Different enzyme systems appeared to be responsible for the dehalogenation of CH3Cl and for the O-demethylation of methoxylated aromatic compounds, since cells grown with methoxylated aromatic compounds exhibited a significantly lower activity of CH3Cl conversion than methyl chloride grown cells and vice versa. In addition, ammonium thiocyanate (5 mM) completely inhibited CH3Cl dechlorination, whereas the consumption of vanillate was not affected significantly. The data were taken to indicate, that the methyl chloride dehalogenation is catalyzed by a specific, inducible enzyme present in strain MC, and that tetrahydrofolate rather than the corrinoid-protein involved in acetate formation is the primary acceptor of the methyl group in the dechlorination reaction.  相似文献   

15.
陆地生态系统卤甲烷释放特点及其生态意义   总被引:2,自引:0,他引:2  
大气卤甲烷与平流层臭氧破坏密切相关,并参与光化学反应,还具有一定的.温室效应和污染毒害作用。研究发现:(1)大气CH3Cl和CH3Br存在巨大的未知源,它们的已知源分别仅占已知汇的大约1/2~2/3和60%。而CH3I的源和汇还都不确切;(2)陆地生态系统有可能是最大的卤甲烷自然释放源;(3)生物合成和土壤非生物生产是陆地生态系统卤甲烷生产的两个主要途径;(4)沿海湿地、水稻田、热带森林等陆地生态系统是卤甲烷主要释放源;(5)陆地生态系统卤甲烷的自然释放可能在生物竞争、生物代谢和大气环境污染方面具有重要的生态意义;(6)随着大气卤甲烷人为释放源的控制,其自然释放源的相对重要性将更加突出。提出了当前陆地生态系统卤甲烷释放研究的重点方向以及我国开展相关研究的重要意义。  相似文献   

16.
The syntheses of methyl alpha-D-glucopyranosyl-(1-->4)-alpha-D-galactopyranoside (1) and methyl alpha-D-xylo-hex-4-ulopyranosyl-(1-->4)-alpha-D-galactopyranoside (4) are reported. The keto-disaccharide 4 is of interest in our design, synthesis, and study of pectate lyase inhibitors. The key step in the syntheses was the high-yielding, stereospecific formation of methyl 4,6-O-benzylidene-2',3'-di-O-benzyl-alpha-D-glucopyranosyl-(1-->4)-2,3,6-tri-O-benzyl-alpha-D-galactopyranoside (15), which was accomplished by reacting 2,3-di-O-benzyl-4,6-O-benzylidene-D-glucopyranosyl trichloroacetimidate (10) with methyl 2,3,6-tri-O-benzyl-alpha-D-galactopyranoside (14) in the presence of a catalytic amount of tert-butyldimethylsilyl trifluoromethane sulfonate (TMSOTF). Compound 15 was either hydrogenolyzed to yield disaccharide 1 or treated with NaBH3CN-HCl in 1:1 tetrahydrofuran-ether to yield methyl 2,3,6-tri-O-benzyl-alpha-D-glucopyranosyl-(1-->4)-2,3,6-tri-O-benzyl-alpha-D-galactopyranoside (2). The free 4'-OH of compound 2 was oxidized to a carbonyl group by a Swern oxidation, and the protecting groups were removed by hydrogenolysis to yield keto-disaccharide 4. These synthetic pathways were simple, yet high yielding.  相似文献   

17.
The methyltetrahydrofolate (CH(3)-H(4)folate) corrinoid-iron-sulfur protein (CFeSP) methyltransferase (MeTr) catalyzes transfer of the methyl group of CH(3)-H(4)folate to cob(I)amide. This key step in anaerobic CO and CO(2) fixation is similar to the first half-reaction in the mechanisms of other cobalamin-dependent methyltransferases. Methyl transfer requires electrophilic activation of the methyl group of CH(3)-H(4)folate, which includes proton transfer to the N5 group of the pterin ring and poises the methyl group for reaction with the Co(I) nucleophile. The structure of the binary CH(3)-H(4)folate/MeTr complex (revealed here) lacks any obvious proton donor near the N5 group. Instead, an Asn residue and water molecules are found within H-bonding distance of N5. Structural and kinetic experiments described here are consistent with the involvement of an extended H-bonding network in proton transfer to N5 of the folate that includes an Asn (Asn-199 in MeTr), a conserved Asp (Asp-160), and a water molecule. This situation is reminiscent of purine nucleoside phosphorylase, which involves protonation of the purine N7 in the transition state and is accomplished by an extended H-bond network that includes water molecules, a Glu residue, and an Asn residue (Kicska, G. A., Tyler, P. C., Evans, G. B., Furneaux, R. H., Shi, W., Fedorov, A., Lewandowicz, A., Cahill, S. M., Almo, S. C., and Schramm, V. L. (2002) Biochemistry 41, 14489-14498). In MeTr, the Asn residue swings from a distant position to within H-bonding distance of the N5 atom upon CH(3)-H(4)folate binding. An N199A variant exhibits only approximately 20-fold weakened affinity for CH(3)-H(4)folate but a much more marked 20,000-40,000-fold effect on catalysis, suggesting that Asn-199 plays an important role in stabilizing a transition state or high energy intermediate for methyl transfer.  相似文献   

18.
Treatment of methyl 2,4,5,7,8-penta-O-acetyl-3-deoxy-alpha-D-manno-oct- 2-ulopyranosonic acid, or its methyl ester, with refluxing methanolic 0.1 M hydrogen chloride for 16 h gave 95% of methyl (methyl 3-deoxy-alpha-D-manno-oct-2-ulopyranosid)onate. Acetylation of the methyl ester of 3-deoxy-D-manno-oct-2-ulosonic acid (KDO) gave mainly methyl 2,4,6,7,8-penta-O-acetyl-3-deoxy-alpha,beta-D-manno-oct-2-ulofuranoso nate. Treatment of this mixture with methanolic 0.02 M hydrogen chloride at room temperature gave methyl (methyl 3-deoxy-alpha, beta-D-manno-oct-2-ulofuranosid)onate and the corresponding 4-acetates which were isolated by reverse-phase column chromatography of their 7,8-O-isopropylidene derivatives. Confirmation of the position of the isopropylidene group was obtained by acetylation to give methyl (methyl 4,6-di-O-acetyl-3-deoxy-7,8-O-isopropylidene-alpha,beta-D-manno-oct-2-ul ofuranosid)onate. The furanose anomers were differentiated primarily by J3,4 values (alpha approximately 6.1 Hz, beta approximately 2.2 Hz). The anomeric configuration in the furanose series has been assigned on the basis of optical rotation.  相似文献   

19.
The biosynthetic origin of themethyl group in the methyl chloride produced by cultures ofPhellinus pomaceus (Pers.) Maire has been investigated using stable isotope labeled substrates. Feeding ofd-[6,6-2H2] glucose,Dl-[3,3-2H2] serine andl-[methyl-2H3] methionine led to the production of deuterated methyl chloride in which the major labeled species contained 2, 2, and 3 deuterium atoms, respectively. The data are consistent with the methyl chloride produced by this organism being derived solely from methionine with retention of all of the methyl protons.Abbreviation SAM S-adenosylmethionine - FH4 tetrahydrofolate - N5-CH3FH4 N5-methyltetrahydrofolate - B12 cobalamin  相似文献   

20.
The transfer of the methyl group of acetate to coenzyme M (2-mercaptoethanesulfonic acid; HS-CoM) during the metabolism of acetate to methane was investigated in cultures of Methanosarcina strain TM-1. The organism metabolized CD3COO- to 83% CD3H and 17% CD2H2 and produced no CDH3 or CH4. The isotopic composition of coenzyme M in cells grown on CD3COO- was analyzed with a novel gas chromatography-mass spectrometry technique. The cells contained CD3-D-CoM and CD2H-S-CoM) in a proportion similar to that of CD3H to CD2H2. These results, in conjunction with a report (J.K. Nelson and J.G. Ferry, J. Bacteriol. 160:526-532, 1984) that extracts of acetate-grown strain TM-1 contain high levels of CH3-S-CoM methylreductase, indicate that CH3-S-CoM is an intermediate in the metabolism of acetate to methane in this organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号