首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potassium forms and dominant clay mineralogy were studied in naturally well-drained (Hapludalfs, Eutropept) and poorly-drained soils (Fragiudalfs, Fragiaquept), both composed of the same parent materials (silty-clay or silt loam or clayey-loam). The well-drained soils (i.e. aerated) were cultivated and received larger amounts of K fertilizer; the poorly-drained types (i.e. anoxic) were grasslands and received low amount of K fertilizer. The different aspects investigated-exchangeable and nonexchangeable K, potassium fixation capacity and clay X-ray diffraction diagrams-indicated that the potassium status and the behavior of K-containing clays significantly differed between naturally well-drained aerated soils and anoxic poorly-drained soils. The aerated soils were high in both exchangeable and nonexchangeable K; the K saturation rate was high whereas fixation capacity was moderate. However, the anoxic soils showed a large K depletion and high fixation capacity. The silty-clayey soils studied were more affected by moisture regimes than the silt loam or clayey-loam.The differing K status between aerated and anoxic soils can be explained by several processes and factors, including soil weathering and management and K fertilizer history.  相似文献   

2.
不同养分和水分管理模式对水稻土质量的影响及其综合评价   总被引:20,自引:1,他引:20  
田间小区试验下 ,通过对土壤理化和生物学特性指标的测定和分析 ,系统比较和研究了不同养分和水分管理模式对水稻土质量的影响及其综合评价。研究结果表明 :在干湿交替和控水模式下 ,有机无机肥配施可明显改善水稻土壤物理特性 ,提高土壤的有效养分含量 ,增加土壤酶的活性和土壤微生物生物量。在连续淹水下 ,土壤中加入有机物料 ,特别是厩肥 ,加剧了土壤的还原过程 ,削弱了有机肥料对水稻土理化特性和生物学特性的改善效果。模糊综合评判显示 ,有机无机肥配施的水稻土在干湿交替的水分模式下 ,其质量指标综合表现较好 ,特别是厩肥与化肥配施和干湿交替的水肥模式组合的隶属度为 0 .74 78,其土壤质量指标综合表现为最好。单施化肥和连续淹水的肥水模式组合的隶属度最低 ,为 0 .4 112  相似文献   

3.
One of the most studied approaches in solubilization of insoluble phosphates is the biological treatment of rock phosphates. In recent years, various techniques for rock phosphate solubilization have been proposed, with increasing emphasis on application of P-solubilizing microorganisms. The P-solubilizing activity is determined by the microbial biochemical ability to produce and release metabolites with metal-chelating functions. In a number of studies, we have shown that agro-industrial wastes can be efficiently used as substrates in solubilization of phosphate rocks. These processes were carried out employing various technologies including solid-state and submerged fermentations including immobilized cells. The review paper deals critically with several novel trends in exploring various properties of the above microbial/agro-wastes/rock phosphate systems. The major idea is to describe how a single P-solubilizing microorganism manifests wide range of metabolic abilities in different environments. In fermentation conditions, P-solubilizing microorganisms were found to produce various enzymes, siderophores, and plant hormones. Further introduction of the resulting biotechnological products into soil-plant systems resulted in significantly higher plant growth, enhanced soil properties, and biological (including biocontrol) activity. Application of these bio-products in bioremediation of disturbed (heavy metal contaminated and desertified) soils is based on another important part of their multifunctional properties.  相似文献   

4.
Winter regulation of tundra litter carbon and nitrogen dynamics   总被引:7,自引:3,他引:4  
Mass and nitrogen (N) dynamics of leaf litter measured in Alaskan tussock tundra differed greatly from measurements of these processes made in temperate ecosystems. Nearly all litter mass and N loss occurred during the winter when soils were mostly frozen. Litter lost mass during the first summer, but during the subsequent two summers when biological activity was presumably higher than it is during winter, litter mass remained constant and litter immobilized N. By contrast, litter lost significant mass and N over both winters of measurement. Mass loss and N dynamics were unaffected by microsite variation in soil temperature and moisture. Whether wintertime mass and N loss resulted from biological activity during winter or from physical processes (e.g., fragmentation or leaching) associated with freeze-thaw is unknown, but has implications for how future climate warming will alter carbon (C) and N cycling in tundra. We hypothesize that spring runoff over permafrost as soils melt results in significant losses of C and N from litter, consistent with the observed influx of terrestrial organic matter to tundra lakes and streams after snow melt and the strong N limitation of terrestrial primary production.  相似文献   

5.
We assessed the effects of landscape features (vegetation type and topography), season, and spatial hierarchy on the nutrient content of surface soils in the Luquillo Experimental Forest (LEF) of Puerto Rico. Considerable spatial variation characterized the soils of the LEF, and differences between replicate sites within each combination of vegetation type (tabonuco vs. palo colorado vs. dwarf vs. pasture) and topographic position (ridge vs valley) accounted for 11–60% of the total variation in soil properties. Nevertheless, mean soil properties differed significantly among vegetation types, between topographic positions, and between seasons (wet vs dry). Differences among vegetation types reflected soil properties (e.g., bulk density, soil moisture, Na, P, C, N, S) that typically are related to biological processes and inputs of water. In forests, differences between topographic positions reflected elements (e.g., Ca, Mg, K, and Al) that typically are associated with geochemical processes; however, the nutrients and elements responsible for topographic differences in dwarf forest were different from those in other forest types. In pastures, differences between topographic positions were associated with the same soil properties responsible for differences among the other vegetation types. Pastures also had reduced N levels and different soil characteristics compared to undisturbed tabonuco forest. The only soil parameter that differed significantly between seasons was soil moisture. Soils of the LEF do not support the contention that N becomes limiting with an increase in elevation, and suggest that absolute pool sizes of N and P are not responsible for the reduction in productivity with elevation.  相似文献   

6.
The nitrogenase activity of soils to which no energy-rich substances were added is low. This can be attributed to a low content of easily available organic substances. The potential activity of nitrogen fixation of the soils under study is different and changes with seasons. The highest ability for potential nitrogen fixation is displayed by soddy-calcareous and continuous-cultivated grey forest soils. The potential activity of nitrogen fixation in these soils correlates with the bacterial number on agar. Such a correlation is not observed in grey forest soils.  相似文献   

7.
Biological activity in the urban modern and medieval soils of St. Petersburg was determined using soil samples taken from sections located at the historical center of this city nearby the Kazan Cathedral, the Twelve Colleges building (now the main building of St. Petersburg State University), and on the site where the Swedish fortress Nienshants formerly existed. The studied parameters of biological activity included the microbial transformation rate of organic matter under aerobic and anaerobic conditions, the intensity of denitrification and nitrogen fixation, and the amount of microbial biomass. This investigation is the first attempt to comparatively study modern urban anthropogenically impacted soils and buried soils that had formed the soil cover of this region before St. Petersburg was founded. The major microbiological and physicochemical parameters of the soils were subjected to correlation analysis.  相似文献   

8.
The fundamentals of the biological treatment of contaminated soils were investigated in bioreactors with the aim to optimize the processes of biological soil treatment in order to achieve the highest possible degree of degradation within the shortest period of time. Preinvestigations using test systems at different scales have provided information about the possibilities of enhancing the decomposition processes which are dependent on various factors, such as milieu conditions, additives, etc., that must be known before remedial actions are taken. The investigations made so far have shown that compost is a favourable additive when oil-contaminated soils are biologically treated. The degradation of contaminants can be enhanced by the addition of compost. This positive effect is attributed to various mechanisms. In this paper, results of a variety of test systems at different scales are presented. In test series, different amounts of biocompost were added to investigate the influence on the degradation of diesel fuel. It was demonstrated that by increasing the compost content – the cumulative O2 consumption caused by the degradation of the diesel fuel contaminants increased. It could be shown that the reduction of the diesel fuel contaminants in the soil was independent of the compost age and amounted to approximately 94% of the initial quantity. The addition of biocompost could also enhance the degradation of real contaminants. After a test period of 162 days in set-ups with compost addition, more than 75% of the lubricating oil contaminants disappeared, while less than 37% of the contaminants disappeared in set-ups without compost addition. Moreover, by the addition of compost, the formation of pellets during the dynamic treatment of soil materials could be reduced.  相似文献   

9.
Rusakov  A. V.  Novikov  V. V. 《Microbiology》2003,72(1):103-109
Biological activity in the urban modern and medieval soils of St. Petersburg was determined using soil samples taken from sections located at the historical center of this city nearby the Kazan Cathedral and the Twelve Colleges building (now the main building of St. Petersburg State University) and on the site where the Swedish fortress Nienshants formerly existed. The studied parameters of biological activity included the rate of microbial transformation of organic matter under aerobic and anaerobic conditions, the intensity of denitrification and nitrogen fixation, and the amount of microbial biomass. This investigation is the first attempt to comparatively study modern urban anthropogenically impacted soils and buried soils that had formed the soil cover of this region before St. Petersburg was founded. The major microbiological and physicochemical parameters of the soils were subjected to correlation analysis.  相似文献   

10.
Ortiz  J.  Soto  J.  Almonacid  L.  Fuentes  A.  Campos-Vargas  R.  Arriagada  C. 《Plant and Soil》2019,443(1-2):449-462
Plant and Soil - More sustainable agricultural systems, which contribute to C sequestration and biological N fixation, require accurate quantification of plant C and N inputs into soils. This has...  相似文献   

11.
It is generally assumed that phosphorus (P) availability for plant growth on highly weathered and P-deficient tropical soils may depend more on biologically mediated organic P (Po) turnover processes than on the release of adsorbed inorganic P (Pi). However, experimental evidence showing the linkages between Po, microbial activity, P cycling and soil P availability is scarce. To test whether land-use systems with higher soil Po are characterized by greater soil biological activity and increased P mineralization, we analyzed the partitioning of P among various organic and inorganic P fractions in soils of contrasting agricultural land-use systems and related it to biological soil properties. Isotopic labeling was used to obtain information on the turnover of P held in the microbial biomass. Soil samples were taken from grass–legume pasture (GL), continuous rice (CR) and native savanna (SAV) which served as reference. In agreement with estimated P budgets (+277, +70 and 0 kg P ha–1 for CR, GL and SAV, respectively), available P estimated using Bray-2 and resin extraction declined in the order CR > GL > SAV. Increases in Bray-2 and resin Pi were greater in CR than GL relative to total soil P increase. Organic P fractions were significantly less affected by P inputs than inorganic fractions, but were a more important sink in GL than CR soils. Extractable microbial P (Pchl) was slightly higher in GL (6.6 mg P kg–1) than SAV soils (5.4 mg P kg–1), and significantly lowest in CR (2.6 mg P kg–1). Two days after labeling the soil with carrier free 33P, 25, 10 and 2% of the added 33P were found in Pchl in GL, SAV and CR soils, respectively, suggesting a high and rapid microbial P turnover that was highest in GL soils. Indicators of P mineralization were higher in GL than CR soils, suggesting a greater transformation potential to render Po available. Legume-based pastures (GL) can be considered as an important land-use option as they stimulate P cycling. However, it remains to be investigated whether crops planted in pasture–crop rotations could benefit from the enhanced Po cycling in grass–legume soils. Furthermore, there is need to develop and test a direct method to quantify Po mineralization in these systems.  相似文献   

12.
骆驼刺幼苗氮素特征对不同灌溉量的响应   总被引:4,自引:0,他引:4  
氮素在植物所有必需营养元素中是限制生长的首要元素。氮素的来源和分配不但影响氮素利用效率,而且与氮素的周转和内循环有密切关系。为了解极端干旱区深根系植物的氮素特征(生物固氮、氮素分配、氮素利用效率),在塔克拉玛干沙漠南缘的策勒绿洲,依托策勒荒漠草地生态系统国家野外科学观测研究站,以骆驼刺幼苗为研究对象,采用15N稳定同位素法和分层分段挖根法,对3种灌溉量(CK、0.1、0.2m3/m2)下骆驼刺幼苗的氮素特征进行了1个生长季内的动态研究。结果表明:⑴灌溉提高生物固氮,但是灌溉量过多抑制生物固氮。在生长季末,3个灌溉量下的生物固氮比例分别为30.0%、42.8%、11.3%;生物固氮质量分别为0.4、0.8、0.2g/株。(2)灌溉使得分配到骆驼刺幼苗茎、叶中的氮素比例、氮素质量增加,根中氮素质量增加,在生长季初,分配到叶的氮素质量最大,分配到根中的氮素质量最小,在生长季末,3种灌溉量下根中氮素比例高达49.2%、44.5%、55.0%;灌溉有利于增加氮素利用效率,但是,灌溉量过多会降低氮素利用效率。在生长季末,3种灌溉量(CK、0.1、0.2m3/m2)下氮素利用效率分别是:77.9、104.3、84.5。(3)试验中,通过比较不同灌溉量对骆驼刺幼苗氮素特征的影响,发现0.1m3/m2灌溉量为较佳灌溉量。  相似文献   

13.
The nitrogen cycle describes the processes through which nitrogen is converted between its various chemical forms. These transformations involve both biological and abiotic redox processes. The principal processes involved in the nitrogen cycle are nitrogen fixation, nitrification, nitrate assimilation, respiratory reduction of nitrate to ammonia, anaerobic ammonia oxidation (anammox) and denitrification. All of these are carried out by micro-organisms, including bacteria, archaea and some specialized fungi. In the present article, we provide a brief introduction to both the biochemical and ecological aspects of these processes and consider how human activity over the last 100?years has changed the historic balance of the global nitrogen cycle.  相似文献   

14.
Animals that modify their physical environment by foraging in the soil can have dramatic effects on ecosystem functions and processes. We compared bacterial and fungal communities in the foraging pits created by bilbies and burrowing bettongs with undisturbed surface soils dominated by biocrusts. Bacterial communities were characterized by Actinobacteria and Alphaproteobacteria, and fungal communities by Lecanoromycetes and Archaeosporomycetes. The composition of bacterial or fungal communities was not observed to vary between loamy or sandy soils. There were no differences in richness of either bacterial or fungal operational taxonomic units (OTUs) in the soil of young or old foraging pits, or undisturbed soils. Although the bacterial assemblage did not vary among the three microsites, the composition of fungi in undisturbed soils was significantly different from that in old or young foraging pits. Network analysis indicated that a greater number of correlations between bacterial OTUs occurred in undisturbed soils and old pits, whereas a greater number of correlations between fungal OTUs occurred in undisturbed soils. Our study suggests that digging by soil-disturbing animals is likely to create successional shifts in soil microbial and fungal communities, leading to functional shifts associated with the decomposition of organic matter and the fixation of nitrogen. Given the primacy of organic matter decomposition in arid and semi-arid environments, the loss of native soil-foraging animals is likely to impair the ability of these systems to maintain key ecosystem processes such as the mineralization of nitrogen and the breakdown of organic matter, and to recover from disturbance.  相似文献   

15.
Venezuelan savannas are exposed to land‐use changes and biological invasions which compromise their persistence and function. The native C4 grass Trachypogon plumosus is the most important component of the savannas under diverse combinations of climate and soils, suggesting substantial interpopulation variation. We examined quantitative traits and isozyme variation of nine populations of this grass and related these estimates to geographical and environmental features of sampled locations. Isozyme diversity estimates were based on 10 polymorphic enzyme systems whereas 21 quantitative traits, from field and controlled growth conditions, were evaluated. Distance matrices for quantitative traits, isozyme, geographical and environmental data were subjected to clustering analysis. Correspondence between quantitative trait distance and genetic distance, and their association to geographical and environmental distances were analysed with Mantel tests. All quantitative traits differed significantly among populations. The average QST calculated for eight quantitative traits measured in the greenhouse was 0.157. Isozyme diversity differed significantly among populations. About 28% of total isozyme variation occurred among populations. Significant positive associations were detected between environmental, quantitative field traits, and geographical distance as well as between the later and genetic distances. Genetic distances did not correspond significantly with quantitative traits nor did environmental distances. Ecologically meaningful associations were detected between field quantitative traits, environmental, and geographical data using cluster analysis. Our results support the hypothesis that processes of the neutral type are mainly responsible for the variation patterns observed in T. plumosus populations in Venezuelan savannas. Variation observed for quantitative traits among populations seems to be due to the effect of environmental conditions on phenotypically plastic traits, and not the result of directional selection favouring different phenotypes in different populations.  相似文献   

16.
引黄灌区土壤有机碳密度剖面特征及固碳速率   总被引:2,自引:0,他引:2  
为揭示灌溉耕作对土壤有机碳密度剖面(0—100 cm)分布产生的影响,通过在宁夏引黄灌区进行实地调查与采样,以无灌溉耕作的自然土壤作为对照,研究不同灌溉耕作时间序列下灌区土壤有机碳密度的剖面分布特征,并估算其平均固碳速率。结果表明:灌区土壤有机碳含量具有随土层深度增加而下降的剖面分布特征,灌溉耕作对增加表层土壤有机碳含量作用最明显;灌区土壤剖面碳密度与灌溉耕作时间和土壤类型均显著相关(P0.01),相关系数分别为0.63和0.74,且因灌溉耕作时间和土壤类型的不同,土壤有机碳密度差异性显著(P0.05);灌溉耕作影响的土层深度及剖面土壤有机碳密度的增加量因灌溉耕作时间长短的不同而异;引黄灌区5类土壤的平均固碳速率为0.53 MgC·hm-2·a-1。引黄灌溉耕作在增加农田土壤固碳中发挥着重要作用。  相似文献   

17.
Five microhabitat types with varying degrees of bird influence were examined. Soils were collected from open polygons, under mosses and bird nests on a nunatak with breeding snow petrels (Pagodroma nivea) and from open polygons and under mosses on a non-bird nunatak. Nutrient levels (total N and P, nitrate, nitrite and ammonia), moisture levels and δ 15N values were determined and the organic processes of nitrogen fixation (acetylene reduction) and soil respiration (CO2 flux) were examined. Nests represented the most favourable microhabitat type for soil respiration having the highest nutrient levels and most favourable temperature and moisture regimes. The soils under mosses were also favourable and appear to act as a nutrient sink for nutrients originating from the nests. The open polygons were the least favourable for biological activity. There was little nitrogen fixation in any of the soils except for the soils under mosses from the non-bird nunatak. Fixation is possibly limited in favourable microhabitat types on the bird nunatak by high nitrogen levels. These results were confirmed by the δ 15N results, which had high values typical of a seabird signal in the soils from the bird nunatak and values near zero, typical of soils containing fixed nitrogen, on the non-bird nunatak. Received: 3 March 1997 / Accepted: 30 March 1998  相似文献   

18.
19.
The widespread use of the term Systems Biology (SB) signals a welcome recognition that organisms must be understood as integrated systems. Although just what this is taken to mean varies from one group to another, it generally implies a focus on biological functions and processes rather than on biological parts and a reliance on mathematical modeling to arrive at an understanding of these biological processes based on biological observations or measurements. SB, thus, falls directly in the line of reflection carried out by Robert Rosen throughout his work. In the present article, we briefly introduce the various currents of SB and then point out several ways Rosen's work can be used to avoid certain pitfalls associated with the use of dynamical systems models for the study of complex systems, as well as to inspire a productive path forward based on loosely organized cooperation among dispersed laboratories.  相似文献   

20.
Second only to water among limiting factors, nitrogen controls the fertility of most arid regions. Where dry and wet depositions are weak, as in the western US deserts, N inputs rely heavily on biological N(2) fixation. Topsoil cyanobacterial communities known as biological soil crusts (BSCs) are major N(2) fixation hot spots in arid lands, but the fate of their fixed N remains controversial. Using a combination of microscale and mesoscale process rate determinations, we found that, in spite of theoretically optimal conditions, denitrification rates in BSCs were paradoxically immaterial for nitrogen cycling. Denitrifier populations within BSCs were extremely low. Because of this absence of denitrification, and because of the limitation of respiration and ammonia oxidation by diffusive O(2) supply, we could demonstrate that BSCs function as net exporters of ammonium, nitrate and organic N to the soils they cover, in approximately stoichiometrically equal proportions. Overall export rates during periods of biological activity are in the range of tens to hundreds of mumol-N m(-2) h(-1), commensurate with those of N(2) fixation. These results explain the long-term dependence of BSCs on N(2) fixation, confirm their role in landscape fertility, and provide a robust argument for conservation of these endangered communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号