首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aggregate structure of vegetation has long provided a strong conceptual basis for understanding the ecological separation of faunal species, while correspondence with plant species composition remains largely underdeveloped and considered secondary to structure. Longstanding ecological debate on the matter has likely been sustained by statistical methods incapable of accommodating an entire species composition in the explanatory role. We used direct ordination methodologies (predictive co‐correspondence and canonical correspondence analyses) that allow the comparison of prediction levels between composition and structure for understanding avian assemblage composition in a temperate forestland in southeastern Ohio. Compositional (birds and woody plants) and structural (both vertical and horizontal dimensions) data were collected from point samples comprising a spectrum in topography and successional state. Total woody plant composition (11.22%) explained more (cross‐validatory) variation in avian species composition than structure, quantified with dense LiDAR recordings (7.35%) and field methods (6.31%). Plant composition assumed an integrative character, synthesizing aspects of environmental condition, structure, and most likely species‐specific preferences for tree and shrub species that structural indices alone could not for predicting avian species composition. These results conflict with the traditional view that structure be most influential to avian assemblage composition. Instead these results demonstrate that plant and avian assemblages are closely linked, and that plant species per se can be a powerful tool for predicting avian habitat. More importantly, in furthering ecological understanding, it is critical to consider the complex web of interacting processes that make up temperate forest ecosystems, in which composition occupies a key position.  相似文献   

2.
Despite recent modelling approaches integrating the effects of niche-based processes and dispersal-based processes on local plant species composition, their relative importance is still not clear. We test whether the predictability of local species composition from environmental conditions is influenced by dispersal traits. We analyzed a large database with co-occurrence data, using ordination techniques (DCA and CCA) to identify the major environmental determinants of species composition. The percentage of explained variance in occurrence was quantified for individual species with CCA. Effects of life-history traits on the predictability of occurrence patterns were tested by means of regression analysis, using a generalized linear models approach. The results reveal close correlations between species composition and environmental conditions, implying that the predictability of the set of species that might occur in a given environmental setting ("habitat species pool") is high. The habitat species pool, however, reflects the potential species composition, and not the actual local situation. At the level of individual species, a large proportion (>90%) of the variation in occurrence remained unexplained. Predictability of species occurrence patterns was increased by a greater capacity for long-distance dispersal, greater adult longevity and the capacity to build a persistent seed bank. The results indicate that the predictability of species composition from environmental conditions is reduced by a few orders of magnitude by dispersal limitation and that poor dispersers are underrepresented.  相似文献   

3.
The specificity of the species composition of the ichthyofauna in the Russian and Korean waters in the Sea of Japan/East Sea (northwards from 35°17′N) is considered. The population and the proportion of species from the order of the perch-like fishes (Perciformes) steadily decline from the south towards the north; the proportion of the species from the order of the ray-finned fish (Scorpaeniformes) tends to rise. The northward latitudinal gradient in the family composition variability results in a decrease of their numbers along with a significant increase in the sculpins (Cottidae) and the picklebacks (Stichaeidae) in the species composition. In the southernmost region of the studied water area, the sublittoral species tend to prevail; in all of the others, the elittoral species are predominant. The four northern areas are characterized by a high similarity in the species composition (81.8%); this value is significantly lower (63.1%) in case of their comparison with the more southern areas. The similarity in the ichthyofauna composition between the southernmost area and the other studied water area comprises 44.1%.  相似文献   

4.
阿拉善荒漠啮齿动物集合群落实证研究   总被引:3,自引:2,他引:1  
当生态学家探求在破碎化的栖息地中,群落物种的共存机制、多样性、局域尺度的性质和过程被放到更广阔的时空框架内时,就出现了"集合群落"这一概念。Leibold提出了集合群落概念,他们将一个集合群落定义为局域群落集,这些群落由各个潜在的相互作用的物种的扩散连接在一起。集合群落理论描述了那些发生在集合群落尺度上的过程,并且提出思考关于物种相互作用的新方法。集合群落概念为群落生态学提供了一个新的革命性的范式,集合群落研究的最基本问题是同一系统中多物种共存的机理、多样性的形成原因与维持机制。该范式强调区域范围内群落中的综合变异,强调环境特证和栖息地之间通过扩散调节的生物相互作用和空间变化。Leibold等提出了解释集合群落结果理论上的4个生态范式,即(1)中性理论;(2)斑块动态理论;(3)物种分配理论;(4)集团效应理论。之后有大量有关检验这4种生态理论的研究,但是有关陆地脊椎动物系统的集合群落的研究较少。2010—2012年,通过在内蒙古阿拉善荒漠景观中的8个固定样地中,对啮齿动物、栖息地环境因子进行调查。利用冗余分析和偏冗余分析,评估环境特征和空间特征对物种组成的影响。结果表明,环境特征独自解释72.8%的啮齿动物物种组成变化,空间特征独自解释33.8%的物种组成变化,环境特征和空间特征共同解释86.5%的啮齿动物物种组成变化,结果显著(P=0.032);去除环境特征之后,空间特征解释13.7%的变化(P=0.246),结果不显著;去除空间特征之后,栖息地变化解释52.7%的变化(P=0.016);环境特征和空间特征的交互作用解释20.1%的物种组成的变化,该区域啮齿动物群落构成集合群落,物种共存中环境特征起着主导作用,由物种分配理论解释该集合群落结构。  相似文献   

5.
The alteration of natural tree species composition is defined as the deviation of the current tree species composition from that of the natural state. It can be used as a measure of human influence on forest vegetation, and thus as an indicator of the naturalness of forest vegetation. The aim of the study was to develop a standard procedure for estimating the alteration of natural tree species composition, to explain factors driving alteration and to examine its significance for susceptibility of forest stands to natural disturbances. The alteration of natural tree species composition was estimated for the Dinaric region (5556 km2, Slovenia) by the Robič Index of Dissimilarity (RID), ranging from 0 (completely natural) to 100 (completely altered). The index was calculated on the compartment level (24 ha each on average) with data on current and potential natural forest vegetation. The influence of human activities on tree species alteration was examined by using topographic and accessibility variables. The susceptibility of forest stands to natural disturbances was analysed with data on sanitary felling. In the study area, the natural tree species composition of forest stands is moderately preserved; the average value of RID was 50.05, ranging from 1.76 to 100, and the coefficient of variation was 0.49. The alteration of the natural tree species composition of forest stands is primarily the result of forest management and past land use, conditioned either by topography or accessibility of forests. The degree of alteration of tree species composition decreased along the gradients of rockiness, inclination and elevation. A greater degree of alteration appeared on the slopes of intermediate and south facing aspects than on north facing slopes, and in areas that were closer to the forest edge. A higher level of alteration significantly increases the susceptibility of forest stands to natural disturbances. The procedure represents a novel approach in modelling the alteration (naturalness) of tree species composition of forest vegetation. It is applicable at different spatial scales and fosters an understanding of the patterns of tree species composition under the influence of human activity across forest landscapes.  相似文献   

6.
There are 132 curculionids associated with deciduous trees in eastern Europe and western Siberia. The weevils and bark beetles make up the basis of the fauna, forming almost 80%. The fauna of oak is the richest (64 species). The species composition on the ash-tree (50% are monophages) is highly original. Impoverishment of the species composition from the west to the east is revealed. The fauna declines by 18% from 45 to 55° E. The species composition reduces two times beyond the Urals. The faunal boundaries are revealed from west to east and from east to west. The most significant boundary (47% of the fauna do not pass it) for distribution of species to the east is situated between 40 and 45° E. Two significant faunal boundaries are revealed from south to north. The fauna of curculionids of deciduous trees is formed by four groups of species. The southern European species (54%) and western palaearctic species (40%) dominate. The species composition of the studied territory is similar to the fauna of Middle Europe. Formation of the modern fauna of curculionids of deciduous trees in eastern Europe probably occurred in the Holocene. The western Palaearctic and Transpalaearctic species could have occupied the considered territory since the Late Pleistocene. Southern European species appeared in the considered territory after the Valdai glaciation during the warming in the Atlantic period of the Holocene. Penetration of East Palaearctic species began rather recently (last few decades), probably due to climate warming and economic activities.  相似文献   

7.
For successful conservation and restoration of biodiversity, it is important to understand how diversity is regulated. In the ecological research community, a current topic of interest is how much of the variation in plant species richness and composition is explained by environmental variation (niche-based model), relative to spatial processes (neutral theory). The Yellow River Estuary (YRE) is a newly formed and fragile wetland ecosystem influenced by both the Yellow River and Bohai Bay. Here, we applied variance partitioning techniques to assess the relative effects of spatial and environmental variables on species richness and composition in the YRE. We also conducted a species indicator analysis to identify characteristic species for three subestuaries within the YRE. Partial redundancy analysis showed that the variations in species richness and composition were explained by both environmental and spatial factors. The majority of explained variation in species richness and composition was attributable to local environmental factors. Among the environmental variables, soil salinity made the greatest contribution to species abundance and composition. Soil salinity was the most important factor in the Diaokou subestuary, while soil moisture was the most important factor influencing species richness in the Qingshui and Chahe subestuaries. The combined effects of soil salinity and moisture determined species richness and composition in the wetlands. These results increase our understanding of the organization and assembly of estuarine plant communities.  相似文献   

8.
The species richness of ecosystems can remain stable over time, despite changes in species composition and changes in the dominant plant species. While this pattern of stability is known to occur temporally, it has been examined poorly in a spatial context. To examine this spatially, the species richness, diversity and composition of native woodlands (of oak and bay trees) and exotic woodlands (of eucalypt trees) were compared in California. Species richness was nearly identical for understorey plants, leaf‐litter invertebrates, amphibians and birds; only rodents had significantly fewer species in eucalypt sites. Species diversity patterns (using the Shannon–Wiener Index) were qualitatively identical to those for species richness, except for leaf‐litter invertebrates, which were significantly more diverse in eucalypt sites during the spring. Species composition was different between sites, as evidenced by a principal components analysis, coefficients of similarity, and the relatively few species shared between native and eucalypt sites. Thus, the consistency in richness and diversity observed for most groups, in most seasons, occurred despite significant differences in species composition. These results are consistent with previous demonstrations of temporal stability, suggesting that species richness may often be stable, both temporally and spatially, despite changes in composition and regardless of the dominant vegetation.  相似文献   

9.
The destruction and fragmentation of tropical forests are major sources of global biodiversity loss. A better understanding of anthropogenically altered landscapes and their relationships with species diversity and composition is needed in order to protect biodiversity in these environments. The spatial patterns of a landscape may control the ecological processes that shape species diversity and composition. However, there is little information about how plant diversity varies with the spatial configuration of forest patches especially in fragmented tropical habitats. The northeastern part of Puerto Rico provides the opportunity to study the relationships between species richness and composition of woody plants (shrubs and trees) and spatial variables [i.e., patch area and shape, patch isolation, connectivity, and distance to the Luquillo Experimental Forest (LEF)] in tropical forest patches that have regenerated from pasturelands. The spatial data were obtained from aerial color photographs from year 2000. Each photo interpretation was digitized into a GIS package, and 12 forest patches (24–34 years old) were selected within a study area of 28 km2. The woody plant species composition of the patches was determined by a systematic floristic survey. The species diversity (Shannon index) and species richness of woody plants correlated positively with the area and the shape of the forest patch. Larger patches, and patches with more habitat edge or convolution, provided conditions for a higher diversity of woody plants. Moreover, the distance of the forest patches to the LEF, which is a source of propagules, correlated negatively with species richness. Plant species composition was also related to patch size and shape and distance to the LEF. These results indicate that there is a link between landscape structure and species diversity and composition and that patches that have similar area, shape, and distance to the LEF provide similar conditions for the existence of a particular plant community. In addition, forest patches that were closer together had more similarity in woody plant species composition than patches that were farther apart, suggesting that seed dispersal for some species is limited at the scale of 10 km.  相似文献   

10.
We studied patterns of variation in species composition of flea assemblages on small mammals across different habitats of Slovakia and compared flea species composition within and across host species among habitats. We asked (1) how variable the composition of flea assemblages is among different populations of the same host occurring in different habitats and (2) whether the composition of flea assemblages in a habitat is affected either by species composition of hosts or by environmental affinities of this habitat. Between-habitat similarity in flea species composition increased with an increase in the similarity in host species composition. Species richness of flea assemblages of a host species correlated positively with mean number of cohabitating host species but not with the number of habitats occupied by a host species. Results of the ordination of flea collections from each individual host demonstrated that the first five principal components explained most of the variance in species composition of flea assemblages. The segregation between rodent and insectivore flea assemblages was easily discerned from the ordination diagram when flea assemblages were plotted according to their hosts. When flea assemblages were plotted according to their habitat affinities, the distinction of habitats based on variation in flea composition was not as clear. The results of ANOVA of each principal component showed the significant effect of both host species and habitat type. The variation in each principal component was explained better by the factor of host species compared with the factor of habitat type. Multidimensional scaling of flea assemblages within host species across habitats demonstrated that among-habitat variation in flea composition was manifested differently in different hosts.  相似文献   

11.
Aim The biogeography of microbes is poorly understood and there is an open debate regarding if and how microbial biodiversity is structured. At the beginning of the 20th century, Baas Becking laid the foundations for the biogeography of microbes by stating that ‘Everything is everywhere, but the environment selects’ (the EisE hypothesis). This hypothesis remained dogma for almost a century. However, the recognition that microbial ‘species’ are often assemblages of reproductively isolated lineages challenged the EisE hypothesis, leading to the now common assumption that microbial communities possess cryptic biogeographic structures. We tested the presence of a cryptic biogeographical structure for a well‐characterized fungal species complex (the Phialocephala fortinii s.l.–Acephala applanata species complex, PAC) using precise molecular species resolution. In addition, we analysed factors that could govern PAC community assembling. Locations Forty‐four study sites in temperate and boreal forests across the Northern Hemisphere were included. Methods (1) The distance–decay relationship among PAC communities was calculated and a resampling procedure was applied to analyse the effect of sampling intensity and geographic distances among PAC communities. (2) Factors shaping PAC communities (e.g. climatic factors and tree species composition) were studied. (3) We tested PAC communities for random composition. Results We found that the similarity of species assemblages did not decrease with increasing geographical distance. Moreover, species diversity did not increase by expanding the area sampled. Instead, species diversity increased by increasing the sampling effort. Community composition correlated neither with tree species composition nor climate, and no association among species was observed. Main conclusions We could not discover any cryptic biogeographic structure even after applying refined species assignment but we demonstrate the importance of sampling effort for understanding the biogeography of microorganisms. Moreover, we show that primarily stochastic effects are responsible for the species composition of PAC communities.  相似文献   

12.
Nested structures of species assemblages have been frequently associated with patch size and isolation, leading to the conclusion that colonization–extinction dynamics drives nestedness. The ‘passive sampling’ model states that the regional abundance of species randomly determines their occurrence in patches. The ‘habitat amount hypothesis’ also challenges patch size and isolation effects, arguing that they occur because of a ‘sample area effect’. Here, we (a) ask whether the structure of the mammal assemblages of fluvial islands shows a nested pattern, (b) test whether species’ regional abundance predicts species’ occurrence on islands, and (c) ask whether habitat amount in the landscape and matrix resistance to biological flow predict the islands’ species composition. We quantified nestedness and tested its significance using null models. We used a regression model to analyze whether a species’ relative regional abundance predicts its incidence on islands. We accessed islands’ species composition by an NMDS ordination and used multiple regression to evaluate how species composition responds to habitat amount and matrix resistance. The degree of nestedness did not differ from that expected by the passive sampling hypothesis. Likewise, species’ regional abundance predicted its occurrence on islands. Habitat amount successfully predicted the species composition on islands, whereas matrix resistance did not. We suggest the application of habitat amount hypothesis for predicting species composition in other patchy systems. Although the island biogeography perspective has dominated the literature, we suggest that the passive sampling perspective is more appropriate for explaining the assemblages’ structure in this and other non‐equilibrium patch systems. Abstract in Portuguese is available with online material.  相似文献   

13.
Variation in the spatial structure of communities in terms of species composition (beta diversity) is affected by different ecological processes, such as environmental filtering and dispersal limitation. Large rivers are known as barriers for species dispersal (riverine hypothesis) in tropical regions. However, when organisms are not dispersal limited by geographic barriers, other factors, such as climatic conditions and geographic distance per se, may affect species distribution. In order to investigate the relative contribution of major rivers, climate and geographic distance on Passeriformes beta diversity, we divided Amazonia into 549 grid cells (1° of latitude and longitude) and obtained data of species occurrence, climate and geographic position for each cell. Beta diversity was measured using taxonomic, phylogenetic and functional metrics of composition. The influence of climatic variables, geographic distance and rivers on these metrics was tested using regression analyses. Passerine beta diversity is characterized mainly by the change in species taxonomic identity and in phylogenetic lineages across climatic gradients and over geographic distance. However, species with similar traits are found throughout the entire Amazonia. The size of rivers was proportional to their effect on species composition. However, climate and geographic distance are relatively more important than rivers for Amazonian taxonomic and phylogenetic species composition.  相似文献   

14.
A study was carried out in Sariska Tiger Reserve in India to investigate the effects of anthropogenic disturbance caused by biomass extraction on the bird communities of tropical dry forests. The study was based on comparisons of the avifaunal community as well as vegetation structure between strictly protected ('undisturbed') and intensively used ('disturbed') sites that were demarcated a priori on the basis of disturbance indicators. There was no significant difference in the number of recorded species and bird abundance between disturbed and undisturbed sites. However, bird species diversity was significantly lower in disturbed sites. Bird species composition was found to differ significantly between disturbed and undisturbed sites and was associated with the measured disturbance indicators. Changes in bird species composition occurred because of seven of 26 locally abundant bird species (26.9%) responding significantly to the disturbance regime. All the affected bird species are primarily insectivorous. Bird species composition was significantly related to six vegetation structural variables, including two that were significantly altered by disturbance. Changes in vegetation structure accounted for all the changes in bird species composition caused by disturbance. However, vegetation structure had additional effects on bird species composition besides those caused simply by disturbance. Thus, our study indicates that forest use in the form of chronic biomass extraction can have significant effects upon bird diversity and species composition of tropical dry forest. There is a need to retain a proportion of natural ecosystems as inviolate if the full complement of biodiversity is to be conserved.  相似文献   

15.
该研究采用样方结合样线调查的方法,并综合文献资料,于1983年和2013年2次对帽儿山国家森林公园植物种类进行实地调查,并进行了区系特征的对比分析,为评估帽儿山国家森林公园植物保护状况提供依据。结果表明:(1)2013年研究区的植物科数量和组成与1983年相同,但2013年比1983年少20属60种,不同等级科组成差异较小,而不同等级属差异较大。(2)优势科组成差异较小,但2013年兰科(Orchidacea)由优势科变成了非优势科,而藜科(Chenopodiaceae)和松科(Pinaceae)由非优势科变成优势科;优势属组成差异较大,2013年比1983年少了8个优势属。(3)2次调查表征科组成变化较大,但表征属组成差异较小,2013年比1983年少了2个表征属。(4)1983年和2013年科、属、种的分布型均以温带性分布为主;科的分布型完全相同,属的分布型2013年比1983年少了地中海区-西亚至中亚分布型;种的分布型,2013年比1983年多了亚洲-北美-北极分布。研究认为,30年间帽儿山国家森林公园的植物区系构成基本稳定,说明对这一区域的植物保护总体有效,但属和种的数量明显减少,30年间物种多样性显著降低,尤其是某些重要的科,如兰科植物的减少,也说明植物保护现状依然不容乐观。  相似文献   

16.
Jurasinski G  Koch M 《Oecologia》2011,167(4):893-902
A consistent terminology for species diversity is subject of an ongoing debate. Recently Tuomisto (Oecologia 164:853–860, 2010) stated that a consistent terminology for diversity already exists. The paper comments on recent papers by ourselves (Jurasinski et al. Oecologia 159:15–26, 2009) and by Moreno and Rodriguez (Oecologia 163:279–282, 2010). Both started from Whittaker’s diversity concept to discuss the ambiguities of the terminology and propose a new, more consistent terminology that is based on the different approaches to diversity analysis. In contrast, Tuomisto adheres to a strict school of thinking and derives a diversity framework in the sense of Whittaker (alpha, beta, gamma) from the conceptual definition of diversity itself. A third group of papers discusses appropriate methods for the analysis of the variation in species composition. Here, we support the idea that alpha, beta and gamma diversity should be used in a strict sense that is based only on the conceptual definition of diversity. We accordingly extend and modify our terminological concept for species diversity. All approaches to the analysis and quantification of species composition and diversity can be assigned to three abstraction levels (species composition, variation in species composition,and variation in variation in species composition) and two scale levels (sample scale, aggregation scale). All methods that investigate the variation in species composition across scale levels evaluate beta relation with beta diversity being just one form of beta relation, which is calculated by dividing gamma diversity of order q by the appropriate alpha diversity of the same order. In contrast, differentiation refers to a pairwise calculation of resemblance in species composition. It is restricted to sample scale and is therefore most often only an intermediate step of analysis. Many ecological questions can be addressed either by direct analysis of the variation in species composition using raw data approaches or by further analysis of differentiation datasets on aggregation scale with or without respect to an external gradient.  相似文献   

17.
We assessed the effects of both biotic processes and abiotic factors on the community composition of vascular plant species and invertebrates at a site in northern Norway. Plant species were assigned to functional (woody versus herbaceous) and biogeographic (boreal versus alpine) groups. Invertebrate species were classified as either herbivore or predator. When species interactions and effects of the abiotic environment were partitioned, boreal species appeared to influence the distribution of alpine species and woody species the distribution of herbaceous species. Analysis of partial correlations indicated that facilitation was the dominant mode of interaction between the two pairs of plant groups. Among abiotic factors, the thermal environment probably influenced all components of the plant and invertebrate communities, except for predatory invertebrates, and wind appeared important in determining the composition of woody and alpine components of the plant community but not the herbaceous component. The composition of the boreal component of the plant community apparently influenced the composition of all invertebrate communities, except for predatory invertebrates. The composition of the woody component of the plant community influenced the composition of both herbivore and predator communities. The alpine plant-community composition influenced predatory invertebrate community composition. Woody plant community composition influenced the composition of both herbivore and predator communities. Our analytic approach, based on two kinds of structural equation models (d-separation and path analysis), provides a useful method for identifying the biotic as well as abiotic factors that influence community structure.  相似文献   

18.
Abstract. I studied cryptogam (i.e. bryophyte and lichen) communities on fallen logs in the Duke Forest, Durham and Orange Counties, North Carolina, USA, to determine the relationship of log characteristics and microsite to community composition. Species composition and abundance were estimated for 111 randomly selected fallen logs. Interior wood samples were used to identify the tree species. I determined physical and chemical characteristics for each log, and described the log microsite. Canonical Correspondence Analysis (CCA) detected a clear gradient in cryptogam species composition which is correlated with the species of log and the presence of bark. Communities on hardwood bark, hardwood wood, and pine substrates were the most distinct. CCA also revealed that the microsite is not as closely related to species composition as are substrate pH and density. The majority of the cryptogam species encountered on the fallen logs are commonly reported from other substrates in the forest. However, within the habitat type of fallen logs, several species were apparently restricted to certain substrate types.  相似文献   

19.
The results of a study of diatoms from surface sediments (0–1 cm) of Amurskiy Bay are presented for the first time. The specific composition (221 species and intraspecific taxa) and ecological structure of the diatom flora were determined. The diatom species composition of phytoplankton, periphyton, and surface sediments is compared.  相似文献   

20.
刘璐  刘志成  杨瑞莹  张任菲  李豪  许晓明 《生态学报》2020,40(24):9129-9137
为探究永定河干涸段河流廊道的植物群落结构特征及多样性特征,给永定河河道防护林、水源涵养林建设等提供科学的理论依据,通过对河流廊道植物群落的实地调查,对124个植物群落进行了TWINSPAN数量分类,并探究了不同层次间的物种多样性的区别以及垂直和水平梯度上的分布格局。结果表明:(1)植物群落包括9种群丛类型,其中优势群丛为"狗尾草+猪毛菜+尖头叶藜群丛"、"狗尾草群丛"和"加杨-狗尾草+蒺藜群丛"。(2)草本层物种的丰富程度和均匀程度整体大于乔木层,且物种组成复杂程度的变化幅度更大。(3)从垂直梯度上看,植物群落乔木层上游的物种结构组成较下游更加丰富、整体分布更加均匀,草本层从上游到下游物种组成的丰富程度和均匀程度先降低后升高、再降低;从水平梯度上看,越靠近左、右两堤,乔木层的物种结构组成越丰富、分布越均匀,左堤的物种组成较右堤更加复杂且分布更加均匀,草本层的物种多样性在水平梯度上变化较大,在靠近左堤的位置物种组成最丰富。影响乔木层物种多样性变化的主要原因是人类活动干扰的强度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号