首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
北部湾近岸海域浮游动物群落结构特征及季节变化   总被引:2,自引:0,他引:2  
庞碧剑  蓝文陆  黎明民  李天深 《生态学报》2019,39(19):7014-7024
2017年3月(枯水期)、7月(丰水期)和10月(平水期)分别对北部湾近岸海域44个站位的浮游动物进行了调查。结果共检出浮游动物251种和浮游幼体24类,其中枯水期138种(类),丰水期134种(类),平水期191种(类),分属河口低盐、近岸暖温、近岸暖水和外海暖水4个生态类群。优势种9种,其中枯水期以原生动物占绝对优势,丰水期以枝角类、桡足类和浮游幼体类占优势,平水期以十足类和浮游幼体类占优势。浮游动物丰度年均值为789.95个/m~3,呈现出枯水期(1540.19个/m~3)明显高于平水期(457.58个/m~3)和丰水期(372.08个/m~3)的季节变化特征;浮游动物生物量年均值为252.40 mg/m~3,生物量的季节变化与丰度变化不一致,平水期生物量(385.01 mg/m~3)明显高于枯水期(221.41 mg/m~3)和丰水期(150.78 mg/m~3)。多样性指数平水期最高(3.16),丰水期(2.35)次之,枯水期(2.22)最低。枯水期和丰水期北部湾近岸海域浮游动物生物量和丰度水平分布特征基本呈现自河口近岸海域向外海递增的趋势,平水期浮游动物生物量与丰度的空间分布较为均匀。浮游动物的种类组成结构以及优势种的演替对浮游动物的生物量和丰度季节变化有着重要的决定作用。径流导致的悬浮物、营养盐等的变化可能是决定北部湾近岸海域浮游动物生物量和丰度空间分布的主要因素。研究还表明与其他海湾相比,北部湾近岸海域浮游动物群落结构趋于小型化,需加大关注。  相似文献   

2.
M. Gophen 《Hydrobiologia》1984,113(1):249-258
Monthly averages of standing stock wet biomass of zooplankton in Lake Kinneret (Israel) varied between 11 and 76 g m–2 during 1969–1981, with the exception of two months. Averaged contributions of different groups were: Cladocera 58%, Copepoda 35% and Rotifera 7%. Total standing crop wet biomass is highest during January–June, averages varied between 35 and 50 g m–2, and decreases during summer–fall (23–36 g m–2). The winter biomass of Cladocera fluctuated between 22 and 35 g m–2 and dropped to a range of 9–23 g m–2 in summer, whereas copepod biomass varied very little around an average of 18 g (ww) m–2 with the exception of low values from April to June. The stock biomass of Rotifera is relatively high during winter floods season (December-March) whilst in summer it is very low.Young stages of fish in Lake Kinneret feed mostly on zooplankton and zoobenthic forms. The most abundant fish in the Kinneret ecosystem, Mirogrex terraesanctae terraesanctae, also feed on zooplankton at the adult stage throughout the year, and herbivorous fish consume zooplankton during the summer when lake plankton resources are limited.The summer ecosystem of Lake Kinneret is characterised as a steady state type, in which the impact of the zooplankton-chain is of great importance. Increase of predation pressure on zooplankton by fish can disequilibrate the balanced trophic relations existing between nannoplankton production and zooplankton grazing capacity. Such a situation can lead to organics accumulation as nannoplankton blooms, resulting in water quality deterioration. Management options aimed at preventing collapse of zooplankton populations are discussed.  相似文献   

3.
The seasonal fluctuation in the zooplankton community of Azibo reservoir (Portugal), was studied from November 1986 till November 1987.Fifty-three species of Protozoa, Rotifera, Copepoda and Cladocera were found. The zooplankton community was numerically dominated by rotifers, which represented 66% of the total.The highest rotifer density was reached in the beginning of spring. It decreased after the cladocerans peaked in May.Copepods had two maxima, one in April and another one in September.Although protozoans rose to high densities during winter (1.07 × 105 ind m–3), their contribution to total biomass was small (2.03%).  相似文献   

4.
The article describes quantitative and structural characteristics of zooplankton of polytypic sites of a water system including a lake, canal, and a water reservoir. It is shown that in the littoral zone of lakes and water reservoirs, the number of species and communities is higher, and biomass, lower. However, in the littoral zone of shallow lake zooplankton in number, took priority due to Rotifera, in the deep part of the water body – Rotifera and Cladocera; in the center of the lake zooplankton dominated by biomass due to Cladocera and Copepoda, in the water reservoir—due to the Copepoda. The dam area of the water reservoir had the highest species richness of zooplankton among all studied sites. The greatest number and biomass of zooplankton within a waterbody are noted in upper part, where a sedimentation zone had formed, and as a whole for the system of the investigated waterbodies, the maximum quantity indices are typical of lake communities. It is revealed that the starkest interannual changes in zooplankton were observed in the shallow lake: the number of species decreased—in the littoral zone at the expense of Rotifera, and in the center, the biomass increased at the expense of Cladocera; in deep-water area of the dam area of the reservoir, conversely, the number of species, as well as the number and biomass of the community, increased due to Copepoda.  相似文献   

5.
J. Green 《Hydrobiologia》1993,267(1-3):249-256
Abstract The zooplankton of 38 East African lakes has been analysed in terms of species richness and dominance. The conductivities of the lakes range from 48 to 72 500 µS cm–1 20 °C. The lakes generally contain more species of rotifers than either Copepoda or Cladocera. The number of species of rotifers begins to decline at a conductivity below 1000 µS cm–1, and falls to 2 or 3 species above 3000 µS cm–1. Similar reductions occur in the Copepoda and Cladocera.Many species can be dominant at conductivities below 1000 µS cm–1, but the range is restricted progressively with increasing salinity. The dominant species of Rotifera, Copepoda and Cladocera change independently along the salinity gradient, but there are indications of interactions and modifications of community structure by predation and competition.  相似文献   

6.
The species richness of the crustacean zooplankton (Cladocera and Copepoda) and Rotifera in the Middle Niger-Sokoto Basin is characterised from 351 samples collected from 109 localities. 26(4) Cladocera, 18(8) Copepoda and 38(8) Rotifera are recorded. Figures in brackets indicate first records of species for Nigeria. Zooplancton associations of the Middle Niger are compared with one of its major tributaries, River Sokoto, and seven of its minor tributaries using similarity indices of Sørensen and Pearsons Product Moment Cluster Coefficients. The Rivers Sokoto and Shagari consistently had the highest similarity of zooplankton associations, for all combinations of rivers studied with r = 0.54 (Cladocera), r = 0.91 (Copepoda) and r = 0.54 (Rotifera). Zooplankton associations of the Middle Niger are weakly correlated with all tributaries studied (r < 0.1). Species composition and hydrology of the River Sokoto Basin are also compared with previous studies in Nigeria. A Principal Component Analysis of species abundance accounted for 54 % of the total variance. It again confirmed the similarity of the branches Sokoto and Shagari. Two groups of species assemblages were identified. The occurrence of Asplanchna sp., Testudinella patina and Microcyclops varicans in one group appears related to microhabitat selection. The other group made up of Brachionus calyciflorus calyciflorus, Macrothrix spinosa, Lecane luna, Thermocyclops decipiens and Metacyclops minutus is suspected to be linked to physico-chemistry. Further studies on the hydrology and physico-chemistry are required for definitive identification of both factors.  相似文献   

7.
Two insecticides, lindane (321 µg l–1) and deltamethrin (13 µg l–1) were employed in a four mesocosm experiment (two ponds of 10 m3 and two of 16 m3) to asses the impact of water pollution by pesticides. Resistance of the different zooplankton species was variable and depended upon both the group and the insecticide concentration. No effect of lindane was observed on macrozooplancton such as Cladocera and Copepoda. In the deltamethrin-treated pond, all species of zooplankton were found dead a day after the treatment. The microzooplankton (Rotifera and copepod nauplii) were highly susceptible to both insecticides. Although the larvae of Chaoborus were present in the ponds after the treatments, their density decreased (less than 1 individual l–1). The elimination of filter-feeding zooplankton by deltamethrin was followed by an increase of the concentration of chlorophyll a in the post-treatment period. Two months later the original zooplankton population recovered, with the addition of a new and dominant species: Ceriodaphnia reticulata.  相似文献   

8.
The composition and temporal abundance patterns of zooplankton community in Lake Prespa pelagic zone were studied throughout an annual cycle (October 2008–September 2009). Eighteen species (10 Rotifera, 5 Cladocera, 2 Copepoda, 1 Mollusca) were evidenced. It includes Arctodiaptomus steindachneri, an endemic calanoid of the Western Balkans. The zooplankton density varied during the investigated period and certain seasonal successions in temporal transpositions of their maximal development were noticed. The total zooplankton density was much higher in spring and summer period. The representatives of subclass Copepoda were dominant during the whole year. The dominant species was A. steindachneri. At the second place (with exception of the winter period) were the Cladocera representatives. The dominant species was Daphnia cucullata. At the third and fourth place were rotifers and larval form of Dreissena polymorpha, respectively. The quantitative presence of the Copepoda representatives was significantly lower in terms of the previous investigations. The Cladocera quantity reached high values during this period, particularly in summer. Such altering in the quantitative ratio between Copepoda and Cladocera in favor of the Cladocera, especially high quantitative presence of D. cucullata, typical for eutrophic lakes, imply of significant changes in zooplankton community and changes of the water quality in Lake Prespa pelagial.  相似文献   

9.
Poor quantity of zooplankton was recorded in a Danube arm situated on the right side of the Danube River in Slovakia (river km 1857) in 2002 and 2003. All over the year the arm is significantly influenced by groundwater by reason of seepage. Because of low mean water temperature (12°C) and poorly developed macrovegetation in particular, the arm reminds gravel pit-like. The annual average of zooplankton biomass was low and ranged from 0.35 g m−3 (2002) to 1.28 g m−3 (2003), because of low crustacean abundance. Total cladoceran abundance was excessively low in both years and ranged from 3.5 N L−1 (2002) to 16.6 N L−1 (2003). Small species, Bosmina longirostris and Chydorus sphaericus were dominant. Only four adult Copepoda — Cyclops vicinus, Thermocyclops crassus, Eurytemora velox and Eudiaptomus gracilis — were recorded in quantitative samples of both years. In the zooplankton assemblage dominated rotifers (Synchaeta pectinata, Synchaeta oblonga, Polyarthra dolichoptera and Keratella cochlearis) which represented 78% and 67% of total abundance respectively. The total of 19 species of rotifers, 34 Cladocera species and 16 taxa of Copepoda were found.  相似文献   

10.
This study documents for the first time both vertical and horizontal distribution patterns of the zooplankton community in Lake Kinneret during the period of thermal stratification. The zooplankton distribution patterns were explored in relation to abiotic (temperature, oxygen) and biotic (picocyanobacteria, ciliates, flagellates, phytoplankton, fish) environmental gradients. Sampling was carried out on 6–7 July 1992 at five stations and six depths from nearshore to offshore. Zooplankton abundance and biomass varied from 5 to 267 ind. l–1(mean: 95 ind. l–1), and from 0.1 to 65 d.w. mg m–3(mean: 24 d.w. mg m–3). Zooplankton taxonomic groups (Rotifera, Cladocera, Cyclopoida, Calanoida) and size classes (micro-, meso- and macrozooplankton) showed peaks of maximal density and biomass in the epilimnetic and metalimnetic strata (5 and 14 m). Depth, accounting for 31–39% of total spatial variation, reflected the vertical distribution of zooplankton in relation to temperature and oxygen declines, and the higher concentration of food resources (protists and phytoplankton) in the epilimnion and metalimnion. Onshore–offshore distance, accounting for 17–22% of the total spatial variance, reflected different distribution patterns shown among zooplankton groups and size classes. The macrozooplankton (Copepoda, Cladocera) was more abundant offshore, whereas microzooplankton (Rotifera and nauplii) predominated nearshore. These horizontal distribution patterns were related to small increases in temperature and phytoplankton biomass, and higher concentrations of fish in the littoral zone. Although limited to a short temporal scale, our study indicated that zooplankton spatial distribution in Lake Kinneret during the period of thermal stratification was related to physicochemical, food and predation factors, manifested differently along the vertical and nearshore–offshore gradients.  相似文献   

11.
The abundance, composition and dynamics of zooplankton were followed in two reservoirs of the River Douro catchment. The Serra Serrada Reservoir is subject to marked fluctuations in water levels. The highest values of total phosphorus, soluble reactive phosphorus, nitrate, water colour and chlorophyll a were found during the minimum level phase. Rotifera was dominant except in late summer and autumn when the cladoceran Ceriodaphnia quadrangula or the copepod Tropocyclops prasinus replaced them as the dominant zooplankton. Among the rotifers the most common taxa were Keratella cochlearis, Conochilus sp. and Asplanchna priodonta. Maximum rotifer density was about 80,000 ind m−3 in 2000, 200,000 ind m−3 in 2001 and 100,000 ind m−3 in 2002. Among the crustacean zooplankton C. quadrangula achieved densities of up to 45,000 ind m−3 and T. prasinus, up to 80,000 ind m−3. Canonical correspondence analysis revealed a strong contribution of the variation in the stored water volume, temperature, total phosphorus, chlorophyll, nitrates, and water transparency to the observed, significant association between zooplankton assemblage and environmental variables. In the Azibo Reservoir, fluctuations in water level are smaller. Only total phosphorus, cholorophyll and conductivity varied seasonally. Cladocera and Copepoda were dominant during the whole study period. The most abundant taxa were Ceriodaphnia pulchella, Daphnia longispina, Diaphanosoma brachyurum, Bosmina longirostris and Copidodiaptomus numidicus. Cladocera achieved densities of up to 25,000 ind m−3 and Copepoda up to 15,000 ind m−3. Rotifera in general reached densities of up to 6,000 ind m−3. On the basis of canonical correspondence analysis only temperature and conductivity were significantly associated with zooplankton assemblage.  相似文献   

12.
Phyto/zooplankton composition, chlorophyll a, and some water quality parameters were investigated in a spring-originated pond in Central Anatolia between February 2001 and January 2002. Water temperature, pH, dissolved oxygen, Secchi depth, total and calcium hardness, nitrate-nitrogen, nitrite-nitrogen, ammonia-nitrogen, total phosphorus, and soluble reactive phosphorus levels were analyzed. A total of 49 species belonging to Bacillariophyceae, Chlorophyceae, Cyanophyceae, Cryptophyceae, and Dinophyceae were identified. The highest phytoplankton abundance was found in August, whereas the lowest was determined in January. Phytoplankton abundance increased from February to August and declined in the following months. The Bacillariophyceae were dominant in the phytoplankton community. A total of 21 species of Rotifera, 2 species of Cladocera, and 1 genus of Copepoda were found. The zooplankton community was dominated by Rotifera. The highest abundance of zooplankton was recorded in July and the lowest value in November. The annual mean concentration of chlorophyll a was measured as 1.90 μg l−1. In spite of these eutrophic levels (mean values of total phosphorus and nitrate-nitrogen: 0.069 mg P l−1 and 0.68 mg N l−1), phytoplankton cannot grow satisfactorily because of the short water retention time (0.6 day−1). The shallowness of the pond together with the low phytoplankton biomass and the high concentrations of nutrients are discussed.  相似文献   

13.
Brancelj  Anton 《Aquatic Ecology》2021,55(4):1253-1271

Thirteen mountain lakes, originally fishless, at 1325 and 2150 m a.s.l., with the maximum depths ranging from two to 15 m, and areas of 0.3 to 4.5 ha, were monitored between 1991 and 2012 in the Triglav National Park (Slovenia, Central Europe). The lakes are located on limestone bedrock, with no surface inflow or outflow. They range from ultra-oligotrophic to hypertrophic. They were stocked with fish between late 1920s and 1996. The zooplankton samples were collected as composites from the bottom to the surface at the deepest point of the lake, for both qualitative and quantitative analyses. In situ physical parameters in the water column were measured, and the samples for chemical analyses were collected in parallel with the zooplankton sampling. Thirty-two species, including Copepoda, Cladocera, Rotifera and Ciliata, were recorded. They belonged to three ecological groups: (1) constitutive, (2) scout and (3) benthic species. In some of the lakes, the species composition remained stable over the study period, but in lakes stocked with fish, significant changes occurred, in both species composition and biomass. Large-bodied species of Copepoda and Cladocera were eliminated by fish allowing small-bodied planktonic species of Copepoda, Cladocera and Rotifera to dominate the community, along with benthic species, associated with algal mats. The lake, stocked with fish in the 1920s, was hit by two strong consecutive earthquakes, in 1998 and 2004, after which a significant change in species composition and biomass was recorded.

  相似文献   

14.
《农业工程》2014,34(3):141-147
Qinzhou Bay, the biggest bay in Guangxi Province, is very species-rich and is developing a robust marine economy. In recent years, as human impact has increased, problems associated with the environment have become more complicated. Measuring zooplankton diversity and abundance is a way to monitor environmental conditions. According to the data from four ecological surveys of the zooplankton in Qinzhou Bay during 2008 and 2009, a total of 134 species of zooplankton were identified, including 52 Copepoda species, 27 Medusa species, 14 Planktonic larvae, 9 Chaetognatha species, 8 Pteropoda species, 5 Amphipoda species, 4 Cladocera species, 4 Ostracoda species, 3 Thaliacea species, 2 Appendiculata species, 2 Sergestdae species, 2 Protlsta species, 1 Rotiera species and 1 Cumacea species. The fauna was clearly characterized as tropical population. The total species number was highest in autumn, followed by spring, winter and summer. Zooplankton species diversity in Qinzhou Bay has increased compared with the results obtained in 1983–1985 (83 species). However, compared with other bays, the number of zooplankton species in Qinzhou Bay is close to Daya Bay (128), higher than in Zhilin Bay (60), Jiaozhou Bay (81) and Luoyuan Bay (70), and far lower than in the north South Sea (709). We adopted the dominant index Y > 0.02 as the distinguishing standard of dominant species. The number of dominant species in spring, summer, autumn and winter were six, nine, eight and five. There was only one common dominant species (Penilia avirostris) appeared in different seasons, For summer and autumn, the shared dominant species numbered about four. Between other seasons, the shared dominant species varied between two and three. The number of uniquely dominant species was four in summer, three in autumn and one in both spring and winter. The dominant species in different seasons have some overlaps and some differences. The average biomass of zooplankton was 378 mg/m3 at all times of year. The average biomass was largest in autumn, followed by winter, and was the least in spring and summer. The average density of zooplankton for the entire year was 805.11 ind/m3. The average density was largest in summer, followed by winter, and was least in autumn and spring. Copepoda and Planktonic larvae were the major components of zooplankton in spring and summer at Qinzhou Bay, with the other species’ densities under 10%. In autumn, Copepoda, Planktonic larvae and Chaetognatha were the major components of the biomass, and in winter, the major species were Copepoda and Cladocera, with the others species’ density under 10%. The average value of the Shannon–Wiener diversity index (H′) was 3.84 and the evenness index (J′) was 0.77. The zooplankton diversity index and community evenness overall were good and the community organization had a complete and stable state, but the status of the community was relatively weak. The relationship between biomass/density of zooplankton and environmental factors is remarkable. Biomass and density are positively correlated with temperature and nutrient concentration, and are negatively correlated with salinity.  相似文献   

15.
A compilation of available data in between 1967 and 2002 on spring zooplankton abundance was made for the brackish and the freshwater zone of the Schelde estuary. The general picture is a significant increase of 1–2 orders of magnitude in abundance for Rotifera, Copepoda and Branchiopoda (mainly Cladocera) in the freshwater zone, while zooplankton abundance in the brackishwater zone remained more constant. Possible natural and management related causes for this increase in zooplankton abundance are briefly discussed.  相似文献   

16.
The species diversity, abundance, and biomass of zooplankton in the pelagic and coastal zones of Lake Kandrykul were studied in 2007–2012. The community was dominated by large Cladocera. The maximum abundance of zooplankton was observed in the anomalously warm 2010. In July, the highest abundance of zooplankton (1300 thousand ind./m3) was recorded near the southern coast in stands of mare′s-tail Hippurus vulgaris; that of biomass (9 g/m3) was found near the northern shore in stands of narrow-leaved cattail Typha angustifolia. The lowest values of the number and biomass of aquatic invertebrates were observed in the pelagial (32 thousand ind./m3 and 0.1 g/m3) and along the M5 motorway stretching aside the northeastern coast (188 thousand ind./m3 and 0.5 g/m3). The Shannon index value (1.3–2.1) corresponded to the meso-eutrophic type of water bodies. In 2007, according to the Mjaemets trophicity index (E), the lake ecosystem was oligotrophic (E 0.11); in 2010–2012 it was mesotrophic (in the pelagial, E value was 0.54; in the open littoral it was 0.76) or weakly eutrophic (E values of protected littoral were 1.52). The estimates of water trophy as assessed by zooplankton are close to those assessed by the number and biomass of phytoplankton (meso-eutrophic type). The rapid eutrophication of the lake ecosystem was revealed. In 6 years the trophic status of the lake changed from oligo-mesotrophic to meso-eutrophic.  相似文献   

17.
The qualitative composition and structure of the autumn zooplankton in the pelagic zone of Lake Sevan in years that were characterized by different abundancies of fish are described. In October 2013, upon the increase in whitefish abundance, the species richness of zooplankton increased insignificantly; the values of the trophic coefficient and the Shannon index, calculated by the number, increased; and the specific number of Rotifera and Cladocera decreased. At the same time, atypical changes were recorded in the development parameters of zooplankton invertebrates. They were expressed as an increase in the total biomass due to Cladocera, among which large Daphnia (Ctenodaphnia) magna Straus occupied the leading position. The possible reasons for the particular changes in zooplankton are discussed.  相似文献   

18.
A contrast between temperate and tropical Cladocera, Copepoda and Rotifera zooplankton fauna shows a markedly different size composition and species diversity. There are fewer species, and these are generally smaller in the tropics than in either the North or South Temperate Zones. Larger species of the genera Daphnia and Simocephalus are relatively rare in the tropics, while members of Eurycerus and Saycia are absent. Members of the families Holopedidae, Leptodoridae and Polyphemidae increase in abundance toward the temperate regions. Two small cyclopoid copepods are common in tropical zooplankton, while many of the common larger species of other regions are absent or very rare. The chief rotifer components are Keratella tropica and species of Brachionus.  相似文献   

19.
Long-term (1969–2002) data record of biomass distribution of rotifers in Lake Kinneret is combined with previously published information on their metabolic activity and newly calculated population dynamics parameters to synthesize a model of their seasonal dynamics in Lake Kinneret. Nineteen rotifer species were recorded in routine samples collected in Lake Kinneret (Israel) in 7 offshore (deeper than 5 m), stations, at 12 discrete depths during 1969–2002. Organisms were sorted and counted (including external egg carrying females), biomass was measured and calculated for the entire lake stock (gw.w m−2; mg l−1). Rates of grazing, respiration and production were measured experimentally at three different temperature ranges. Results were extrapolated to the lake community for months with similar temperatures. Rotifera comprised 7% of total zooplankton biomass in Lake Kinneret whilst Cladocera and Copepoda 58 and 35% respectively. Rotifers were found to be more abundant during December–June and decline in summer months. Monthly (1969–2001) means indicated total grazing capacity of rotifers as 11%, respiration as 9% and production as 3.7% of the total zooplankton metabolic activity. Positive relations were indicated between rotifer and small bodied cladoceran numerical concentrations. Population growth models suggest that rotifers are not food limited in Lake Kinneret but that fish predation plays an important role in regulating abundance in spring-summer and fall.  相似文献   

20.
水质酸化和模拟酸雨对浮游动物影响的研究   总被引:2,自引:1,他引:1  
在水质酸化和模拟酸雨试验中,共出现浮游动物17种,其中包括轮虫9种、枝角类6种和桡足类2种.在pH5.0-8.3各试验组出现种类数(10-13种)和个体数(223.0-334.5个·L-1)较多,而在pH3.0和4.5试验组出现种类数(5-9种)和个体数(16.8-182.0个·L-1)较少,表明pH5.0以下对浮游动物群落有明显的影响.从不同类群出现所占比例看,在pH5.5以下,随着pH的下降,存在着轮虫逐渐取代桡足类的趋势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号