首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cisplatin (CP) is a chemotherapeutic drug used in treatment of malignancies. However, its clinical utility is limited by nephrotoxicity. The purpose of the present study was to investigate the protective role of grape seed proanthocyanidin extract (GSPE) (100 mg/kg/day) or fish oil (FO) (5 ml/kg/day) against cisplatin induced nephrotoxicity in terms of biochemical parameters, oxidative stress and DNA damage. CP nephrotoxiciy is manifested by increased levels of serum creatinine, urea and uric acid, accompanied by their decrease in urine. Na, K and Ca levels were altered in both serum and urine. In addition, cisplatin caused a decrease in renal GSH, SH-group, SOD, GST, and Na–K–ATPase levels. However the levels of MDA, H2O2 and NO were increased. Also, we assessed the renal genotoxic potential of cisplatin as manifested by an increase in the tail length of DNA, tail intensity (DNA %) and tail moment. On the other hand, administration of GSPE or FO pre-cisplatin treatment ameliorated the current changes in most of the above tested parameters, particularly oxidative stress, endogenous antioxidant defense system and DNA damage indicating their curative effect. Thus, it can be concluded that the consumption of GSPE or FO might be useful for preventing nephrotoxicity caused by cisplatin treatment.  相似文献   

2.
The effect of vinblastine sulfate on gamma-radiation-induced DNA strand breaks in different tissues of tumour bearing mice, was studied by single-cell gel electrophoresis. Intraperitonial administration of different doses (0.25-2.0mg/kg body weight) of vinblastine sulfate 30 min prior to 4 Gy gamma-radiation exposure showed a dose-dependent decrease in the yield of DNA strand breaks in murine fibrosarcoma, blood leukocytes and bone marrow cells. The dose-dependent protection of cellular DNA against radiation-induced strand breaks as evidenced from comet tail length, tail moment and percent DNA in the tail, was more pronounced in bone marrow cells than in the cells of the tumor fibrosarcoma. In fibrosarcoma cells, the decrease in comet tail length, tail moment and percent DNA in the tail was detected at lower doses of vinblastine sulfate administration and these parameters were not significantly altered at higher doses, from that of the control irradiated. From this study, it appears that in addition to anticancer activity, vinblastine sulfate could offer protection to the normal tissues against gamma-radiation-induced DNA strand breaks.  相似文献   

3.
Salvinia natans L. response to hydrogen peroxide (H2O2) induced oxidative stress through physiological activities was evaluated. The plants were incubated with varying concentrations (0, 50, 100 µM) of H2O2 and 100 µM of H2O2 supplemented with 1 mM putrescine (Put) in hydroponic culture. This is observed with the decline in proline content and its biosynthetic enzymes viz. γ-glutamyl kinase and γ-glutamyl phosphate reductase activity. Protein carbamylated derivative by protein oxidation was another trait for oxidative damages by H2O2. The antioxidative enzymes like guaiacol peroxidase (GPX), glutathione reductase (GR), and catalase (CAT) recorded to express through in-gel staining with the H2O2 exposure. On nuclear level, plants were sensitive to H2O2 where the DNA disintegration was studied with comet assay and maximum comet tail observed at 100 µM H2O2 treatment. Application of Put reduced the generation of protein oxidation and comet tail length as well as moderated the enzyme activity as revealed through in-gel staining.  相似文献   

4.
The new dipalladium complex [Pd(2)(mu-mtpo-N(3),N(4))(2)(phen)(2)](NO(3))(2) (where phen=1,10-phenantroline; Hmtpo=5,7-dihydro-7-oxo-5-methyl[1,2,4]triazolopyrimidine), (Pd(2)-Hmtpo, or complex I), interacts effectively with DNA plasmid (pBS), as studied by circular dichroism spectroscopy (CD), causing large helix distortions, altering the direction of the main DNA helix axis and producing unwinding of the DNA double helix. DNA damage induced by complex I was highly significant at 2.81 microM (ovarian carcinoma TG cell line), as assessed by comet assay, a dose at which all treated nuclei showed more than 30% DNA migration to the comet tail. DNA damage effect is a consequence of genotoxicity and not a false positive response caused by cytotoxicity. In vitro cytotoxic assay on the two human tumor cell lines TG and BT-20 (breast carcinoma), shows that doses of 0.47, 1.41 and 2.81 microM produce significant antiproliferative effects after 4 days of treatment compared with control. Complex I was highly cytotoxic at 2.81 microM causing an inhibition of viable cells of 65.5%. Cisplatin (cis-DDP) exhibits lower cytotoxic activity in TG cells than dipalladium complex (a cisplatin dose of 6.67 microM inhibits 30.3%) and does not cause migration of DNA to comet tail.  相似文献   

5.
Although arsenic trioxide (ATO) has been the subject of toxicological research, in vitro cytotoxicity and genotoxicity studies using relevant cell models and uniform methodology are not well elucidated. Hence, the aim of the present study was to evaluate the cytotoxicity and genotoxicity induced by ATO in a human leukemia (HL-60) cell line using the MTT [3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] and alkaline single cell gel electrophoresis (Comet) assays, respectively. HL-60 cells were treated with different doses of ATO for 24 h prior to cytogenetic assessment. Data obtained from the MTT assay indicated that ATO significantly (P < 0.05) reduced the viability of HL-60 cells in a dose-dependent manner, showing a LD50 value of 6.4 ± 0.6 μg/mL. Data generated from the comet assay also indicated a significant dose-dependent increase in DNA damage in HL-60 cells associated with ATO exposure. We observed a significant increase (P < 0.05) in comet tail-length, tail arm and tail moment, as well as in percentages of DNA cleavage at all doses tested, showing an evidence of ATO-induced genotoxic damage in HL-60 cells. This study confirms that the comet assay is a sensitive and effective method to detect DNA damage caused by heavy metals like arsenic. Taken together, our findings suggest that ATO exposure significantly (P < 0.05) reduces cellular viability and induces DNA damage in HL-60 cells as assessed by MTT and alkaline single cell gel electrophoresis assays, respectively.  相似文献   

6.
This study was designed to examine the effect of aqueous extract of Crocus sativus stigmas (CSE) and crocin (trans-crocin 4) on methyl methanesulfonate (MMS)-induced DNA damage in multiple mice organs using the comet assay. Adult male NMRI mice in different groups were treated with either physiological saline (10 mL/Kg, intraperitoneal [ip]), CSE (80 mg/Kg, ip), crocin (400 mg/Kg, ip), MMS (120 mg/Kg, ip), and CSE (5, 20, and 80 mg/Kg, ip) 45 min prior to MMS administration or crocin (50, 200, and 400 mg/Kg, ip) 45 min prior to MMS administration. Mice were sacrificed about 3 h after each different treatment, and the alkaline comet assay was used to evaluate the effect of these compounds on DNA damage in different mice organs. The percent of DNA in the comet tail (% tail DNA) was measured. A significant increase in the % tail DNA was seen in nuclei of different organs of MMS-treated mice. In control groups, no significant difference was found in the % tail DNA between CSE- or crocin-pretreated and saline-pretreated mice. The MMS-induced DNA damage in CSE-pretreated mice (80 mg/Kg) was decreased between 2.67-fold (kidney) and 4.48-fold (lung) compared to those of MMS-treated animals alone (p < 0.001). This suppression of DNA damage by CSE was found to be depended on the dose, which pretreatment with CSE (5 mg/Kg) only reduced DNA damage by 6.97%, 6.57%, 7.27%, and 9.90% in liver, lung, kidney, and spleen, respectively (p > 0.05 as compared with MMS-treated group). Crocin also significantly decreased DNA damage by MMS (between 4.69-fold for liver and 6.55-fold for spleen, 400 mg/Kg), in a dose-dependent manner. These data indicate that there is a genoprotective property in CSE and crocin, as revealed by the comet assay, in vivo.  相似文献   

7.
Repeated non‐invasive sampling of zebrafish Danio rerio sperm was conducted, sperm counts were obtained and a method for measurement of DNA damage in sperm was developed and validated (single‐cell gel electrophoresis, comet, assay). DNA damage in sperm increased with concentration of hydrogen peroxide (H2O2, 0–200 µM), and in vitro exposure of sperm to 200 µM H2O2 produced 88·7 ± 3·9% tail DNA compared to unexposed controls [12 ± 0·7% tail DNA (mean ± s.e ., n = 3)]. Frequency of sperm sampling (sampled every 2, 4 or 7 days) did not affect DNA damage in sperm, but sperm counts decreased 57 and 22% for fish sampled every 2 or 4 days, respectively.  相似文献   

8.
Flavonoids are a class of secondary metabolites abundantly found in fruits and vegetables. In addition, flavonoids have been reported as potent antioxidants with beneficial effects against oxidative stress-related diseases such as cancer, aging, and diabetes. The present study was carried out to investigate the cytoprotective effects of morin (2′,3,4′,5,7-pentahydroxyflavone), a member of the flavonoid group, against hydrogen peroxide (H2O2)-induced DNA and lipid damage. Morin was found to prevent the cellular DNA damage induced by H2O2 treatment, which is shown by the inhibition of 8-hydroxy-2′-deoxyguanosine (8-OHdG) formation (a modified form of DNA base), inhibition of comet tail (a form of DNA strand breakage), and decrease of nuclear phospho histone H2A.X expression (a marker for DNA strand breakage). In addition, morin inhibited membrane lipid peroxidation, which is detected by inhibition of thiobarbituric acid reactive substance (TBARS) formation. Morin was found to scavenge the intracellular reactive oxygen species (ROS) generated by H2O2 treatment in cells, which is detected by a spectrofluorometer, flow cytometry, and confocal microscopy after staining of 2′,7′-dichlorodihydrofluorescein diacetate (DCF-DA). Morin also induces an increase in the activity of catalase and protein expression. The results of this study suggest that morin protects cells from H2O2-induced damage by inhibiting ROS generation and by inducing catalase activation.  相似文献   

9.
The protective properties of a prenylated coumarin, umbelliprenin (UMB), on the human lymphocytes DNA lesions were tested. Lymphocytes were isolated from blood samples taken from healthy volunteers. DNA breaks and resistance to H2O2-induced damage were measured using a single-cell microgel electrophoresis technique under alkaline conditions (comet assay). Human lymphocytes were incubated in UMB (10, 25, 50, 100, 200, and 400 μM) alone or a combination of different concentrations of UMB (10, 25, 50, 100, 200, and 400 μM) and 25 μM H2O2. Untreated cells, ascorbic acid (AA; 25, 50, 100, 200, and 400 μM) and H2O2 (25 μM) were considered as negative control, positive control, and the standard antioxidant agent for our study, respectively. Single cells were analyzed with “TriTek Cometscore version 1.5” software. The DNA damage was expressed as percent tail DNA. UMB exhibited a concentration-dependent increase in protection activity against DNA damage induced by 25 μM H2O2 (from 67.28% to 39.17%). The antigenotoxic activity of AA, in the range 0–50 μM, was greater than that of UMB. However, no significant difference (p > 0.05) in the protective activity was found between UMB and AA at concentrations of approximately higher than 50 μM.  相似文献   

10.
Two organophosphorus (OP) pesticides (chloropyriphos and acephate) and cyclophosphamide (CP) (positive control) were tested for their ability to induce in vivo genotoxic effect in leucocytes of Swiss albino mice using the single cell gel electrophoresis assay or comet assay. The mice were administered orally with doses ranging from 0.28 to 8.96 mg/kg body weight (b. wt.) of chloropyriphos and 12.25 to 392.00 mg/kg b.wt. of acephate. The assay was performed on whole blood at 24, 48, 72 and 96 h. A significant increase in mean comet tail length indicating DNA damage was observed at 24h post-treatment (P<0.05) with both pesticides in comparison to control. The damage was dose related. The mean comet tail length revealed a clear dose dependent increase. From 48 h post-treatment, a gradual decrease in mean tail length was noted. By 96 h of post-treatment the mean comet tail length reached control levels indicating repair of the damaged DNA. From the study it can be concluded that the comet assay is a sensitive assay for the detection of genotoxicity caused by pesticides.  相似文献   

11.
Ionic liquids (ILs) are generally considered as the green replacement for conventional volatile organic solvents. Nonetheless, their high solubility in water with proven toxic effects on aquatic biota has questioned their green credentials. In the present study, the detoxification potential of Acadian marine plant extract powder (AMPEP) prepared from the brown alga Ascophyllum nodosum was investigated against the 1-alkyl-3-methylimidazolium bromide [C12mim]Br ionic liquid-induced toxicity and oxidative stress in marine macroalga Ulva lactuca. The IL ([C12mim]Br) at LC50 (70 μM) exposure triggered the generation of reactive oxygen species (ROS) such as O 2 ·? , H2O2 and OH· causing membrane and DNA damage together with inhibition of antioxidant systems in the alga. The supplementation of AMPEP (150 μg mL?1) to the culture medium significantly reduced the accumulation of ROS and lipid peroxidation together with the inhibition of lipoxygenase (LOX) activity specially LOX-2 and LOX-3 isoforms. This is for the first time wherein comet assay was performed to ascertain the protective role of AMPEP against DNA damage in algal tissue grown in medium supplemented with IL and AMPEP. The AMPEP showed protective role against DNA damage (5–45 % tail DNA) when compared to those of grown in IL alone (45–70 % tail DNA). Further, specific isomorphs of different antioxidant enzymes such as superoxide dismutase (Mn-SOD-1, ~150 kDa), ascorbate peroxidase (APX-4, ~55 kDa), glutathione peroxidase (GSH-Px-2, ~55 kDa) and glutathione reductase (GR-1, ~180 kDa) responded specifically to AMPEP supplementation. It is evident from these findings that AMPEP could possibly be used for circumventing the negative effects arising from ILs-induced toxicity in marine ecosystem.  相似文献   

12.
The genotoxicity of 15 polycyclic aromatic hydrocarbons was determined with the alkaline version of the comet assay employing V79 lung fibroblasts of the Chinese hamster as target cells. These cells lack the enzymes necessary to convert PAHs to DNA-binding metabolites. Surprisingly, 11 PAHs, i.e., benzo[a]pyrene (BaP), benz[a]anthracene, 7,12-dimethylbenz[a]anthracene, 3-methylcholanthrene, fluoranthene, anthanthrene, 11H-benzo[b]fluorene, dibenz[a,h]anthracene, pyrene, benzo[ghi]perylene and benzo[e]pyrene caused DNA strand breaks even without external metabolic activation, while naphthalene, anthracene, phenanthrene and naphthacene were inactive. When the comet assay was performed in the dark or when yellow fluorescent lamps were used for illumination the DNA-damaging effect of the 11 PAHs disappeared. White fluorescent lamps exhibit emission maxima at 334.1, 365.0, 404.7, and 435.8 nm representing spectral lines of mercury. In the case of yellow fluorescent lamps these emissions were absent. Obviously, under standard laboratory illumination many PAHs are photo-activated, resulting in DNA-damaging species. This feature of PAHs should be taken into account when these compounds are employed for the initiation of skin cancer.The genotoxicity of BaP that is metabolically activated in V79 cells stably expressing human cytochrome P450-dependent monooxygenase (CYP1A1) as well as human epoxide hydrolase (V79-hCYP1A1-mEH) could not be detected with the comet assay performed under yellow light. Likewise the DNA-damaging effect of r-7,t-8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (anti-BaPDE) observed with the comet assay was only weak. However, upon inhibition of nucleotide excision repair (NER), which is responsible for the removal of stable DNA adducts caused by anti-BaPDE, the tail moment rose 3.4-fold in the case of BaP and 12.9-fold in the case of anti-BaPDE. These results indicate that the genotoxicity of BaP and probably of other compounds producing stable DNA adducts are reliably detected with the comet assay only when NER is inhibited.  相似文献   

13.
The influence of cisplatin, an anticancer agent, on DNA synthesis and cell cycle progression of a cisplatin-resistant cell line was investigated. Cell cycle analysis using flow cytometry showed that cytotoxic concentrations of cisplatin caused a transient inhibition of parental HeLa cells at S phase, followed by accumulation at G2 phase. In contrast, the resistant cells progressed through the cell cycle without being affected by the same treatment. However, cell cycle distributions were the same in the resistant and the parental cells at IC50, the drug concentration inhibiting cell growth by 50%. Studies using a [3H]thymidine incorporation technique also demonstrated a transient inhibition of DNA synthesis in HeLa cells by cisplatin; such inhibition was greatly reduced in the resistant cells. These data argue for the hypothesis that the inhibition of DNA synthesis is important in determining cisplatin-induced cytotoxicity. In addition, the accumulation of cells at G0/G1 by serum starvation was not effective in the resistant cells compared to the parental cells, suggesting that the control of cell cycle exiting is also altered in the resistant cells. Taken together, these results support the notion that alterations in cell cycle control, in particular G2 arrest, are important in determining the sensitivity or resistance of mammalian cells to cisplatin and may have a role in clinical protocols.  相似文献   

14.
Gold(III) compounds have been recognized as anticancer agents due to their structural and electronic similarities with currently employed platinum(II) species. An added benefit to gold(III) agents is the ability to overcome cisplatin resistance. This work identified four gold(III) compounds, [Au(Phen)Cl2]PF6, [Au(DPQ)Cl2]PF6, [Au(DPPZ)Cl2]PF6, and [Au(DPQC)Cl2]PF6, (Phen = 1,10-phenanthroline, DPQ = dipyrido[3,2-d:2′,3′-f]quinoxaline, DPPZ = dipyrido[3,2-a:2′,3′-c] phenazine, DPQC = dipyrido[3,2-d:2′,3′-f] cyclohexyl quinoxaline) that exhibited anticancer activity in both cisplatin sensitive and cisplatin resistant ovarian cancer cells. Two of these compounds, [Au(DPQ)Cl2]PF6 (AQ) and [Au(DPPZ)Cl2]PF6 (AZ), displayed exceptional anticancer activity and were the focus of more intensive mechanistic study. At the molecular level, AQ and AZ formed DNA adducts, generated free radicals, and upregulated pro-apoptotic signaling molecules (p53, caspases, PARP, death effectors). Taken together, these two novel gold(III) polypyridyl complexes exhibit potent antitumor activity in cisplatin resistant cancer cells. These activities may be mediated, in part, by the activation of apoptotic signaling.  相似文献   

15.
During erythropoiesis, some organelles such as mitochondria and nucleus are lost by autophagy and enucleation processes in the presence of macrophages in vivo. In vitro production of erythrocytes has raised many questions about the mechanism of enucleation. The aim of this work was to study the DNA breakdown, enucleation, hemoglobin synthesis and telomerase activity of K562 cells during erythroid differentiation. For these purposes, K562 cells were induced to differentiate by erythropoietin + rhGM-CSF, DMSO, and sodium butyrate separately up to 14 d. In different time intervals, hemoglobin synthesis was evaluated by benzidine staining and RT-PCR for γ-globin gene expression. DNA breakdown was analyzed by 4′,6-diamidino-2-phenylindole (DAPI) staining, DNA ladder electrophoresis and comet assay. The telomerase activity was evaluated by TRAP assay. Our result indicated that, sodium butyrate and DMSO inhibited K562 cell growth about 50–60% in comparison to untreated control cells. The percentage of benzidine-positive cells was about 45% in the presence of sodium butyrate after 10 d. Densitometric analysis of RT-PCR and calculated data indicated a 1.5-fold increase in relative γ-globin gene expression at 96 h, in the presence of 1 mM sodium butyrate in comparison with untreated cells. DAPI staining did not reveal any evidence of internal lysis of the nucleus during erythroid differentiation at first wk, but this was obvious in the second wk. DNA laddering pattern was not observed in differentiated cells during 14 d. In comet assay, the percentage of DNA in tail, tail length, and tail moment were significantly different between untreated and treated cells (p?<?0.05). Telomerase activity was inhibited up to 90.3% during erythroid differentiation of these cells.  相似文献   

16.
The aim of the present study was to evaluate both sensitivity and specificity of an in vivo skin comet assay using chemically treated, hairless mouse dorsal skin as a model. N-methyl-N'-nitro-N-nitrosoguanidine (MNNG, 0.0125-0.2%), 4-nitroquinoline-1-oxide (4NQO, 0.01-0.25%), mitomycin C (MMC, 0.0125-0.05%), benzo[a]pyrene (B[a]P, 0.25-2%), and 7,12-dimethylbenz[a]anthracene (DMBA, 0.25-1%) were each applied once to the dorsal skin of hairless male mice; after 3h, epidermal skin cells were isolated, and the alkaline comet assay was performed. The assay was performed after 24h for only the B[a]P and DMBA. Furthermore, B[a]P and DMBA were evaluated by alkaline comet assay using liver cells after both 3 and 24h. The mean percent of DNA (%DNA) in tail in the 0.05-0.2% MNNG and 0.1-0.25% 4NQO treatment groups was markedly higher than in the control group at 3h post-application. Although the mean %DNA values in the tail in the B[a]P and DMBA groups were the same as the controls at 3h post-application, the 2% B[a]P and 1% DMBA groups showed significantly higher values versus controls 24h after application. No significant increases in the mean %DNA in the tail were observed in the MMC group. No clear increases in %DNA in the tail were observed in the B[a]P and DMBA groups at 3 or 24h after application in the liver. These results suggest that the in vivo skin comet assay is able to accurately identify DNA-damaging potential with a skin-specific response and is a useful method to detect the DNA-damaging potential of genotoxic chemicals on the skin.  相似文献   

17.
Chromium is a well-documented carcinogen. To evaluate the genotoxic potential of hexavalent chromium on an aquatic bio-system, freshwater murrel fish (Channa punctatus) were exposed to potassium dichromate. The 96-h LC50 for potassium dichromate was 61.80 mg/L for the test fish in a static system. On the basis of the 96-h LC50, fish were exposed to sublethal concentrations of the test chemical. Fish exposed to the test chemical were sampled on days 1, 7, 14, 21, and 28 post-exposure and blood and gill cells were collected. Significantly (p < .05) higher DNA damage in both lymphocyte and gillcells and micronuclei formation in whole blood was observed at different test concentrations and sampling times of the test chemical as compared to control fish. The mean% tail DNA in the comet tail assay showed a concentration-dependent increase and the maximum% tail DNA was observed on day 7 of exposure in both cells. A similar trend was also observed in micronuclei induction in blood with maximum induction on day 21. Hexavalent chromium showed genotoxic potential in chronic exposure of C. punctatus, and the micronucleus test and the comet assay are the methods for sensitive and rapid detection of the genetic effects.  相似文献   

18.
In a prospective, double-blind, randomised placebo-controlled study, we tested the hypothesis that a new formulation consisting of wheat gliadin chemically combined with a vegetal (thus orally effective) preparation of superoxide dismutase (SOD) allows to prevent hyperbaric oxygen (HBO)-induced oxidative cell stress. Twenty healthy volunteers were exposed to 100% oxygen breathing at 2.5 ATA for a total of 60 min. DNA strand breaks (tail moments) were determined using the alkaline version of the comet assay. Whole blood concentrations of reduced (GSH) and oxidised (GSSG) glutathione and F2-isoprostanes, SOD, glutathione peroxidase (GPx) and catalase (Cat) activities and red cell malondialdehyde (MDA) content were determined. After HBO exposure the tail moment [Formula: See Text] and isoprostane levels [Formula: See Text] were significantly lower in the group that received the vegetal formulation. Neither SOD and Cat nor GSH and GSSG were significantly affected by this preparation or HBO exposure. By contrast, blood GPx activity, which tended to be lower in the SOD-group already before the HBO exposure [Formula: See Text] was significantly lower afterwards [Formula: See Text] We conclude that an orally effective SOD-wheat gliadin mixture is able to protect against DNA damage, which coincided with reduced blood isoprostane levels, and may therefore be used as an antioxidant.  相似文献   

19.
Oxidative stress, or the production of oxygen-centered free radicals, has been hypothesized as the major source of DNA damage that can lead to a variety of diseases including cancer. It is known that 8-hydroxy-deoxyguanosine (8-oxo-dG) is a useful biomarker of oxidative DNA damage. Our recent data showed that JWA, initially being cloned as a novel cell differentiation-associated gene, was also actively responsive to environmental stressors, such as heat-shock, oxidative stress and so on. In the present study, we have applied a modified comet assay and bacterial repair endonucleases system (endonuclease III and formamidopyrimidine glycosylase) to investigate if JWA is involved in hydrogen peroxide (H2O2)-induced DNA damage and repair in K562 and MCF-7 cells, and to demonstrate if the damage is associated with 8-oxo-dG. The results from the comet assay have shown that the average tail length and the percentage of the cells with DNA tails are greatly induced by H2O2 treatment and further significantly enhanced by the post-treatment of repair endonucleases. The H2O2-induced 8-oxo-dG formation in K562 and MCF-7 cells is dose-dependent. In addition, the data have clearly demonstrated that JWA gene expression is actively induced by H2O2 treatment in K562 and MCF-7 cells. The results suggest that JWA can be regulated by oxidative stress and is actively involved in the signal pathways of oxidative stress in the cells.  相似文献   

20.
The genotoxicity of 15 polycyclic aromatic hydrocarbons was determined with the alkaline version of the comet assay employing V79 lung fibroblasts of the Chinese hamster as target cells. These cells lack the enzymes necessary to convert PAHs to DNA-binding metabolites. Surprisingly, 11 PAHs, i.e., benzo[a]pyrene (BaP), benz[a]anthracene, 7,12-dimethylbenz[a]anthracene, 3-methylcholanthrene, fluoranthene, anthanthrene, 11H-benzo[b]fluorene, dibenz[a,h]anthracene, pyrene, benzo[ghi]perylene and benzo[e]pyrene caused DNA strand breaks even without external metabolic activation, while naphthalene, anthracene, phenanthrene and naphthacene were inactive. When the comet assay was performed in the dark or when yellow fluorescent lamps were used for illumination the DNA-damaging effect of the 11 PAHs disappeared. White fluorescent lamps exhibit emission maxima at 334.1, 365.0, 404.7, and 435.8 nm representing spectral lines of mercury. In the case of yellow fluorescent lamps these emissions were absent. Obviously, under standard laboratory illumination many PAHs are photo-activated, resulting in DNA-damaging species. This feature of PAHs should be taken into account when these compounds are employed for the initiation of skin cancer. The genotoxicity of BaP that is metabolically activated in V79 cells stably expressing human cytochrome P450-dependent monooxygenase (CYP1A1) as well as human epoxide hydrolase (V79-hCYP1A1-mEH) could not be detected with the comet assay performed under yellow light. Likewise the DNA-damaging effect of r-7,t-8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (anti-BaPDE) observed with the comet assay was only weak. However, upon inhibition of nucleotide excision repair (NER), which is responsible for the removal of stable DNA adducts caused by anti-BaPDE, the tail moment rose 3.4-fold in the case of BaP and 12.9-fold in the case of anti-BaPDE. These results indicate that the genotoxicity of BaP and probably of other compounds producing stable DNA adducts are reliably detected with the comet assay only when NER is inhibited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号