首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The kinetics of the S-state transitions of the oxygen-evolving complex were analyzed in dark-adapted, oxygen-evolving Photosystem-II preparations supplied with the electron acceptor 2,5-dichloro-p-benzoquinone. The kinetics of flash-induced absorbance changes at 350 nm, largely due to the successive S-state transitions S0 → S1, S1 → S2, S2 → S3 and S3 →; S0, confirm the +1, +1, +1, ?3 sequence of manganese oxidation reported earlier (Dekker, J.P., Van Gorkom, H.J., Wensink, J. and Ouwehand, L. (1984) Biochim. Biophys. Acta 767, 1–9), and reveal half-times of 30, 110, 350 and 1300 μs, respectively, for these transitions.  相似文献   

2.
3.
Ribonuclease mimics based on diimidazole derived constructs in combination with or without additional amino groups have been synthesized and conjugated to oligonucleotides. The imidazole moiety was used either unprotected, protected with a monomethoxytrityl group or a tert-butyloxy carbonyl group. Acylation reactions were carried out using the 3-acyl-1,3-thiazolidine-2-thione activation strategy. The peptides were coupled to the oligonucleotides with a mixture of PyBOP, DIEA an HOBt in DMF on solid support. The conjugates were purified by RP-HPLC and identified using negative ion mode mass spectrometry. Unfortunately, no cleavage of a linear RNA target under physiological conditions could be observed.  相似文献   

4.
The rate of linoleic acid peroxidation catalysed by soybean lipoxygenase I was studied as a function of the hydration degree of aerosol OT (bis(2-ethylhexyl) sulfosuccinate sodium salt) reversed micelles in octane. Lipoxygenase reaction parameters for the micelle-bound substrate were spectrophotometrically determined. The linoleic acid distribution between the micelles and octane was detected by the sedimentation method, with the concentration of linoleic acid in supernatant after settling of micelles (i.e. the concentration of free linoleic acid) being estimated by the enzymatic method. The apparent constant of linoleic acid distribution (the ratio of the bound and free substrate concentrations) was enhanced with increasing hydration of reversed micelles. The dependence of the enzymatic reaction rate on the bound substrate concentration obeyed the empiric Hill equation. The Hill coefficient remained practically constant (h = 1.34) as the hydration degree changed. Parameters of the lipoxygenase reaction, enzyme reaction limiting rate V and semi-saturation substrate concentration [S]0.5 increased with increasing degree of hydration and reached the optimum at [H2O]/[AOT] approximately 30, where dimensions of the micellar internal cavity coincided with those of the enzyme molecule. Some aspects of kinetic behavior of membrane-bound enzymes participating in chemical transformation of non-polar compounds dispersed in lipid phase are discussed.  相似文献   

5.
Lipoxygenase binds to Teflon or epoxy coated surfaces, presumably through a hydrophobic interaction. The kinetics of bound enzyme differ from the kinetics of free enzyme both in the effect of substrate concentration on velocity and in the dependence of the induction time on substrate concentration. The binding site for the product hydroperoxide appears to be masked when the enzyme is bound to hydrophobic surfaces. In vivo kinetic behavior of the enzyme may be more closely approximated by that of adsorbed enzyme than by free enzyme.  相似文献   

6.
Oxalate oxidase (EC 1.2.3.4) catalyzes the oxidative cleavage of oxalate to carbon dioxide and hydrogen peroxide. In this study, unusual nonstoichiometric burst kinetics of the steady state reaction were observed and analyzed in detail, revealing that a reversible inactivation process occurs during turnover, associated with a slow isomerization of the substrate complex. We have investigated the underlying molecular mechanism of this kinetic behavior by preparing recombinant barley oxalate oxidase in three distinct oxidation states (Mn(II), Mn(III), and Mn(IV)) and producing a nonglycosylated variant for detailed biochemical and spectroscopic characterization. Surprisingly, the fully reduced Mn(II) form, which represents the majority of the as-isolated native enzyme, lacks oxalate oxidase activity, but the activity is restored by oxidation of the metal center to either Mn(III) or Mn(IV) forms. All three oxidation states appear to interconvert under turnover conditions, and the steady state activity of the enzyme is determined by a balance between activation and inactivation processes. In O(2)-saturated buffer, a turnover-based redox modification of the enzyme forms a novel superoxidized mononuclear Mn(IV) biological complex. An oxalate activation role for the catalytic metal ion is proposed based on these results.  相似文献   

7.
Hydroperoxides, the products of lipoxygenase mediated pathways, play a major role in the manifestation of chronic inflammatory diseases. Soy isoflavones act as antioxidants due to their ability to scavenge free radicals. Isoflavones inhibit the activity of soy lipoxygenase-1 and 5-lipoxygenase, from human polymorph nuclear lymphocyte in a concentration dependent manner. Spectroscopic and enzyme kinetic measurements have helped to understand the nature and mechanism of inhibition. Genistein is the most effective inhibitor of soy lipoxygenase 1 and 5-lipoxygenase with IC(50) values of 107 and 125 microM, respectively. Genistein and daidzein are noncompetitive inhibitors of soy lipoxygenase 1 with inhibition constants, K(i), of 60 and 80 microM, respectively. Electron paramagnetic resonance and spectroscopic studies confirm that isoflavones reduce active state iron to ferrous state and prevent the activation of the resting enzyme. A model for the inhibition of lipoxygenase by isoflavones is suggested.  相似文献   

8.
The steady state kinetics of a Desulfovibrio (D.) vulgaris superoxide reductase (SOR) turnover cycle, in which superoxide is catalytically reduced to hydrogen peroxide at a [Fe(His)4(Cys)] active site, are reported. A proximal electron donor, rubredoxin, was used to supply reducing equivalents from NADPH via ferredoxin: NADP+ oxidoreductase, and xanthine/xanthine oxidase was used to provide a calibrated flux of superoxide. SOR turnover in this system was well coupled, i.e. approximately 2O*2 reduced:NADPH oxidized over a 10-fold range of superoxide flux. The reduction of the ferric SOR active site by reduced rubredoxin was independently measured to have a second-order rate constant of approximately 1 x 10(6) m-1 s-1. Analysis of the kinetics showed that: (i) 1 microM SOR can convert a 10 microM/min superoxide flux to a steady state superoxide concentration of 10(-10) m, during which SOR turns over about once every 6 s, (ii) the diffusion-controlled reaction of reduced SOR with superoxide is the slowest process during turnover, and (iii) neither ligation nor deligation of the active site carboxylate of SOR limits the turnover rate. An intracellular SOR concentration on the order of 10 microM is estimated to be the minimum required for lowering superoxide to sublethal levels in aerobically growing SOD knockout mutants of Escherichia coli. SORs from Desulfovibrio gigas and Treponema pallidum showed similar turnover rates when substituted for the D. vulgaris SOR, whereas superoxide dismutases showed no SOR activity in our assay. These results provide quantitative support for previous suggestions that, in times of oxidative stress, SORs efficiently divert intracellular reducing equivalents to superoxide.  相似文献   

9.
10.
Manganese lipoxygenase is secreted by the fungus Gaeumannomyces graminis. We expressed the enzyme in Pichia pastoris, which secreted approximately 30 mg Mn-lipoxygenase/L culture medium in fermentor. The recombinant lipoxygenase was N- and O-glycosylated (80-100 kDa), contained approximately 1 mol Mn/mol protein, and had similar kinetic properties (K(m) approximately 7.1 microM alpha-linolenic acid and V(max) 18 nmol/min/microg) as the native Mn-lipoxygenase. Mn-lipoxygenase could be quantitatively converted, presumably by secreted Pichia proteases, to a smaller protein (approximately 67 kDa) with retention of lipoxygenase activity (K(m) approximately 6.4 microM alpha-linolenic acid and V(max) approximately 12 nmol/min/microg). Putative manganese ligands were investigated by site-directed mutagenesis. The iron ligands of soybean lipoxygenase-1 are two His residues in the sequence HWLNTH, one His residue and a distant Asn residue in the sequence HAAVNFGQ, and the C-terminal Ile residue. The homologous sequences of Mn-lipoxygenase are H274VLFH278 and H462HVMN466QGS, respectively, and the C-terminal amino acid is Val-602. The His274Gln, His278Glu, His462Glu, and the Val-602 deletion mutants of Mn-lipoxygenase were inactive, and had lost >95% of the manganese content. His-463, Asn-466, and Gln-467 did not appear to be critical for Mn-lipoxygenase activity, as His463Gln, Asn466Gln, Asn466Leu, and Gln467Asn mutants metabolized alpha-linolenic acid to 11- and 13-hydroperoxylinolenic acids. We conclude that His-274, His-278, His-462, and Val-602 likely coordinate manganese.  相似文献   

11.
The air-stable complex [Fe(6-Me3-TPA) (O2CAr)]+ [1; 6-Me3-TPA = tris(6-methyl-2-pyridylmethyl)amine] has been synthesized as a model for the iron(II) site of lipoxygenase. This iron(II) complex reacts with 0.5 equiv ROOH to form a yellow species, which has been formulated as [FeIII(OH)(6-Me3-TPA) (O2CAr)]+ (2) by electrospray mass spectrometry. Addition of more ROOH converts 2 into a purple species, which is characterized by electrospray ionization mass spectrometry and resonance Raman spectroscopy as [FeIII(OOR)(6-Me3-TPA)(O2CAr)]+. The purple species is metastable and decomposes via Fe-O bond homolysis to regenerate the starting iron(II) complex. These metal-centered transformations parallel the changes observed for lipoxygenase in its reaction with its product hydroperoxide.  相似文献   

12.
The steady-state kinetics study and some enzymatic characterization of a selenium-containing scFv catalytic antibody (Se-scFv2F3) were carried out. A novel reaction formula of this abzyme-catalyzed reaction was proposed and a rate equation was obtained according to the formula. The constants in the equation were compared with Dalziel's parameters and the exact meanings of these constants were analyzed. The obtained kinetics parameters from the kinetics study of Se-scFv2F3 were analyzed and compared with those of native glutathione peroxidase.  相似文献   

13.
The redox potential of heme-peroxidases varies according to a combination of structural components within the active site and its vicinities. For each peroxidase, this redox potential imposes a thermodynamic threshold to the range of oxidizable substrates. However, the instability of enzymatic intermediates during the catalytic cycle precludes the use of direct voltammetry to measure the redox potential of most peroxidases. Here we describe a novel approach to estimate the redox potential of peroxidases, which directly depends on the catalytic performance of the activated enzyme. Selected p-substituted phenols are used as substrates for the estimations. The results obtained with this catalytic approach correlate well with the oxidative capacity predicted by the redox potential of the Fe(III)/Fe(II) couple.  相似文献   

14.
The interactions of selenite and tellurite with cytosolic and mitochondrial thioredoxin reductases (TrxR1 and TrxR2) and glutathione reductases (GR) from yeast and mammalian sources were explored. Both TrxR1 and TrxR2 act as selenite and tellurite reductases. Kinetic treatment shows that selenite has a greater affinity than tellurite with both TrxR1 and TrxR2. Considering both kcat and Km, selenite shows a better catalytic efficiency than tellurite with TrxR1, whereas with TrxR2, the catalytic efficiency is similar for both chalcogens. Tellurite is a good substrate for GR, whereas selenite is almost completely ineffective. Selenite or tellurite determine a large mitochondrial permeability transition associated with thiol group oxidation. However, with increasing concentrations of both chalcogens, only about 25% of total thiols are oxidized. In isolated mitochondria, selenite or tellurite per se does not stimulate H2O2 production, which, however, is increased by the presence of auranofin. They also determine a large oxidation of mitochondrial pyridine nucleotides. In ovarian cancer cells both chalcogens decrease the mitochondrial membrane potential. These results indicate that selenite and tellurite, interacting with the thiol-dependent enzymes, alter the balance connecting pyridine nucleotides and thiol redox state, consequently leading to mitochondrial and cellular alterations essentially referable to a disulfide stress.  相似文献   

15.
Two polyene polymers, cis-polybutadiene and cis-polyisoprene, were transformed into polyepoxides under mild conditions. The epoxidation of these two polyene polymers is stereospecific, giving cis-epoxides as products. All factors controlling the reaction rate, such as the nature of the catalyst, the oxygen donor and the presence of bases as axial ligands, were studied. The optimum results were obtained when iodosylbenzene was used as the oxygen donor, Mn(TpFPP)Cl as the catalyst and imidazole as the axial ligand. Under these optimum conditions the turnover number was found to be 71. These results render this system promising for the epoxidation of polyene polymers in a more general way.  相似文献   

16.
The primary life-supporting function of cytochrome c (cyt c) is control of cellular energetic metabolism as a mobile shuttle in the electron transport chain of mitochondria. Recently, cyt c's equally important life-terminating function as a trigger and regulator of apoptosis was identified. This dreadful role is realized through the relocalization of mitochondrial cyt c to the cytoplasm where it interacts with Apaf-1 in forming apoptosomes and mediating caspase-9 activation. Although the presence of heme moiety of cyt c is essential for the latter function, cyt c's redox catalytic features are not required. Lately, two other essential functions of cyt c in apoptosis, that may rely heavily on its redox activity have been suggested. Both functions are directed toward oxidation of two negatively charged phospholipids, cardiolipin (CL) in the mitochondria and phosphatidylserine (PS) in the plasma membrane. In both cases, oxidized phospholipids seem to be essential for the transduction of two distinctive apoptotic signals: one is participation of oxidized CL in the formation of the mitochondrial permeability transition pore that facilitates release of cyt c into the cytosol and the other is the contribution of oxidized PS to the externalization and recognition of PS (and possibly oxidized PS) on the cell surface by specialized receptors of phagocytes. In this review, we present a new concept that cyt c actuates both of these oxidative roles through a uniform mechanism: its specific interactions with each of these phospholipids result in the conversion and activation of cyt c, transforming it from an innocuous electron transporter into a calamitous peroxidase capable of oxidizing the activating phospholipids. We also show that this new concept is compatible with a leading role for reactive oxygen species in the execution of the apoptotic program, with cyt c as the main executioner.  相似文献   

17.
Anthrax lethal factor (LF) is a zinc-metalloprotease that together with the protective antigen constitutes anthrax lethal toxin, which is the most prominent virulence factor of the anthrax disease. The solution nuclear magnetic resonance and in silico conformational dynamics of the 105 C-terminal residues of the LF catalytic core domain in its apo form are described here. The polypeptide adopts a compact structure even in the absence of the Zn(2+) cofactor, while the 40 N-terminal residues comprising the metal ligands and residues that participate in substrate and inhibitor recognition exhibit more flexibility than the C-terminal region.  相似文献   

18.
The steady state kinetic study and some enzymic characterization of a selenium-containing scFv catalytic antibody (Se-scFv2F3) was carried out. A novel reaction formula of this abzyme-catalyzed reaction was proposed and a rate equation was gotten according to the formula. The constants in the equation were compared with Dalziel's parameters and the exact meanings of these constants were analyzed. The gotten kinetics parameters from the kinetics study of Se-scFv2F3 were analyzed and compared with that of native glutathione peroxidase.  相似文献   

19.
The dexamethasone binding capacity of embryonal carcinoma cells and their differentiated derivatives was investigated. Manipulation of the embryonal carcinoma cell-culture conditions resulted in an unstable reversible expression of the glucocorticoid receptors. Stable expression of the receptors is observed when these cells are induced to differentiate. Cells grown under identical conditions were assayed for their ability to bind epidermal growth factor.  相似文献   

20.
Absorbance changes at 450 nm of the semiquinone form of the secondary electron acceptor were studied in chromatophores of Rhodospirillum rubrum. When chromatophores are illuminated by a series of single turnover flashes ubisemiquinone is formed and destroyed on alternate flashes at ambient redox potential from 100 to 250 mV. A simple kinetic model of the binary oscillations is suggested. On the base of the model it is shown that the rate constant of electron transfer from primary to secondary quinone after the first flash is larger that after the second flash. Cooperativity in electron transfer from primary to secondary quinone can be explained by electrostatic interactions of charged carriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号