首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The possibility of using a microwave coaxial plasmatron (a microwave torch) as an efficient plasmachemical generator of nitric oxides in an air jet has been studied experimentally. A plasmachemical model of the generator is developed. Results of calculations by this model do not contradict experimental results. A conclusion about the mechanisms governing NOx production in a plasma torch is drawn by comparing the experimental and calculated results.  相似文献   

2.
Plasma Physics Reports - A subthreshold discharge excited by a microwave beam in air at pressures close to atmospheric is studied as a plasmachemical method of nitrogen oxide (NOx) production. It...  相似文献   

3.
In this study, microwave treatment is analyzed as a way to accelerate the hydrolysis in anaerobic digestion of municipal wastewater sludge. The influence of the absorbed energy, power and athermal microwave effect on organic matter solubilization and biogas production has been studied. In addition, a novel method that considers the absorbed energy in the microwave system is proposed, in order to obtain comparable experimental results. The absorbed energy is calculated from an energy balance.The highest solubilization was achieved using 0.54 kJ/ml at 1000 W, where an increment of 7.1% was observed in methane production, compared to the untreated sample. Using a higher energy value (0.83 kJ/ml), methane production further increased (to 15.4%), but solubilization decreased. No power influence was found when 0.54 kJ/ml was applied at 1000, 600 and 440 W. Microwave heating was compared to conventional heating in two different experimental setups, providing similar methane yields in all cases.  相似文献   

4.
Results are presented from experimental studies of the interaction of a high-enthalpy methane plasma bunch with gaseous methane in a plasmachemical reactor. The interaction of the plasma flow with the rest gas was visualized by using streak imaging and computer tomography. Tomography was applied for the first time to reconstruct the spatial structure and dynamics of the reagent zones in the microsecond range by the maximum entropy method. The reagent zones were identified from the emission of atomic hydrogen (the Hα line) and molecular carbon (the Swan bands). The spatiotemporal behavior of the reagent zones was determined, and their relation to the shock-wave structure of the plasma flow was examined.  相似文献   

5.
This study aims at the optimisation of a microwave pretreatment for wheat straw solubilisation and anaerobic biodegradability. The maximum yield of methane production was obtained at 150 °C with an improvement of 28% compared to an untreated sample. In addition, at this temperature, the time to reach 80% of the methane volume obtained from untreated straw was about 35%. The study of ramp time and holding time at targeted temperature showed that they had no improvement effect. Thus, the best conditions are the highest heating rate for a final temperature 150 °C without any holding time. The reading of energy consumed by pretreatment and energy overproduced by pretreated samples showed that increasing tVS amount and heating rate led to a saving of energy consumption. Nevertheless, to obtain a positive energy balance, a microwave device should consume less than 2.65 kJ/gtVS.  相似文献   

6.
The construction and operation of a low-cost poultry waste digester   总被引:1,自引:0,他引:1  
A simple and low-cost poultry waste digester (PWD) was constructed to treat the waste from 4000 caged laying hens on University Research Unit No. 2 at North Carolina State University. The system was built basically of a plastic lining with insulation, a heating system, a hot-water tank, and other metering equipment. It was operated at 50 degrees C and pH 7.5-8.0. The initiation of methane production was achieved using the indigenous microflora in the poultry waste. At an optimal loading rate (7.5 kg volatile solids/m(3) day), the PWD produced biogas (55% methane) at a rate of 4.0 m(3)/m(3) day. The PWD was biologically stable and able to tolerate temporary overloads and shutdowns. A higher loading rate failed to maintain a high gas production rate and caused drops in methane content and pH value. Under optimal conditions, a positive energy balance was demonstrated with a net surplus of 50.6% of the gross energy. For methane production, the PWD system was proved to be technically feasible. The simple design and inexpensive materials used for this model could significantly reduce the cost of digestion compared to more conventional systems. More studies are needed to determine the durability, the required maintenance of the system, and the most economical method of biogas and solid residue utilization.  相似文献   

7.
The application of microwave dielectric heating in a range of environment-related heterogeneous catalytic reaction systems has been reviewed. The reactions investigated include the decomposition of hydrogen sulfide, the reduction of sulfur dioxide with methane, the reformation of methane by carbon dioxide, the hydrodesulfurization of thiophene, and the oxidative coupling of methane. The interaction of microwave irradiation with heterogeneous catalytic systems and its consequence for the microwave heating behaviour of catalysts have been examined. The effect/mechanism of microwave dielectric heating on heterogeneous catalytic reaction systems has also been discussed.  相似文献   

8.
The most important parameter responsible for the quality of high-aspect structures produced by plasmachemical etching is the angular distribution of ions near the processed surface. In this work, the effect of collisions and gas pressure on the angular distributions of ions and chemically active radicals in the chamber of a high-pressure plasmachemical reactor with a remote plasma source is analyzed theoretically.  相似文献   

9.
Microwave induced pyrolysis of oil palm biomass   总被引:2,自引:0,他引:2  
The purpose of this paper was to carry out microwave induced pyrolysis of oil palm biomass (shell and fibers) with the help of char as microwave absorber (MA). Rapid heating and yield of microwave pyrolysis products such as bio-oil, char, and gas was found to depend on the ratio of biomass to microwave absorber. Temperature profiles revealed the heating characteristics of the biomass materials which can rapidly heat-up to high temperature within seconds in presence of MA. Some characterization of pyrolysis products was also presented. The advantage of this technique includes substantial reduction in consumption of energy, time and cost in order to produce bio-oil from biomass materials. Large biomass particle size can be used directly in microwave heating, thus saving grinding as well as moisture removal cost. A synergistic effect was found in using MA with oil palm biomass.  相似文献   

10.
A new form of discharge excited by a microwave beam in a high-pressure (up to atmospheric and higher) gas in free space and in a closed chamber is discussed. For the first time, the discharge was implemented by means of a gyrotron with a pulse power of 200 ≤ P ≤ 600 kW, a pulse duration of 0.5 ≤ τ ≤ 20 ms, and a wavelength of λ = 0.4 cm. Under deeply subthreshold conditions in atmospheric-pressure air, a plasma column with a length of L = 50 cm was generated by a microwave beam formed with the help of a quasi-optical transmission line. With the use of the MIG-3 gyrotron complex with the above parameters, generation of a plasma column with a length of several meters is possible in principle. The parameters and structure of the formation of the plasma investigated make it possible to class it as a self-non-self-sustained (SNSS) discharge, discovered and described for the first time at the Prokhorov General Physics Institute, Russian Academy of Sciences. One of the important applications of this type of discharge is plasmachemical cleaning of the urban air environment of hazardous contaminants.  相似文献   

11.
Results are presented from experimental studies of the energy spectra of an electron beam in a model beam-plasma oscillator based on a hybrid plasma waveguide in the pulsed mode of microwave generation with a pulse duration of 1 µs or shorter. The beam energy spent on sustaining the beam-plasma discharge in a slow-wave structure is measured. A correlation between the type of excited waves and the generation of a group of accelerated beam electrons with energies exceeding the injection energy is revealed. It is shown that the pulsed mode of microwave generation is related to the time variations in the plasma density profile in the waveguide and the trapping of beam electrons by the excited microwave field.  相似文献   

12.
13.
Plasma Physics Reports - A subthreshold microwave discharge in atmospheric-pressure air is used to process mixtures of mercaptans (thiols) with air and with air and methane. It is found that, at...  相似文献   

14.
Molecular simulation was used to study methane adsorption and its effect on kaolinite swelling. The effects of temperature and pressure were also analysed. The comparisons which validate the force field and model in our paper were made between simulation and experiment. Simulation results demonstrate that adsorption behaviour of methane exhibit Langmuir adsorption behaviour. The temperature has a negative effect on gas adsorption, the adsorption amounts will decrease with increasing temperature at a given pressure. A quantitative relationship between the methane adsorption and the kaolinite swelling was provided. The kaolinite–methane interaction dominates and the methane–methane interaction contributes less than 20% to the total interaction energy. The first peak in the RDFs increases with the increasing pressure, illustrating that the system becomes less structured at higher pressure. Compared with the higher temperature, the first peaks at lower temperature increase as a higher amount of methane adsorbed indicating that the interaction between the kaolinite and methane increase with decreasing temperature. Methane is strongly adsorbed on the sites of the hydrogen and oxygen atoms in kaolinite molecules.  相似文献   

15.
Regulation by reversible, covalent modification of proteins requires a continuous expenditure of energy, even in a steady-state situation. The cost of this energy drain is evaluated for the case of an effector controlling the modifying enzyme and an effector controlling the demodifying enzyme and for the case of dual control in which an effector activates one of these enzymes and inhibits the other. Energy consumption is determined when the converter enzymes are functioning in the first-order and zero-order domains. The profile of energy expenditure versus fractional protein modification at steady state varies both as a function of the mechanism of control of the converter enzymes and of the kinetic domain in which they operate. This theory allows one to predict the strategies that would minimize energy costs. Dual control appears to provide maximum sensitivity with minimal energy expenditure. The analysis is applied to two experimental systems. Comparison of ATP turnover rates with rates for individual modification enzymes in living systems shows that a significant fraction of the total energy expenditure of an organism is required for the large number of reactions which involve covalent modification of proteins. It is concluded that there will be selection pressure for energy-efficient control of covalent regulation.  相似文献   

16.
Liquid and gaseous fuels from biotechnology: challenge and opportunities   总被引:3,自引:0,他引:3  
Abstract: This paper presents challenging opportunities for production of liquid and gaseous fuels by biotechnology. From the liquid fuels, ethyl alcohol production has been widely researched and implemented. The major obstacle for large scale production of ethanol for fuel is the cost, whereby the substrate represents one of the major cost components. Various scenarios will be presented for a critical assessment of cost distribution for production of ethanol from various substrates by conventional and high rate processes. The paper also focuses on recent advances in the research and application of biotechnological processes and methods for the production of liquid transportation fuels other than ethanol (other oxygenates; diesel fuel extenders and substitutes), as well as gaseous fuels (biogas, methane, reformed syngas). Potential uses of these biofuels are described, along with environmental concerns which accompany them. Emphasis is also put on microalgal lipids as diesel substitute and biogas/methane as a renewable alternative to natural gas. The capturing and use of landfill gases is also mentioned, as well as microbial coal liquefaction. Described is also the construction and performance of microbial fuel cells for the direct high-efficiency conversion of chemical fuel energy to electricity. Bacterial carbon dioxide recovery is briefly dealt with as an environmental issue associated with the use of fossil energy.  相似文献   

17.
Biochemical methane potential assays, usually run in batch mode, are performed by numerous laboratories to characterize the anaerobic degradability of biogas substrates such as energy crops, agricultural residues, and organic wastes. Unfortunately, the data obtained from these assays lacks common, universal bases for comparison, because standard protocols did not diffuse to the entire scientific community. Results are usually provided as final values of the methane yields of substrates. However, methane production curves generated in these assays also provide useful information about substrate degradation kinetics, which is rarely exploited. A basic understanding of the kinetics of the biogas process may be a first step towards a convergence of the assay methodologies on an international level. Following this assumption, a modeling toolbox containing an exponential model adjusted with a simple data-fitting method has been developed. This model should allow (a) quality control of the assays according to the goodness of fit of the model onto data series generated from the digestion of standard substrates, (b) interpretation of substrate degradation kinetics, and (c) estimate of the ultimate methane yield at infinite time. The exponential model is based on two assumptions: (a) the biogas process is a two-step reaction yielding VFA as intermediate products, and methane as the final product, and (b) the digestible substrate can be divided into a rapidly degradable and a slowly degradable fraction.  相似文献   

18.
A study is made of the characteristic features of the effect of plasma nonlinearity in a slow-wave structure on microwave generation by an electron beam and on electron beam energy losses. Theoretical results on the plasma density variation, the amplitude of the excited microwaves, and the velocity distribution function of the beam electrons are compared with the experimental data. It is shown that the self-consistency between the decreasing plasma density gradient and the spatial variation of the amplitude of an amplified wave in a slowwave structure leads to a significant (severalfold) increase in the efficiency with which the electron beam energy is converted into microwave energy in short pulses. The predictions of the theoretical model developed to describe the non-steady-state beam-plasma interaction agree well with the experimental data.  相似文献   

19.
The method of mass and energy balance was used in the design of a dynamic model of anaerobic digestion of complex organic substrates with production of methane. Distribution of mass flow, represented by the most abundant elements (C, H, N, O), and energy flow, represented by redoxons (available electrons), into gas and liquid output streams is influenced by environmental conditions in a continuous flow digester. Two pathways of methane generation,via cleavage of acetate andvia carbon dioxide reduction by hydrogen, are described in the model. The model was compared with experimental data from laboratory and pilot-plant experiments  相似文献   

20.
A model that describes the dissociation of a hydrogen bond in water clusters when irradiated by an electromagnetic field in the microwave range is proposed. The model is also applicable for the case of the rupture of the covalent bond of the water molecule in a cluster. If the energy absorption occurs at the interface of water and polymer clusters (e.g., DNA and chitosan), degradation of the polymer chain is possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号