首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Decreases in abundances and declines in growth of eastern white pine over the past century due mainly to human activities have resulted in few large intact old-growth white pine forests in Ontario. These stands may be vulnerable to replacement by deciduous species from temperate forests further south, where recruitment in canopy gap disturbances can greatly define the regeneration process. We investigated recruitment dynamics in canopy gaps of an old-growth white pine forest of Temagami, northern Ontario, Canada, the northern limit of the temperate?Cboreal ecotone. White pine, red pine, black spruce and eastern white cedar represented 85?% of the mature canopy abundance, where trees and saplings established equally in gaps and the closed canopy. Balsam fir and paper birch were more abundant in gaps, showing increases of abundance and basal area with increases in gap size representing canopy self-replacement (balsam fir) and autogenic succession (paper birch). Red maple, at its northernmost range limit, was the only species to show linear increases of abundance and basal area with increases in gap size and gap age. This result, along with adult red maples present in gaps but absent from the closed canopy, identifies the establishment of a northward migrating species in gaps as hypothesized for pine forests at the northern limit of this broad ecotone. We discuss how migration pressures, coupled with pine recruitment limitation through reduced fire frequency by regional fire suppression and predicted future increased warming of 2?C4?°C over the next century, threatens replacement of old-growth white pine forests at this latitude with northward migrating tree species found further south.  相似文献   

2.
Abstract. We characterized the abundance, size and spatial patterning of canopy gaps, as well as gap‐forming processes and light availability in boreal, sub‐boreal, northern temperate and subalpine old‐growth forests of northwestern British Columbia. The proportion of area in canopy gaps ranged from 32% in northern temperate forests to 73% in subalpine forests. Evenly distributed developmental gaps were dominant but permanent openings created by edaphic components and by shrub communities were also common, particularly in subboreal forests. Abundant gaps, large gap sizes, high numbers of gap makers per gap and frequent gap expansion events suggest that gaps have long tenure in these forests. Snapped stems and standing dead mortality were the most common modes of mortality in all forest types resulting in little forest floor disturbance, creating few germination sites for seedling establishment. We found high mean light levels (16–27% full sun) and little difference between non‐gap and gap light environments. Our results suggest that gap dynamics in these forests differ fundamentally from those in temperate and tropical forest ecosystems.  相似文献   

3.
Eucalypts (Eucalyptus spp. and Corymbia spp.) dominate many communities across Australia, including frequently burnt tropical savannas and temperate forests, which receive less frequent but more intense fires. Understanding the demographic characteristics that allow related trees to persist in tropical savannas and temperate forest ecosystems can provide insight into how savannas and forests function, including grass–tree coexistence. This study reviews differences in critical stages in the life cycle of savanna and temperate forest eucalypts, especially in relation to fire. It adds to the limited data on tropical eucalypts, by evaluating the effect of fire regimes on the population biology of Corymbia clarksoniana, a tree that dominates some tropical savannas of north‐eastern Australia. Corymbia clarksoniana displays similar demographic characteristics to other tropical savanna species, except that seedling emergence is enhanced when seed falls onto recently burnt ground during a high rainfall period. In contrast to many temperate forest eucalypts, tropical savanna eucalypts lack canopy‐stored seed banks; time annual seed fall to coincide with the onset of predictable wet season rain; have very rare seedling emergence events, including a lack of mass germination after each fire; possess an abundant sapling bank; and every tropical eucalypt species has the ability to maintain canopy structure by epicormically resprouting after all but the most intense fires. The combination of poor seedling recruitment strategies, coupled with characteristics allowing long‐term persistence of established plants, indicate tropical savanna eucalypts function through the persistence niche rather than the regeneration niche. The high rainfall‐promoted seedling emergence of C. clarksoniana and the reduction of seedling survival and sapling growth by fire, support the predictions that grass–tree coexistence in savannas is governed by rainfall limiting tree seedling recruitment and regular fires limiting the growth of juvenile trees to the canopy.  相似文献   

4.
Gap dynamics theory proposes that treefall gaps provide high light levels needed for regeneration in the understory, and by increasing heterogeneity in the light environment allow light‐demanding tree species to persist in the community. Recent studies have demonstrated age‐related declines in leaf area index of individual temperate trees, highlighting a mechanism for gradual changes in the forest canopy that may also be an important, but less obvious, driver of forest dynamics. We assessed the prevalence of age‐related crown thinning among 12 tropical canopy tree species sampled in lowland forests in Panama and Puerto Rico (total = 881). Canopy gap fraction of individual canopy tree crowns was positively related to stem diameter at 1.3 m (diameter at breast height) in a pooled analysis, with 10 of 12 species showing a positive trend. Considered individually, a positive correlation between stem diameter and canopy gap fraction was statistically significant in 4 of 12 species, all of which were large‐statured canopy to emergent species: Beilschmiedia pendula, Ceiba pentandra, Jacaranda copaia, and Prioria copaifera. Pooled analyses also showed a negative relationship between liana abundance and canopy gap fraction, suggesting that lianas could be partially obscuring age‐related crown thinning. We conclude that age‐related crown thinning occurs in tropical forests, and could thus influence patterns of tree regeneration and tropical forest community dynamics.  相似文献   

5.
In forests, the vulnerable seedling stage is largely influenced by the canopy, which modifies the surrounding environment. Consequently, any alteration in the characteristics of the canopy, such as those promoted by forest dieback, might impact regeneration dynamics. Our work analyzes the interaction between canopy neighbors and seedlings in Mediterranean forests affected by the decline of their dominant species (Quercus suber). Our objective was to understand how the impacts of neighbor trees and shrubs on recruitment could affect future dynamics of these declining forests. Seeds of the three dominant tree species (Quercus suber, Olea europaea and Quercus canariensis) were sown in six sites during two consecutive years. Using a spatially-explicit, neighborhood approach we developed models that explained the observed spatial variation in seedling emergence, survival, growth and photochemical efficiency as a function of the size, identity, health, abundance and distribution of adult trees and shrubs in the neighborhood. We found strong neighborhood effects for all the performance estimators, particularly seedling emergence and survival. Tree neighbors positively affected emergence, independently of species identity or health. Alternatively, seedling survival was much lower in neighborhoods dominated by defoliated and dead Q. suber trees than in neighborhoods dominated by healthy trees. For the two oak species, these negative effects were consistent over the three years of the experimental seedlings. These results indicate that ongoing changes in species’ relative abundance and canopy trees’ health might alter the successional trajectories of Mediterranean oak-forests through neighbor-specific impacts on seedlings. The recruitment failure of dominant late-successional oaks in the gaps opened after Q. suber death would indirectly favor the establishment of other coexisting woody species, such as drought-tolerant shrubs. This could lead current forests to shift into open systems with lower tree cover. Adult canopy decline would therefore represent an additional factor threatening the recruitment of Quercus forests worldwide.  相似文献   

6.
Insect herbivory is thought to favour carbon allocation to storage in juveniles of shade‐tolerant trees. This argument assumes that insect herbivory in the understorey is sufficiently intense as to select for storage; however, understoreys might be less attractive to insect herbivores than canopy gaps, because of low resource availability and – at temperate latitudes – low temperatures. Although empirical studies show that shade‐tolerant species in tropical forests do allocate more photosynthate to storage than their light‐demanding associates, the same pattern has not been consistently observed in temperate forests. Does this reflect a latitudinal trend in the relative activity of insect herbivory in gap versus understorey environments? To date there has been no global review of the effect of light environment on insect herbivory in forests. We postulated that if temperature is the primary factor limiting insect herbivory, the effect of gaps on rates of insect herbivory should be more evident in temperate than in tropical forests; due to low growing season temperatures in the oceanic temperate forests of the Southern Hemisphere, the effect of gaps on insect herbivory rates should in turn be stronger there than in the more continental temperate climates of the Northern Hemisphere. We examined global patterns of insect herbivory in gaps versus understories through meta‐analysis of 87 conspecific comparisons of leaf damage in contrasting light environments. Overall, insect herbivory in gaps was significantly higher than in the understorey; insect herbivory was 50% higher in gaps than in understoreys of tropical forests but did not differ significantly between gaps and understories in temperate forests of either hemisphere. Results are consistent with the idea that low resource availability – and not temperature – limits insect herbivore activity in forest understoreys, especially in the tropics, and suggest the selective influence of insect herbivory on late‐successional tree species may have been over‐estimated.  相似文献   

7.
The vertical stratification of lepidopteran and coleopteran communities in a cool-temperate deciduous forest in Japan was examined to evaluate the hypothesis of an expected uniform distribution of mobile flying insects between the canopy and understory of temperate forests. Lepidopteran and coleopteran insects were trapped using light traps at three sites in each of the canopy and understory for three consecutive nights each month from April to October 2001. For Lepidoptera, species richness, abundance, and family richness were significantly higher in the understory than in the canopy. For Coleoptera, only abundance was larger in the canopy relative to the understory; species and family richness did not differ between the strata. The beta diversity of the lepidopteran community was larger between the strata than among sites, but the coleopteran community showed an inverse pattern. These results imply the presence of vertical stratification within the lepidopteran community, but not within the coleopteran community, in the temperate forest. The understory contributes more than the canopy to lepidopteran diversity in the temperate forest, although this stratification may be relatively weak because, in contrast to the situation in tropical forests, the canopy and understory assemblages share many species.  相似文献   

8.
Understanding the causes underlying changes in species diversity is a fundamental pursuit of ecology. Animal species richness and composition often change with decreased forest structural complexity associated with logging. Yet differences in latitude and forest type may strongly influence how species diversity responds to logging. We performed a meta‐analysis of logging effects on local species richness and composition of birds across the world and assessed responses by different guilds (nesting strata, foraging strata, diet, and body size). This approach allowed identification of species attributes that might underlie responses to this anthropogenic disturbance. We only examined studies that allowed forests to regrow naturally following logging, and accounted for logging intensity, spatial extent, successional regrowth after logging, and the change in species composition expected due to random assembly from regional species pools. Selective logging in the tropics and clearcut logging in temperate latitudes caused loss of species from nearly all forest strata (ground to canopy), leading to substantial declines in species richness (up to 27% of species). Few species were lost or gained following any intensity of logging in lower‐latitude temperate forests, but the relative abundances of these species changed substantially. Selective logging at higher‐temperate latitudes generally replaced late‐successional specialists with early‐successional specialists, leading to no net changes in species richness but large changes in species composition. Removing less basal area during logging mitigated the loss of avian species from all forests and, in some cases, increased diversity in temperate forests. This meta‐analysis provides insights into the important role of habitat specialization in determining differential responses of animal communities to logging across tropical and temperate latitudes.  相似文献   

9.
林窗作为森林群落中一种重要的干扰方式, 对林下物种构成有着重要的影响。开展林窗空间格局及其特征指数与林下植物多样性关系研究对于探讨林窗对林下生物多样性的影响有重要意义, 有助于进一步了解群落动态, 在物种多样性保护方面也具有指导作用。本研究在西双版纳热带雨林地区随机选取3块大小为1 ha的热带雨林为研究样地, 采用轻小型六旋翼无人机搭载Sony ILCE-A7r可见光传感器, 分别获取各个样地的高清数字影像, 结合数字表面高程模型以及各个样地的地形数据用以确定各样区的林窗分布格局, 并进一步提取出各林窗的景观格局指数。结合地面样方基础调查数据, 对各样地各林窗下植物多样性情况进行统计, 旨在分析热带雨林林窗空间分布格局以及林窗下植物多样性对各林窗空间格局特征的响应情况。研究表明, 西双版纳州热带雨林林窗呈大而分散的空间分布, 林窗空间格局特征指数如林窗形状复杂性指数、林窗面积都与林下植物多样性呈显著正相关关系。在面积小的林窗下, 较之林窗形状复杂性因子, 林窗面积大小对林下植物多样性影响更显著; 在面积达到一定程度后, 相对于面积因子, 林窗形状复杂性指数对林下植物多样性影响更显著, 各样地林窗皆趋于向各自所处样地顶极群落发展。  相似文献   

10.
Large areas of tropical forest have been cleared and planted with exotic grass species for use as cattle pasture. These often remain persistent grasslands after grazer removal, which is problematic for restoring native forest communities. It is often hoped that remnant and/or planted trees can jump‐start forest succession; however, there is little mechanistic information on how different canopy species affect community trajectories. To investigate this, I surveyed understory communities, exotic grass biomass, standing litter pools, and soil properties under two dominant canopy trees—Metrosideros polymorpha (‘ōhi‘a) and Acacia koa (koa)—in recovering Hawaiian forests. I then used structural equation models (SEMs) to elucidate direct and indirect effects of trees on native understory. Native understory communities developed under ‘ōhi‘a, which had larger standing litter pools, lower soil nitrogen, and lower exotic grass biomass than koa. This pattern was variable, potentially due to historical site differences and/or distance to intact forest. Koa, in contrast, showed little understory development. Instead, data suggest that increased soil nitrogen under koa leads to high grass biomass that stalls native recruitment. SEMs suggested that indirect effects of trees via litter and soils were as or more important than direct effects for determining native cover. It is suggested that diverse plantings which incorporate species that have high carbon to nitrogen ratios may help ameliorate the negative indirect effects of koa on natural understory regeneration.  相似文献   

11.
Niche versus chance and tree diversity in forest gaps   总被引:1,自引:0,他引:1  
Studies that are unprecedented in scale, detail or approach show that niche partitioning contributes less, and chance events more, than expected to maintaining tree species richness via gap dynamics in tropical and temperate forests. Some tree species are differentially adapted for regeneration in different gap microenvironments. However, the stochastic availability of gaps, and limited recruitment of juveniles, mean that gaps are filled mostly by chance occupants rather than by best adapted species. This chance survival can slow competitive exclusion and maintain tree diversity. Gap dynamics do not explain the latitudinal gradient in tree richness.  相似文献   

12.
Tree communities of secondary deciduous oak forests were surveyed in 13 forests (two in residential and 11 in rural areas) in the warm temperate Hokuriku District of Japan to understand the effects of fragmentation, location (residential or rural), and logging history. The rural forest logged most recently, where diameter at breast height was smallest, had a distinct canopy tree (>12 m) community due to an increase of trees from wind-dispersed seeds. The rural forest with gaps and the two residential forests also had different canopy tree communities from the other rural forests. In contrast, the tree community in the shrub layer (≤6 m) was not influenced by logging history and the existence of gaps but by location only. This was caused by an increase in evergreen trees (consequently causing poor light conditions on the forest floor) and a decrease in trees from wind-dispersed seeds in the residential forests. Among the rural forest patches, no negative effects of forest size and isolation on density of tree individuals were detected for any seed dispersal mode. This may be because many forest patches were arranged at distances of 10–50 m from neighboring patches in rural areas, which enables tree species with low dispersal ability to disperse their seeds to neighboring forests. However, as found in the residential forests, long-term abandonment and extensive fragmentation may gradually reduce tree diversity through loss of tree species with shade intolerance and low seed dispersal ability.  相似文献   

13.
热带森林植物多样性及其维持机制   总被引:20,自引:0,他引:20  
热带森林具有地球上最丰富的植物多样性。关于热带森林植物多样性的维持机制,虽有众多假说,但均未形成完善的理论体系。不同的学者从不同的角度出发得出了许多结论,但也引起了不少争议。本文主要简述了4种经常被用来解释热带森林高植物多样性的机制:生态位分化、取食压力、生活史负相关和随机竞争,每一种机制都有大量的证据支持。热带森林植物沿微环境梯度的非随机空间分布表明其生态位分化很明显,并对其多样性起重要作用。动物的取食降低母树周围同种幼苗的生长率和存活率,为其他物种存活提供了机会,这就是取食压力假说,这是一个极有前景但仍需大量实验验证的假说。生活史负相关使得热带森林的许多植物能够共存。冠层植物的抑制使得随机性在林下植物的建立过程中起决定作用。  相似文献   

14.
西双版纳热带森林土壤种子库与地上植被的关系   总被引:39,自引:3,他引:36  
通过实验研究探讨了西双版纳几类热带森林的土壤种子库与地上植被的关系.结果表明,在森林演替的初期,土壤种子库与地上植被共有的种类和种子储量较多,随着林龄的增大,外来种子的比例逐渐增加,到季节雨林阶段,土壤种子库中的种子大部分为来自群落外的先锋种类.这些种子在郁闭的林冠下很难萌发,一旦森林受到干扰出现林窗或空旷地,这些潜在的种源将迅速萌发,参与植被的恢复或演替  相似文献   

15.
Three types of forests were recognised (high, disturbed and open) based on the openings in the canopy in a Tropical Monsoonal Forest at the Wasgomuwa National Park, Sri Lanka. The analysis of these forests showed that the species composition varied between forest types. The shrub vegetation, not only was very characteristic but was also a major component in each forest, unlike in the tropical rain forest. The exact role of the shrubs in the dynamics of the tropical monsoon forests is not established, but is suggested that it may act as a buffer during the dry periods under a semi deciduous canopy. The sapling composition differed from the tree vegetation and indicated that the species composition may change with time in this forest. Mosaic theory or the patch dynamics may best explain the dynamics of this tropical monsoon forest which is a mixture of forest types. More studies are required before generalisations can be made of tropical monsoon forests.  相似文献   

16.
Question: Is tree regeneration in canopy gaps characterized by chance or predictable establishment. Location: Coastal scarp forests, Umzimvubu district, Eastern Cape Province, South Africa. Methods: Estimation of richness of gap‐filling species across canopy gaps of different size. Data are compared with regeneration under the canopy. Probability of self‐replacement of gap forming species is calculated. Results: Forest area under natural gap phase was 7.8%, caused mostly by windthrow (54%). The abundance and average size of gaps (87.8 m2) suggests that species diversity may be maintained by gap dynamics. However, only four of 53 gap‐filler species displayed gap size specialization and these were pioneer species. An additional 13 species were more common in larger gaps but there was no gradient in composition of gap‐filler species across gap size (p= 0.61). Probabilities of self‐replacement in a gap were low (< 0.3) and common canopy species were equally abundant in gaps and the understorey. Species composition in gaps showed no pattern of variation, i.e. was unpredictable, which suggests absence of a successional sequence within tree‐fall gaps. There was also only a slight increase in species richness in gaps at intermediate levels of disturbance. Conclusions: Coastal scarp forest appears not to comprise tightly co‐evolved, niche‐differentiated tree species. Unpredictable species composition in gaps may be a chance effect of recruitment limitation of species from the species pool. Chance establishment slows competitive exclusion and may maintain tree diversity in these forests. These data suggest that current levels (≤ 3 gaps per ha) of selective tree harvesting may not cause a reduction in species richness in this forest.  相似文献   

17.
The size of treefall gaps is an important determinant of regeneration composition in tropical and temperate forests. Preliminary studies in the laurel forest of Tenerife have shown that small gaps (<100 m2) were the most numerous. However, due to this small size, no significant differences were found between regeneration in gaps and regeneration below the canopy. Because infrequent large gaps (>100 m2) are present in the laurel forest, we analyzed the regeneration in these large uncommon gaps, considering their potentially important role in the dynamics of the system. Our main hypothesis is that large gaps are important disturbance to ensure the regeneration and stablishment of shade intolerant species. Only five gaps larger than 100 m2 (ranging from 125–268 m2) were found in the study area. Data from a further 20 small gaps (<100 m2), analysed in a previous study, was also included. Control plots were examined close to the gaps in order to determine regeneration below the closed canopy. We did not find a significant difference between regeneration density in the gaps (<100 m2) and regeneration below the canopy in the control plots. Contrary to our expectations, regeneration was lower in the large gaps than under the canopy. The open canopy in the large gaps increases light intensity, and has a negative effect on the germination and growth of shade-tolerant tree species like Viburnum tinus (although non-statistically significant); however, the increase in light intensity is not sufficient to stimulate the germination of shade-intolerant tree species. The effects of treefall gaps in the dynamics of the laurel forest of Anaga should be not considered as significant in comparison to other factors such as human disturbances or infrequent disturbances (land slides or hurricanes).  相似文献   

18.
Abstract We present a model of gaps in the vertical structure of forest vegetation. The traditional model of a forest gap assumes the existence of a ‘hole’ in the uppermost canopy layer, often extending down to near the ground. The present model extends the concept to gaps at any level, including those in lower layers below an intact canopy or subcanopy. It assumes that gaps at any level represent spaces with unused resources, especially favourable for plant growth and survival. Evidence from temperate and tropical forests indicates that gaps in the subcanopy and understorey layers below intact canopies are common, and that plants have higher growth rates in them than in non-gap sites. We also extend this model to below-ground gaps in the root zone.  相似文献   

19.
Particularly in the temperate climate zone many forests have, at some moment in their history, been used as agriculture land. Forest cover is therefore often not as stable as it might look. How forest plant communities recovered after agriculture was abandoned allows us to explore some universal questions on how dispersal and environment limit plant species abundance and distribution. All studies looking at the effects of historical land use rely on adequate land use reconstruction. A variety of tools from maps, archival studies, and interviews to field evidence and soil analyses contribute to that. They allow us to distinguish ancient from recent forests and many studies found pronounced differences in forest plant species composition between them. A considerable percentage of our forest flora is associated with ancient forests. These ancient forest plant species (AFS) all have a low colonization capacity, suggesting that dispersal in space (distance related) and time (seed bank related) limit their distribution and abundance. However recent forests generally are suitable for the recruitment of AFS. There is clear evidence that dispersal limitation is more important than recruitment limitation in the distribution of AFS. Dispersal in time, through persistent seed banks, does not play a significant role. Ancient forests are not necessary more species-rich than recent forest, but if diversity is limited to typical forest plant species then ancient forests do have the highest number of plant species, making them highly important for nature conservation. The use of molecular markers, integrated approaches and modelling are all part of the way forward in this field of historical ecology.  相似文献   

20.
Selective logging of valuable tropical timber trees is a conservation concern because it threatens the long-term sustainability of forests. However, there is insufficient information regarding the postlogging recovery of harvested species. Here, I assessed the seed dispersal patterns, recruitment and abundance of Cordia millenii , a valuable timber tree in two Ugandan tropical rain forests that have been subjected to varying disturbance regimes. The aim was to determine the vulnerability of Cordia in these forests. The rate of seed dispersal was lower in the heavily disturbed Mabira Forest compared with the less disturbed Budongo Forest. Frugivores in Mabira were small-bodied individuals that spat seeds beneath fruiting trees, whereas 90% of the fruit in Budongo was consumed by large-bodied chimpanzees that disperse seeds over long distances. Juveniles of Cordia were not found in the closed forest, although they were found in forest gaps in Budongo but not Mabira. Mature tree density was higher in Budongo compared with Mabira. Lack of effective seed dispersal coupled with the inability of seedlings of Cordia to establish under closed canopy account for the arrested recruitment in Mabira. Enrichment planting in felling gaps is necessary to avoid local extinction of Cordia in forests without large vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号