首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermal homeostasis is important for the well-being of laboratory rodents during experimental investigations involving chemical restraint. Anaesthesia-induced hypothermia may alter physiological processes, prolong recovery times, or result in death. Therefore, active warming may be needed to prevent excess heat loss from the rodent to the environment. Three methods of active warming were evaluated in typical rodent procedural areas and recovery cages: a forced-air warming system, infra-red heat emitter and circulating-water blanket. The first experiment involved recording the temperature of the immediate environment of the three devices, with and/or without the accompanying plastic drape, to simulate a surgical situation. In the second experiment, temperatures were recorded within cages that simulated a recovery situation with the same modalities. Forced-air warmer blankets (FAWB) were either wrapped around or placed underneath standard polycarbonate rodent cages and the results were compared with cage temperatures warmed by the heat emitter and circulating-water blanket. Temperatures were recorded at 0, 20, 40, and 60 min for each warming treatment, to determine mean temperature (+/- SEM) and the magnitude of increase (+/- SEM) between 0 and 60 min. All three devices showed an increase in temperature, but the FAWB with a plastic drape heated the procedural area microenvironment (Experiment 1) quickly and to a final temperature of 38.6 degrees C (101.5 degrees F) at 60 min, compared with 25 degrees C (77 degrees F) for the heat emitter and 28 degrees C (82.4 degrees F) for the circulating-water blanket. The magnitude of increase was significantly different for each treatment, but the FAWB with a plastic drape climbed 16.3 degrees C (29.3 degrees F) in 60 min. In Experiment 2, the FAWB wrapped around a cage, covered with a plastic drape, heated recovery cages to 32.5 degrees C (90.5 degrees F) compared to the heat emitter 26.4 degrees C (79.5 degrees F) and circulating-water blanket with drape 26.3 degrees C (79.3 degrees F). The magnitude of increase in the microenvironmental temperature was significantly higher for the FAWB, with the plastic drape wrapped around the recovery cage, compared to the other treatments. In both experiments, forced-air warming proved superior to the more traditional thermal support treatments in heating the microenvironments quickly and to an optimum ambient temperature. Forced-air warming devices should be considered when thermal support is required for rodent procedural areas and recovery cages.  相似文献   

2.
It is hypothesized that some of the variability in the conclusions of several human cold adaptation studies could be explained if not only were the changes in core and shell temperatures taken into account, before and after cold adaptation, but also the absolute temperatures and metabolic rate in both thermally neutral environments and in the cold. Such an approach was used in a group of volunteers before and after a ski journey (3 weeks at -20 to -30 degrees C) across Greenland. Eight subjects were submitted to cold tests (Tdb = 1 degree C, r.h. = 40%, wind speed = 0.8 m.s-1) for 2 hours. Thermoregulatory changes were also monitored in a neutral environment (Tdb = 30 degrees C). In the neutral environment, the arctic journey increased metabolic rate (11.2%; P less than 0.05) and mean skin temperature [Tsk: 33.5 (SEM 0.2) degrees C vs 32.9 (SEM 0.2) degrees C, P less than 0.05]. During the cold test, the arctic journey was associated with a lower final rectal temperature [36.8 (SEM 0.2) degrees C vs 37.3 (SEM 0.2) degrees C, P less than 0.01], a lower final Tsk [20.7 (SEM 0.4) degrees C vs 21.2 (SEM 0.3) degrees C, P less than 0.01] with no change in metabolic heat production. These observations are indicative of an hypothermic insulative isometabolic general cold adaptation, which was associated with a local cold adaptation of the extremities, as shown by warmer foot temperatures [12.3 (SEM 0.9) degrees C vs 9.8 (SEM 0.9) degrees C, P less than 0.001].  相似文献   

3.
Hochi S  Semple E  Leibo SP 《Theriogenology》1996,46(5):837-847
The effect of cooling and warming rates during cryopreservation on subsequent embryo survival was studied in 607 bovine morulae and 595 blastocysts produced by in vitro maturation, fertilization and culture (IVM/IVF/IVC). Morulae and blastocysts were prepared by co-culturing presumptive zygotes with bovine oviductal epithelial cells (BOEC) in serum-free TCM199 medium for 6 and 7 d, respectively. The embryos in 1.5 M ethylene glycol in plastic straws were seeded at -7 degrees C, cooled to -35 degrees C at each of 5 rates (0.3 degrees, 0.6 degrees , 0.9 degrees, 1.2 degrees, or 1.5 degrees C/min) and then immediately plunged into liquid nitrogen. The frozen embryos were warmed either rapidly in a 35 degrees C water bath (warming rate > 1,000 degrees C/min) or slowly in 25 degrees to 28 degrees C air (< 250 degrees C/mm). With rapid warming, 42.1% of the morulae that had been cooled at 0.3 degrees C/min developed into hatching blastocysts. The proportions of rapidly wanned morulae that hatched decreased with increasing cooling rates (30.4, 19.0, 15.8 and 8.9% at 0.6 degrees , 0.9 degrees, 1.2 degrees and 1.5 degrees C/min, respectively). With slow warming 25.9% of the morulae that had been cooled at 0.3 degrees C/min developed into hatching blastocysts, while <10% of the morulae that had been cooled faster developed. The hatching rate of blastocysts cooled at 0.3 degrees C/min and warmed rapidly (96.3%) was higher than those cooled at 06 degrees and 0.9 degrees C/min (82.7 and 84.6%, respectively), and was also significantly higher than those warmed slowly after cooling at 0.3 degrees, 0.6 degrees or 0.9 degrees C/min (69.1, 56.6 and 51.8%, respectively). Cooling blastocysts at 1.2 degrees or 1.5 degrees C/min resulted in lowered hatching rates either with rapid (71.2 or 66 0%) or slow warming (38.2 or 38.9%). These results indicate that the survival of in vitro-produced bovine morulae and blastocysts is improved by very slow cooling during 2-step freezing, nevertheless, slow warming appears to cause injuries to morulae and blastocysts even after very slow cooling.  相似文献   

4.
L Shao  H Zheng  FJ Jia  HQ Wang  L Liu  Q Sun  MY An  XH Zhang  H Wen 《PloS one》2012,7(7):e39622

Background

Keeping abdominal surgery patients warm is common and warming methods are needed in power outages during natural disasters. We aimed to evaluate the efficacy of low-cost, low-power warming methods for maintaining normothermia in abdominal surgery patients.

Methods

Patients (n = 160) scheduled for elective abdominal surgery were included in this prospective clinical study. Five warming methods were applied: heated blood transfusion/fluid infusion vs. unheated; wrapping patients vs. not wrapping; applying moist dressings, heated or not; surgical field rinse heated or not; and applying heating blankets or not. Patients’ nasopharyngeal and rectal temperatures were recorded to evaluate warming efficacy. Significant differences were found in mean temperatures of warmed patients compared to those not warmed.

Results

When we compared temperatures of abdominal surgery patient groups receiving three specific warming methods with temperatures of control groups not receiving these methods, significant differences were revealed in temperatures maintained during the surgeries between the warmed groups and controls.

Discussion

The value of maintaining normothermia in patients undergoing abdominal surgery under general anesthesia is accepted. Three effective economical and practically applicable warming methods are combined body wrapping and heating blanket; combined body wrapping, heated moist dressings, and heating blanket; combined body wrapping, heated moist dressings, and warmed surgical rinse fluid, with or without heating blanket. These methods are practically applicable when low-cost method is indeed needed.  相似文献   

5.
《植物生态学报》2016,40(8):827
Aims Global warming does not mean similar warmer temperatures between daytime and nighttime. Soybean (Glycine max) is a widely planted legume crop around the world and an important food crop in China. The aim of this study was to understand the responses of soybean growth and water utilization to future asymmetric warming, which would provide scientific reference for evaluating the adaptation of soybean to the future climate scenarios.Methods This experiment was carried out in artificial climate chambers, using the method of potted plants, under three temperature conditions; contrast (CON, 26 °C during the day and 16 °C during night), symmetric warming (ETs, elevated temperature of 3 °C both during the day and night), asymmetric warming (ETa, elevated temperature of 2 °C during the day and elevated temperature of 4 °C during night). We investigated the differential effects of diurnal asymmetric and symmetric warming on the yield and water consumption of soybean. Important findings The results revealed that, under the background of 26 °C during the day and 16 °C during night: 1) the effect of ETs on soybean yields showed no significant function that mainly benefit from the increase in the amount of biomass to ease negative influence of decrease in the harvest index. ETa reduced yields of soybean by 38.9% (p < 0.05) due to both significant decrease in harvest index and yield components (pod number per plant, grain number per pod and 100-grain weight). 2) ETs showed no obvious effect on the whole growing stage evapotranspiration (ET) of soybean, while ETa reduced the whole growing stage ET by 14.8% (p < 0.05). 3) The effect of the two warming pattern on water consumption of soybean were not significant. The difference in water consumption was mainly derived from the difference in transpiration (T). ETs and ETa reduced total transpiration by 10.7% (p < 0.05) and 26.1% (p < 0.05), respectively. In conclusion, our results suggest that ETs will underestimate the detrimental effects of real climate warming (ETa) on the growth and yield of soybean, and overestimate the effects on water consumption of soybean.  相似文献   

6.
全球气候变暖并不是白天和夜间的平均变暖, 而是呈现一定的不对称性。大豆(Glycine max)是世界范围内种植较广泛的豆科作物, 也是中国重要的粮食作物。研究大豆的生长与水分利用对不对称性气候变暖的响应, 可为预测未来气候变暖情景下大豆的适应提供科学的参考依据。该实验在人工气候箱中采用盆栽方式进行, 设立对照(CON, 昼26 ℃夜16 ℃)、对称性升温(ETs, 昼夜均升高3 ℃)和不对称性升温(ETa, 昼升高2 ℃, 夜升高4 ℃)三个温度情景, 研究了大豆产量和水分利用对昼夜不对称性与对称性升温的差异性响应。结果表明: 在昼/夜26 ℃/16 ℃的背景下, 1) ETs对大豆产量影响不显著, 主要是因为生物量的增加缓解了收获指数下降对大豆的不利影响; ETa使大豆产量减少38.9%, 是由于大豆的收获指数和产量构成要素(荚数、粒数、百粒重)均显著降低。2) ETs对大豆全生育期蒸散量(ET)的影响不显著, ETa使大豆整个生育期ET减少14.8%。3)两种升温模式对大豆耗水量中蒸发量的影响都不显著, 耗水量的差异主要来自蒸腾量的差异, 其中ETs和ETa分别使大豆全生育期蒸腾量降低10.7%和26.1%。综上所述, 只针对ETs进行研究, 而没有对ETa进行研究的实验会低估真正的气候变暖情景(ETa)对大豆生长和产量的不利影响, 高估其对大豆耗水量的影响。  相似文献   

7.
Flow-mediated dilation (FMD) measures the ability of an artery to relax in response to increases in blood velocity. FMD, primarily of the brachial artery, has been used as a noninvasive method of assessing vascular health. The purpose of this study was to assess FMD in the lower legs of humans. Six healthy subjects (27 PlusMinus; 6 yrs) were tested. Doppler ultrasound images of the posterior tibial artery were taken before, during, and after 5 minutes of proximal cuff occlusion. FMD was measured as the percent increase in diameter after cuff release. Vascular tone was calculated using the resting diameter as a percentage of the vessel's vasoactive range. Minimum diameter occurred during ischemia and maximal diameter occurred following reactive hyperemia with local heating. The lower leg was heated with 10 minutes of immersion in 44 degrees C water. Mean diameters at rest, cuff, and during release were 0.267 PlusMinus; 0.062, 0.162 PlusMinus; 0.036, 0.302 PlusMinus; 0.058 cm, respectively. FMD was 13.5 PlusMinus; 6.6 % and vascular tone was 29 PlusMinus; 16.3%. We also found that retesting on a second day produced mean diameter values within 8% of the first day. Larger resting diameter (decreased tone) correlated with decreased FMD (r2 = 0.73). These results suggest that FMD and vascular tone can be measured in the posterior tibial artery. This is a potentially powerful tool to non-invasively measure vascular health in the lower legs of people at risk for vascular disease.  相似文献   

8.
Gas exchange and water relations were evaluated under full‐season in situ infrared (IR) warming for hard red spring wheat (Triticum aestivum L. cv. Yecora Rojo) grown in an open field in a semiarid desert region of the southwest USA. A temperature free‐air controlled enhancement (T‐FACE) apparatus utilizing IR heaters maintained canopy air temperature above 3.0 m Heated plots of wheat by 1.3 and 2.7 °C (0.2 and 0.3 °C below the targeted set‐points of Reference plots with dummy heaters) during daytime and nighttime, respectively. Control plots had no apparatus. Every 6 weeks during 2007–2009 wheat was sown under the three warming treatments (i.e., Control, Heated, Reference) in three replicates in a 3 × 3 Latin square (LSQ) design on six plantings during 4 months (i.e., January, March, September, December), or in a natural temperature variation treatment (i.e., Control) in three replicates in a randomized complete block (RCB) design on nine plantings during 7 months (i.e., January, February, April, June, July, August, October). Soil temperature (Ts) and volumetric soil‐water content (θs) were 1.3 °C warmer and 14% lower in Heated compared with Reference plots, respectively. Other than a 1% shading effect, no artifacts on gas exchange or water relations were associated with the IR warming apparatus. IR warming increased carbon gain characteristic of an increase in metabolic rates to higher temperature that may have been attributed to the well‐watered wheat crop and the supplemental irrigation that minimized plant‐to‐air water vapor pressure differences between IR‐warmed and nonwarmed plots. Nevertheless, seasonal oscillations in the IR warming response on carbon gain occurred. IR warming decreased leaf water status and provided thermal protection during freeze events. IR warming is an effective experimental methodology to investigate the impact of global climate change on agronomic cropping and natural ecosystems to a wide range of natural and artificially imposed air temperatures.  相似文献   

9.
BACKGROUND: Tyrosine hydroxylase (TH) activity and its possible participation in the control of insulin secretion were studied in pancreatic islets of adult Wistar rats fed a standard commercial diet (SD) or carbohydrates alone (CHD) for one week. TH activity, norepinephrine (NE) content, and glucose-induced insulin secretion were assessed. Blood glucose and insulin levels were measured at the time of sacrifice. RESULTS: CHD rats had significantly higher blood glucose and lower insulin levels than SD rats (114.5 PlusMinus; 6.7 vs 80.7 PlusMinus; 7.25 mg/dl, p < 0.001; 20.25 PlusMinus; 2.45 vs 42.5 PlusMinus; 4.99 &mgr;U/ml, p < 0.01, respectively). Whereas TH activity was significantly higher in CHD isolated islets (600 PlusMinus; 60 vs 330 PlusMinus; 40 pmol/mg protein/h; p < 0.001), NE content was significantly lower (18 PlusMinus; 1 vs 31 PlusMinus; 5 pmol/mg protein), suggesting that TH activity would be inhibited by the end-products of catecholamines (CAs) biosynthetic pathway. A similar TH activity was found in control and solarectomized rats (330 PlusMinus; 40 vs 300 PlusMinus; 80 pmol/mg protein/h), suggesting an endogenous rather than a neural origin of TH activity. CHD islets released significantly less insulin in response to glucose than SD islets (7.4 PlusMinus; 0.9 vs 11.4 PlusMinus; 1.1 ng/islet/h; p < 0.02). CONCLUSIONS: TH activity is present in islet cells; dietary manipulation simultaneously induces an increase in this activity together with a decrease in glucose-induced insulin secretion in rat islets. TH activity - and the consequent endogenous CAs turnover - would participate in the paracrine control of insulin secretion.  相似文献   

10.

Background

The purpose of this study is to assess whether the application of preoperative forced air warming set to high temperature (>?43?°C) for brief period can increase temperature on admission to the postanesthesia care unit (PACU) and prevent hypothermia or shivering during holmium laser enucleation of the prostate performed under spinal anesthesia.

Methods

Fifty patients were enrolled were assigned randomly to receive passive insulation (control group, n?=?25) or forced-air skin surface warming for 20?min before spinal anesthesia (pre-warming group, n?=?25). The primary outcome was temperature at PACU admission.

Results

The pre-warming group had a significantly higher temperature on admission to the PACU than the control group (35.9?°C [0.1] vs 35.6?°C [0.1], P?=?0.023; 95% confidence interval of mean difference, 0.1?°C–0.5?°C). The trend of decreasing core temperature intraoperatively was not different between groups (P?=?0.237), but intraoperative core temperature remained approximately 0.2?°C higher in the pre-warming group (P?=?0.005). The incidence of hypothermia on admission to the PACU was significantly lower in the pre-warming group (56% vs 88%, P?=?0.025). Shivering occurred in 14 patients in the control group, and 4 patients in the pre-warming group (P?=?0.007).

Conclusion

Brief pre-warming at 45?°C increased perioperative temperature and decreased the incidence of hypothermia and shivering. However, it was not sufficient to modify the decline of intraoperative core temperature or completely prevent hypothermia and shivering. Continuing pre-warming to immediately before induction of spinal anesthesia or combining pre-warming with intraoperative active warming may be necessary to produce clearer thermal benefits in this surgical population.

Trial registration

This trial was registered with Clinicaltrials.gov, NCT03184506, 5th June 2017.
  相似文献   

11.
Sleep occurs in close relation to changes in body temperature. Both the monophasic sleep period in humans and the polyphasic sleep periods in rodents tend to be initiated when core body temperature is declining. This decline is mainly due to an increase in skin blood flow and consequently skin warming and heat loss. We have proposed that these intrinsically occurring changes in core and skin temperatures could modulate neuronal activity in sleep-regulating brain areas (Van Someren EJW, Chronobiol Int 17: 313-54, 2000). We here provide results compatible with this hypothesis. We obtained 144 sleep-onset latencies while directly manipulating core and skin temperatures within the comfortable range in eight healthy subjects under controlled conditions. The induction of a proximal skin temperature difference of only 0.78 +/- 0.03 degrees C (mean +/- SE) around a mean of 35.13 +/- 0.11 degrees C changed sleep-onset latency by 26%, i.e., by 3.09 minutes [95% confidence interval (CI), 1.91 to 4.28] around a mean of 11.85 min (CI, 9.74 to 14.41), with faster sleep onsets when the proximal skin was warmed. The reduction in sleep-onset latency occurred despite a small but significant decrease in subjective comfort during proximal skin warming. The induction of changes in core temperature (delta = 0.20 +/- 0.02 degrees C) and distal skin temperature (delta = 0.74 +/- 0.05 degrees C) were ineffective. Previous studies have demonstrated correlations between skin temperature and sleep-onset latency. Also, sleep disruption by ambient temperatures that activate thermoregulatory defense mechanisms has been shown. The present study is the first to experimentally demonstrate a causal contribution to sleep-onset latency of skin temperature manipulations within the normal nocturnal fluctuation range. Circadian and sleep-appetitive behavior-induced variations in skin temperature might act as an input signal to sleep-regulating systems.  相似文献   

12.
Effect of warming rate on mouse embryos frozen and thawed in glycerol   总被引:2,自引:0,他引:2  
Mouse embryos (8-cell) fully equilibrated in 1.5 M-glycerol were cooled slowly (0.5 degrees C/min) to temperatures between - 7.5 and - 80 degrees C before rapid cooling and storage in liquid nitrogen (-196 degrees C). Some embryos survived rapid warming (approximately 500 degrees C/min) irrespective of the temperature at which slow cooling was terminated. However, the highest levels of survival of rapidly warmed embryos were observed when slow cooling was terminated between -25 and -80 degrees C (74-86%). In contrast, high survival (75-86%) was obtained after slow warming (approximately 2 degrees C/min) only when slow cooling was continued to -55 degrees C or below before transfer into liquid N2. Injury to embryos cooled slowly to -30 degrees C and then rapidly to -196 degrees C occurred only when slow warming (approximately 2 degrees C/min) was continued to -60 degrees C or above. Parallel cryomicroscopical observations indicated that embryos became dehydrated during slow cooling to -30 degrees C and did not freeze intracellularly during subsequent rapid cooling (approximately 250 degrees C/min) to -150 degrees C. During slow warming (2 degrees C/min), however, intracellular ice appeared at a temperature between -70 and -65 degrees C and melted when warming was continued to -30 degrees C. Intracellular freezing was not observed during rapid warming (250 degrees C/min) or during slow warming when slow cooling had been continued to -65 degrees C. These results indicate that glycerol provides superior or equal protection when compared to dimethyl sulphoxide against the deleterious effects of freezing and thawing.  相似文献   

13.
Because of global warming, high‐latitude ecosystems are expected to experience increases in temperature and drought events. Wood formation will have to adjust to these new climatic constraints to maintain tree mechanical stability and long‐distance water transport. The aim of this study is to understand the dynamic processes involved in wood formation under warming and drought. Xylogenesis, gas exchange, water relations and wood anatomy of black spruce [Picea mariana (Mill.) B.S.P.] saplings were monitored during a greenhouse experiment where temperature was increased during daytime or night‐time (+6 °C) combined with a drought period. The kinetics of tracheid development expressed as rate and duration of the xylogenesis sub‐processes were quantified using generalized additive models. Drought and warming had a strong influence on cell production, but little effect on wood anatomy. The increase in cell production rate under warmer temperatures, and especially during the night‐time warming at the end of the growing season, resulted in wider tree‐rings. However, the strong compensation between rates and durations of cell differentiation processes mitigates warming and drought effects on tree‐ring structure. Our results allowed quantification of how wood formation kinetics is regulated when water and heat stress increase, allowing trees to adapt to future environmental conditions.  相似文献   

14.
The eastern Tibetan Plateau has become increasingly warmer and drier since the 1990s. Such warming and drying has a great impact on ecosystem processes on the eastern Tibetan Plateau. To determine their combined effects on CO2 and N2O emission rates, we conducted a field manipulative experiment in an alpine meadow of the eastern Tibetan Plateau during the growing season of 2009. The experiment showed that warming manipulation increased soil temperature by 1?°C, and drying manipulation decreased soil water content by 6.8?%. We found that by counteracting the effect of low temperature in the area, experimental warming significantly increased soil microbial biomass, the number of bacteria, fungi, actinomycetes, ammonifying bacteria, nitrobacteria and denitrifying bacteria, and facilitated the emission rates of CO2 and N2O by 33.4 and 31.5?%, respectively. However, decreased precipitation further aggravated soil water stress and inhibited the numbers of these organisms, and reduced the emission rates of CO2 and N2O by 47.4 and 37.9?%, respectively. So decreased soil water content tended to offset the positive effect of warming. Compared to the positive effects of warming, decreased soil water content was shown in our study to have even greater impact on the eastern Tibetan Plateau during the growing season. Therefore, inhibition of CO2 and N2O emission rates (32.3 and 29.3?%, respectively) by warming and drying will intensify if the combined effects of these climatic trends persist in the region.  相似文献   

15.
The currrent California condor (Gymnogyps californianus) recovery plan entails increasing the reproductive rate via replacement-clutch manipulation of eggs. During the period from 1983 to 1985, 15 eggs were removed from wild nesting pairs for artificial incubation. The eggs were incubated at a dry bulb temperature of 36.4°C in modified forced-air Lyon Electric incubators. The incubation humidity was adjusted for individual eggs based on weight loss data (water = weight), 25.6–30.0°C wet bulb (41.0–63.0% Relative Humidity (RH)). The chicks were hatched initially under forced-air conditions of 36.1°C dry bulb, 31.1–01.7°C wet bulb (70.0–73.0% RH). In 1984, hatching parameters were changed to still-air conditions, 36.1°C dry bulb (top of the egg), 35.0°C dry bulb (bottom of the egg), 31.1–31.7°C wet bulb (70.0-73.0% RH). Tactile and auditory stimulation was utilized during the pip-to-hatch interval. From among 15 eggs collected, 13 hatched, and 12 condor chicks were raised successfully (hatchability: 86.7%; survivability: 92.3%).  相似文献   

16.
Climate warming and biological invasions by alien species are two key factors threatening the world’s biodiversity. To date, their impact has largely been studied independently, and knowledge on whether climate warming will promote invasions relies strongly on bioclimatic models. We therefore set up a study to experimentally compare responses to warming in native and alien plant species. Ten congeneric species pairs were exposed to ambient and elevated temperature (+3°C) in sunlit, climate-controlled chambers, under optimal water and nutrient supply to avoid interaction with other factors. All species pairs combined, total plant biomass reacted differently to warming in alien versus native species, which could be traced to significantly different root responses. On average, native species became less productive in the warmer climate, whereas their alien counterparts showed no response. The three alien species with the strongest warming response (Lathyrus latifolius, Cerastium tomentosum and Artemisia verlotiorum) are currently non-invasive but all originate from regions with a warmer climate. Still, other alien species that also originate from warmer regions became less or remained equally productive. Structural or ecophysiological acclimation to warming was largely absent, both in native and alien species, apart from light-saturated photosynthetic rate, where warming tended to restrain the native but not the alien species. A difference in the capacity to acclimate photosynthetic rates to the new climate may therefore have caused the contrasting biomass response. Future experiments are needed to ascertain whether climate warming can effectively tip the balance between native and alien competitors.  相似文献   

17.
The optimum warming rate for cryopreserved skin (dimensions: 7.6 cm X 20 cm X 0.38 mm thick) folded double in a flat package format was tested using a recently developed quantitative assay of skin cell metabolism. The assay measured the metabolic conversion of glucose to carbon dioxide by intact partial-thickness skin. Skin cooled at a constant, controlled rate of -1 degree C min-1 to a temperature of -100 degrees C, and then rapidly transferred to -196 degrees C for overnight storage, could be optimally warmed at rates of 95-260 degrees C min-1 by immersion in 10-20 degrees C water. The amount of metabolic activity remaining in skin warmed at rates within this optimal range was 76-78% of normal. Slightly less than maximal metabolic activity, 71-75% of normal, resulted from warming rates of 292-458 degrees C min-1, obtained by immersion in 25-37 degrees C water. Skin metabolism remaining after warming rates of 30-53 degrees C min-1 (3-5 degrees C water) was 52-70% of normal, while that remaining after rates of 501-882 degrees C (40-65 degrees C water) was 0-47% of normal. These experiments establish practical upper and lower limits for post-cryopreservation warming rates employed to maintain skin cell metabolism, and the cellular viability which depends upon that metabolism.  相似文献   

18.
We hypothesized that nitric oxide activation of soluble guanylyl cyclase (sGC) participates in cutaneous vasodilation during whole body heat stress and local skin warming. We examined the effects of the sGC inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), on reflex skin blood flow responses to whole body heat stress and on nonreflex responses to increased local skin temperature. Blood flow was monitored by laser-Doppler flowmetry, and blood pressure by Finapres to calculate cutaneous vascular conductance (CVC). Intradermal microdialysis was used to treat one site with 1 mM ODQ in 2% DMSO and Ringer, a second site with 2% DMSO in Ringer, and a third site received Ringer. In protocol 1, after a period of normothermia, whole body heat stress was induced. In protocol 2, local heating units warmed local skin temperature from 34 to 41°C to cause local vasodilation. In protocol 1, in normothermia, CVC did not differ among sites [ODQ, 15 ± 3% maximum CVC (CVC(max)); DMSO, 14 ± 3% CVC(max); Ringer, 17 ± 6% CVC(max); P > 0.05]. During heat stress, ODQ attenuated CVC increases (ODQ, 54 ± 4% CVC(max); DMSO, 64 ± 4% CVC(max); Ringer, 63 ± 4% CVC(max); P < 0.05, ODQ vs. DMSO or Ringer). In protocol 2, at 34°C local temperature, CVC did not differ among sites (ODQ, 17 ± 2% CVC(max); DMSO, 18 ± 4% CVC(max); Ringer, 18 ± 3% CVC(max); P > 0.05). ODQ attenuated CVC increases at 41°C local temperature (ODQ, 54 ± 5% CVC(max); DMSO, 86 ± 4% CVC(max); Ringer, 90 ± 2% CVC(max); P < 0.05 ODQ vs. DMSO or Ringer). sGC participates in neurogenic active vasodilation during heat stress and in the local response to direct skin warming.  相似文献   

19.
S M Mutetwa  E R James 《Cryobiology》1984,21(5):552-558
Various cooling and warming rates were investigated to determine the optimum conditions for cryopreserving the intraerythrocytic stages of Plasmodium chabaudi. Infected blood, equilibrated in 10% v/v glycerol at 37 degrees C or in 15% v/v Me2SO at 0 degree C for 10 min, was cryopreserved using cooling rates between 1 and 5100 degrees C min-1. After overnight storage in liquid nitrogen the samples were warmed at 12,000 degrees C min-1. Warming rates between 1 and 12,000 degrees C min-1 were investigated using samples previously cooled at 3600 degrees C min-1. After thawing, the glycerol and Me2SO were removed by dilution in 15% v/v glucose-supplemented phosphate-buffered saline. Survival was assayed by inoculation of groups of five mice each with 10(6) infected cells and the time taken to reach a level of 2% parasitemia estimated. The optimum cooling rate was 3600 degrees C min-1 for parasites frozen using either 10% glycerol or 15% Me2SO; the pre-2% patent periods were 0.90 and 1.01 days above control values (representing survival levels of 21 and 17.5%, respectively). The optimum warming rate was 12,000 degrees C min-1; the pre-2% patent periods were 1.01 and 1.32 days above control values, respectively (18 and 10% survival), for glycerol and Me2SO. With ethanediol (5% v/v) and sucrose (15% w/v) as cryoprotectants the optimum warming rates were also 12,000 degrees C min-1 while the optimum cooling rates were 330 and 3600 degrees C min-1, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Global warming increasingly pressures species to show adaptive migratory responses. We hypothesized that warming increases invasion of alpine lakes by low-elevation montane zooplankton by suppressing native competitors and predators. This hypothesis was tested by conducting a two-factor experiment, consisting of a warming treatment (13 vs. 20°C) crossed with three invasion levels (alpine only, alpine+montane, montane only), in growth chambers over a 28-day period. Warming significantly reduced total consumer biomass owing to the decline of large alpine species, resulting in greater autotrophic abundance. Significant temperature-invasion interactions occurred as warming suppressed alpine zooplankton, while stimulating certain imported species. Herbivorous invaders suppressed functionally similar alpine species while larger native omnivores reduced invasion by smaller taxa. Warming did not affect total invader biomass because imported species thrived under ambient and warmed alpine conditions. Our findings suggest that the adaptability of remote alpine lake communities to global warming is limited by species dispersal from lower valleys, or possibly nearby warmer alpine ponds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号