首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cas is a member of the focal adhesion complex. Phosphorylation of Cas by Src is an important event leading to cell transformation. Using mass spectrometry, we have mapped 11 sites in Cas that are phosphorylated by Src. These sites are all located between residues 132 and 414 of Cas, in a region that is required for binding to a number of other proteins including Crk. We tested synthetic peptides modeled on Cas phosphorylation sites, and found that the sequence containing tyrosine 253 was phosphorylated by Src most efficiently. Using cells derived from Cas-deficient mice, we confirmed that Cas greatly enhanced the ability of Src to transform cells. Phosphorylation of Cas on tyrosine 253 was not required for Src to increase growth rate, suppress contact inhibition, or suppress anchorage dependence. Yet, in contrast to these growth characteristics, phosphorylation of Cas on tyrosine 253 was required for Src to promote cell migration. Thus, a single phosphorylation site on this focal adhesion adaptor protein can effectively separate cell migration from other transformed growth characteristics.  相似文献   

2.
The members of the p130Cas (Cas) family are important scaffolding proteins that orchestrate cell adhesion, migration and invasiveness downstream of integrin adhesion receptors and receptor tyrosine kinases by recruiting enzymes and structural molecules. Shep1, BCAR3/AND-34 and NSP1 define a recently identified family of SH2 domain-containing proteins that constitutively bind Cas proteins through a Cdc25-type nucleotide exchange factor-like domain. To gain insight into the functional interplay between Shep1 and Cas in vivo, we have inactivated the Shep1 gene in the mouse through Cre-mediated deletion of the exon encoding the SH2 domain. Analysis of Cas tyrosine phosphorylation in the brains of newborn mice, where Shep1 is highly expressed, revealed a strong decrease in Cas substrate domain phosphorylation in knockout compared to wild-type brains. Src family kinases bind to Cas via their SH3 and SH2 domains, which contributes to their activation, and phosphorylate multiple tyrosines in the Cas substrate domain. These tyrosine-phosphorylated motifs represent docking sites for the Crk adaptor, linking Cas to the downstream Rac1 and Rap1 GTPases to regulate cell adhesion and actin cytoskeleton organization. Accordingly, we detected lower Cas–Crk association and lower phosphorylation of the Src activation loop in Shep1 knockout brains compared to wild-type. Conversely, Shep1 transfection in COS cells increases Cas tyrosine phosphorylation. The SH2 domain is likely critical for the effects of Shep1 on Cas and Src signaling because the knockout mice express Shep1 fragments that lack the amino-terminal region including the SH2 domain, presumably due to aberrant translation from internal ATG codons. These fragments retain the ability to increase Cas levels in transfected cells, similar to full-length Shep1. However, they do not affect Cas phosphorylation on their own or in the presence of co-transfected full-length Shep1. They also do not show dominant negative effects on the activity of full-length Shep1 in vivo because the heterozygous mice, which express the fragments, have a normal life span. This is in contrast to the homozygous knockout mice, most of which die soon after birth. These data demonstrate that Shep1 plays a critical role in the in vivo regulation of Src activity and Cas downstream signaling through Crk, and suggest that the SH2 domain of Shep1 is critical for these effects.  相似文献   

3.
The focal adhesion docking protein NEDD9/HEF1/Cas-L regulates cell migration and cancer invasion. NEDD9 is a member of the Cas family of proteins that share conserved overall protein-protein interaction domain structure, including a substrate domain that is characterized by extensive tyrosine (Y) phosphorylation. Previous studies have suggested that phosphorylation of Y253 in the substrate domain of the Cas family protein p130Cas is specifically required for p130Cas function in cell migration. While it is clear that tyrosine phosphorylation of the NEDD9 substrate domain is similarly required for the regulation of cell motility, whether individual NEDD9 tyrosine residues have discrete function in regulating motility has not previously been reported. In the present study we have used a global sequence alignment of Cas family proteins to identify a putative NEDD9 equivalent of p130Cas Y253. We find that NEDD9 Y189 aligns with p130Cas Y253 and that it is conserved among NEDD9 vertebrate orthologues. Expression of NEDD9 in which Y189 is mutated to phenylalanine results in increased rates of cell migration and is correlated with increased disassembly of GFP.NEDD9 focal adhesions. Conversely, mutation to Y189D significantly inhibits cell migration. Our previous data has suggested that NEDD9 stabilizes focal adhesions and the present data therefore suggests that phosphorylation of Y189 NEDD9 is required for this function. These findings indicate that the individual tyrosine residues of the NEDD9 substrate domain may serve discrete functional roles. Given the important role of this protein in promoting cancer invasion, greater understanding of the function of the individual tyrosine residues is important for the future design of approaches to target NEDD9 to arrest cancer cell invasion.  相似文献   

4.
Crk-associated substrate (Cas) is a tyrosine-phosphorylated docking protein that is indispensable for the regulation of the actin cytoskeletal organization and cell migration in fibroblasts. The function of Cas in neurons, however, is poorly understood. Here we report that Cas is dominantly enriched in the brain, especially the cerebellum, of postnatal mice. During cerebellar development, Cas is highly tyrosine phosphorylated and is concentrated in the neurites and growth cones of granule cells. Cas coimmunoprecipitates with Src family protein tyrosine kinases, Crk, and cell adhesion molecules and colocalizes with these proteins in granule cells. The axon extension of granule cells is inhibited by either RNA interference knockdown of Cas or overexpression of the Cas mutant lacking the YDxP motifs, which are tyrosine phosphorylated and thereby interact with Crk. These findings demonstrate that Cas acts as a key scaffold that links the proteins associated with tyrosine phosphorylation signaling pathways to the granule cell axon elongation.  相似文献   

5.

Background  

Non-receptor tyrosine kinases (NTKs) regulate physiological processes such as cell migration, differentiation, proliferation, and survival by interacting with and phosphorylating a large number of substrates simultaneously. This makes it difficult to attribute a particular biological effect to the phosphorylation of a particular substrate. We developed the Functional Interaction Trap (FIT) method to phosphorylate specifically a single substrate of choice in living cells, thereby allowing the biological effect(s) of that phosphorylation to be assessed. In this study we have used FIT to investigate the effects of specific phosphorylation of p130Cas, a protein implicated in cell migration. We have also used this approach to address a controversy regarding whether it is Src family kinases or focal adhesion kinase (FAK) that phosphorylates p130Cas in the trimolecular Src-FAK-p130Cas complex.  相似文献   

6.
Integrin-mediated cell adhesion stimulates a cascade of signaling pathways that control cell proliferation, migration, and survival, mostly through tyrosine phosphorylation of signaling molecules. p130Cas, originally identified as a major substrate of v-Src, is a scaffold molecule that interacts with several proteins and mediates multiple cellular events after cell adhesion and mitogen treatment. Here, we describe a novel p130Cas-associated protein named p140Cap (Cas-associated protein) as a new tyrosine phosphorylated molecule involved in integrin- and epidermal growth factor (EGF)-dependent signaling. By affinity chromatography of human ECV304 cell extracts on a MBP-p130Cas column followed by mass spectrometry matrix-assisted laser desorption ionization/time of flight analysis, we identified p140Cap as a protein migrating at 140 kDa. We detected its expression in human, mouse, and rat cells and in different mouse tissues. Endogenous and transfected p140Cap proteins coimmunoprecipitate with p130Cas in ECV304 and in human embryonic kidney 293 cells and associate with p130Cas through their carboxy-terminal region. By immunofluorescence analysis, we demonstrated that in ECV304 cells plated on fibronectin, the endogenous p140Cap colocalizes with p130Cas in the perinuclear region as well as in lamellipodia. In addition p140Cap codistributes with cortical actin and actin stress fibers but not with focal adhesions. We also show that p140Cap is tyrosine phosphorylated within 15 min of cell adhesion to integrin ligands. p140Cap tyrosine phosphorylation is also induced in response to EGF through an EGF receptor dependent-mechanism. Interestingly expression of p140Cap in NIH3T3 and in ECV304 cells delays the onset of cell spreading in the early phases of cell adhesion to fibronectin. Therefore, p140Cap is a novel protein associated with p130Cas and actin cytoskeletal structures. Its tyrosine phosphorylation by integrin-mediated adhesion and EGF stimulation and its involvement in cell spreading on matrix proteins suggest that p140Cap plays a role in controlling actin cytoskeleton organization in response to adhesive and growth factor signaling.  相似文献   

7.
The sterile α motif (SAM) domain of the ephrin receptor tyrosine kinase, EphA2, undergoes tyrosine phosphorylation, but the effect of phosphorylation on the structure and interactions of the receptor is unknown. Studies to address these questions have been hindered by the difficulty of obtaining site-specifically phosphorylated proteins in adequate amounts. Here, we describe the use of chemically synthesized and specifically modified domain-length peptides to study the behavior of phosphorylated EphA2 SAM domains. We show that tyrosine phosphorylation of any of the three tyrosines, Tyr921, Tyr930, and Tyr960, has a surprisingly small effect on the EphA2 SAM structure and stability. However, phosphorylation at Tyr921 and Tyr930 enables differential binding to the Src homology 2 domain of the adaptor protein Grb7, which we propose will lead to distinct functional outcomes. Setting up different signaling platforms defined by selective interactions with adaptor proteins thus adds another level of regulation to EphA2 signaling.  相似文献   

8.
Transforming growth factor-beta (TGF-beta) regulates a wide range of physiological and pathological cellular processes, including cell migration, mesenchymal transition, extracellular matrix synthesis, and cell death. Cas (Crk-associated substrate, 130 kDa), an adaptor protein localized at focal adhesions and stress fibers, is also known to have important functions in cell migration and the induction of immediate-early gene expression. Here, we report that a rapid and transient tyrosine phosphorylation of Cas is induced by TGF-beta 1 and that E-cadherin-mediated cell-cell interaction and the Src kinase pathway are involved in this early TGF-beta signaling. The addition of TGF-beta 1 to epithelial cells rapidly induced tyrosine phosphorylation of Cas and promoted the formation of complexes between focal adhesion molecules. Cas phosphorylation required the integrity of the actin cytoskeleton but was not dependent on cell adhesion, implying that Cas-dependent signaling may be distinct from integrin signaling. TGF-beta 1 also stimulated Src kinase activity, and specific inhibitors of Src completely blocked the induction of Cas phosphorylation by TGF-beta 1. The Cas phosphorylation and Src kinase activation seen in our results were induced in an epithelial phenotype-specific manner. Stable transfection of E-cadherin to L929 cells and L cells as well as E-cadherin blocking assay revealed that E-cadherin-mediated cell-cell interactions were essential for both Cas phosphorylation and Src kinase activation. Taken together, our data suggest that rapid Cas phosphorylation and Src kinase activation may play a novel role in TGF-beta signal transduction.  相似文献   

9.
The adhesion of ADP-stimulated platelets to immobilized fibrinogen induces the tyrosine phosphorylation of multiple proteins which include pp72syk and pp125FAK. The phosphorylation of these two proteins increases as function of time of platelet adhesion to fibrinogen; however, pp72syk results strongly phosphorylated already after 15 min. whereas pp125FAK reaches high levels of phosphorylation after 1 h of platelet adhesion. Phosphorylation of both proteins is only slightly detectable when platelets are held in suspension or when platelets are allowed to adhere to bovine serum albumin, a non-specific substrate. Echistatin, an Arg-Gly-Asp (RGD)-containing snake-venom protein, affects protein tyrosine phosphorylation promoted by platelet adhesion to fibrinogen, by causing an approximately 44% and 39% decrease of pp72syk and pp125FAK phosphorylation, respectively. The interaction of echistatin with fibrinogen receptor glycoprotein Ilb-Illa on platelet surface might be responsible for the block of integrin-mediated signaling cascade, including pp72syk and pp125FAK inactivation.  相似文献   

10.
Requirements for localization of p130cas to focal adhesions.   总被引:8,自引:0,他引:8       下载免费PDF全文
p130cas (Cas) is an adapter protein that has an SH3 domain followed by multiple SH2 binding motifs in the substrate domain. It also contains a tyrosine residue and a proline-rich sequence near the C terminus, which are the binding sites for the SH2 and SH3 domains of Src kinase, respectively. Cas was originally identified as a major tyrosine-phosphorylated protein in v-Crk- and v-Src-transformed cells. Subsequently, Cas was shown to be inducibly tyrosine phosphorylated upon integrin stimulation; it is therefore regarded as one of the focal adhesion proteins. Using an immunofluorescence study, we examined the subcellular localization of Cas and determined the regions required for its localization to focal adhesions. In nontransformed cells, Cas was localized predominantly to the cytoplasm and partially to focal adhesions. However, in 527F-c-Src-transformed cells, Cas was localized mainly to podosomes, where the focal adhesion proteins are assembled. The localization of Cas to focal adhesions was also observed in cells expressing the kinase-negative 527F/295M-c-Src. A series of analyses with deletion mutants expressed in various cells revealed that the SH3 domain of Cas is necessary for its localization to focal adhesions in nontransformed cells while both the SH3 domain and the C-terminal Src binding domain of Cas are required in 527F-c-Src-transformed cells and fibronectin-stimulated cells. In addition, the localization of Cas to focal adhesions was abolished in Src-negative cells. These results demonstrate that the SH3 domain of Cas and the association of Cas with Src kinase play a pivotal role in the localization of Cas to focal adhesions.  相似文献   

11.
Many in vivo substrates of Src family tyrosine kinases possess sequences conforming to Src homology 2 and 3 (SH2 and SH3) domain-binding motifs. One such substrate is p130Cas, a protein that is hyperphosphorylated in v-Src transformed cells. Cas contains a substrate domain consisting of 15 potential tyrosine phosphorylation sites, C- and N-terminal polyproline regions fitting the consensus sequence for SH3 domain ligands, and a YDYV motif that binds the Src SH2 domain when phosphorylated. In an effort to understand the mechanisms of processive phosphorylation, we have explored the regions of Cas necessary for interaction with Src using the yeast two-hybrid system. Mutations in the SH2 domain-binding region of Cas or the Src SH2 domain have little effect in Cas-Src complex formation or phosphorylation. However, disruption of the C-terminal polyproline region of Cas completely abolishes interaction between the two proteins and results in impaired phosphorylation of Cas. Kinetic analyses using purified proteins indicated that multisite phosphorylation of Cas by Src follows a processive rather than a distributive mechanism. Furthermore, the kinetic studies show that there are two properties of the polyproline region of Cas that are important in enhancing substrate phosphorylation. First, the C-terminal polyproline serves to activate Src kinases through the process of SH3 domain displacement. Second, this region aids in anchoring the kinase to Cas to facilitate processive phosphorylation of the substrate domain. The two processes combine to ensure phosphorylation of Cas with high efficiency.  相似文献   

12.
DOCK180 is an atypical guanine nucleotide exchange factor of Rac1 identified originally as one of the two major proteins bound to the SH3 domain of the Crk adaptor protein. DOCK180 induces tyrosine phosphorylation of p130Cas, and recruits the Crk-p130Cas complex to focal adhesions. Recently, we searched for DOCK180-binding proteins with a nano-LC/MS/MS system, and found that ANKRD28, a protein with twenty-six ankyrin domain-repeats, interacts with the SH3 domain of DOCK180. Knockdown of ANKRD28 reduced the migration velocity and altered the distribution of focal adhesion proteins such as Crk, paxillin, and p130Cas. On the other hand, the expression of ANKRD28, p130Cas, Crk, and DOCK180 induced hyper-phosphorylation of p130Cas, which paralleled the induction of multiple long cellular processes. Depletion of ELMO, another protein bound to the SH3 domain of DOCK180, also retarded cell migration, but its expression together with p130Cas, Crk, and DOCK180 induced extensive lamellipodial protrusion around the entire circumference without 130Cas hyperphosphorylation. These data suggest the dual modes of DOCK180-Rac regulation for cell migration.  相似文献   

13.
The docking protein p130Cas (Cas) becomes tyrosine-phosphorylated in its central substrate domain in response to extracellular stimuli such as integrin-mediated cell adhesion, and transmits signals through interactions with various intracellular signaling molecules such as the adaptor protein Crk. Src-family kinases (SFKs) bind a specific site in the carboxyl-terminal region of Cas and subsequently SFKs phosphorylate progressively the substrate domain in Cas. In this study crystallography, mutagenesis and binding assays were used to understand the molecular basis for Cas interactions with SFKs. Tyrosine phosphorylation regulates binding of Cas to SFKs, and the primary site for this phosphorylation, Y762, has been proposed. A phosphorylated peptide corresponding to Cas residues 759MEDpYDYVHL767 containing the key phosphotyrosine was crystallized in complex with the SH3-SH2 domain of the SFK Lck. The results provide the first structural data for this protein-protein interaction. The motif in Cas 762pYDYV binds to the SH2 domain in a mode that mimics high-affinity ligands, involving dual contacts of Y762 and V765 with conserved residues in SFK SH2 domains. In addition, Y764 is in position to make an electrostatic contact after phosphorylation with a conserved SFK arginine that mediates interactions with other high-affinity SH2 binders. These new molecular data suggest that Cas may regulate activity of Src as a competing ligand to displace intramolecular interactions that occur in SFKs (between the C-terminal tail and the SH2 domain) and restrain and down-regulate the kinase in an inactive form.  相似文献   

14.
Fluid shear stress (flow) modulates endothelial cell function via specific intracellular signaling events. Previously we showed that flow activated ERK1/2 in an integrin-dependent manner (Takahashi, M., and Berk, B. C. (1996) J. Clin. Invest. 98, 2623-2631). p130 Crk-associated substrate (Cas), a putative c-Src substrate, was originally identified as a highly phosphorylated protein that is localized to focal adhesions and acts as an adapter protein. Recent reports have shown that Cas is important in cardiovascular development and actin filament assembly. Flow (shear stress = 12 dynes/cm(2)) stimulated Cas tyrosine phosphorylation within 1 min in human umbilical vein endothelial cells. Phosphorylation peaked at 5 min (3.5 +/- 0.7-fold) and was sustained to 20 min. Tyrosine phosphorylation of Cas was functionally important because flow stimulated association of Cas with Crk in a time- and force-dependent manner. Flow-mediated activation of c-Src, phosphorylation of Cas, and association of Cas with Crk were all inhibited by calcium chelation and pretreatment with the Src family-specific tyrosine kinase inhibitor PP1. To determine the role of c-Src in flow-stimulated phosphorylation of Cas, we transduced cells with adenovirus encoding kinase-inactive Src. Expression of kinase-inactive Src prevented flow-induced Cas tyrosine phosphorylation but not ERK1/2 activation. Calcium-dependent activation of c-Src and tyrosine phosphorylation of Cas defines a new flow-stimulated signal pathway, different from ERK1/2 activation. This pathway may be involved in focal adhesion remodeling and actin filament assembly.  相似文献   

15.
16.
The pattern recognition receptor CD36 initiates a signaling cascade that promotes microglial activation and recruitment to beta-amyloid deposits in the brain. In the present study we identify the focal adhesion-associated proteins p130Cas, Pyk2, and paxillin as novel members of the tyrosine kinase signaling pathway downstream of CD36 and show that assembly of this complex is essential for microglial migration. In primary microglia and macrophages exposed to beta-amyloid, the scaffolding protein p130Cas is rapidly tyrosine-phosphorylated and co-localizes with CD36 to membrane ruffles contemporaneous with F-actin polymerization. These beta-amyloid-stimulated events are not detected in CD36 null cells and are dependent on CD36 activation of Src family tyrosine kinases. Fyn, a Src kinase known to interact with CD36, co-precipitates with p130Cas and is an essential upstream intermediate in the signaling pathways leading to phosphorylation of the p130Cas substrate domain. Furthermore, the p130Cas-interacting kinase Pyk2 and the cytoskeletal adapter protein paxillin also demonstrate CD36-dependent phosphorylation, identifying these focal adhesion molecules as additional members of this beta-amyloid signaling cascade. Disruption of this p130Cas complex by small interfering RNA silencing inhibits p44/42 mitogen-activated protein kinase phosphorylation and microglial migration, illustrating the importance of this pathway in microglial activation and recruitment. Together, these data are the first to identify the signaling cascade that directly links CD36 to the actin cytoskeleton and, thus, implicates it in diverse processes such as cellular migration, adhesion, and phagocytosis.  相似文献   

17.
Endogenous phosphotyrosine signaling in zebrafish embryos   总被引:1,自引:0,他引:1  
In the developing embryo, cell growth, differentiation, and migration are strictly regulated by complex signaling pathways. One of the most important cell signaling mechanisms is protein phosphorylation on tyrosine residues, which is tightly controlled by protein-tyrosine kinases and protein-tyrosine phosphatases. Here we investigated endogenous phosphotyrosine signaling in developing zebrafish embryos. Tyrosine phosphorylated proteins were immunoaffinity-purified from zebrafish embryos at 3 and 5 days postfertilization and identified by multidimensional LC-MS. Among the identified proteins were tyrosine kinases, including Src family kinases, Eph receptor kinases, and focal adhesion kinases, as well as the adaptor proteins paxillin, p130Cas, and Crk. We identified several known and some unknown in vivo tyrosine phosphorylation sites in these proteins. Whereas most immunoaffinity-purified proteins were detected at both developmental stages, significant differences in abundance and/or phosphorylation state were also observed. In addition, multiplex in vitro kinase assays were performed by incubating a microarray of peptide substrates with the lysates of the two developmental stages. Many of the in vivo observations were confirmed by this on-chip in vitro kinase assay. Our experiments are the first to show that global tyrosine phosphorylation-mediated signaling can be studied at endogenous levels in complex multicellular organisms.  相似文献   

18.

Background

Scaffold proteins have an important role in the regulation of signal propagation. These proteins do not possess any enzymatic activity but can contribute to the formation of multiprotein complexes. Although scaffold proteins are present in all cell types, the nervous system contains them in the largest amount. Caskin proteins are typically present in neuronal cells, particularly, in the synapses. However, the signaling mechanisms by which Caskin proteins are regulated are largely unknown.

Results

Here we demonstrate that EphB1 receptor tyrosine kinase can recruit Caskin1 through the adaptor protein Nck. Upon activation of the receptor kinase, the SH2 domain of Nck binds to one of its tyrosine residues, while Nck SH3 domains interact with the proline-rich domain of Caskin1. Complex formation of the receptor, adaptor and scaffold proteins results in the tyrosine phosphorylation of Caskin1 on its SH3 domain. The phosphorylation sites were identified by mass-spectrometry as tyrosines 296 and 336. To reveal the structural consequence of this phosphorylation, CD spectroscopy was performed. This measurement suggests that upon tyrosine phosphorylation the structure of the Caskin1 SH3 domain changes significantly.

Conclusion

Taken together, we propose that the scaffold protein Caskin1 can form a complex with the EphB1 tyrosine kinase via the Nck protein as a linker. Complex formation results in tyrosine phosphorylation of the Caskin1 SH3 domain. Although we were not able to identify any physiological partner of the SH3 domain so far, we could demonstrate that phosphorylation on conserved tyrosine residues results in marked changes in the structure of the SH3 domain.
  相似文献   

19.
Integrin-mediated focal adhesions connect the extracellular matrix and cytoskeleton to regulate cell responses, such as migration. Protein tyrosine phosphatase α (PTPα) regulates integrin signaling, focal adhesion formation, and migration, but its roles in these events are incompletely understood. The integrin-proximal action of PTPα activates Src family kinases, and subsequent phosphorylation of PTPα at Tyr789 acts in an unknown manner to promote migration. PTPα-null cells were used in reconstitution assays to distinguish PTPα-Tyr789-dependent signaling events. This showed that PTPα-Tyr789 regulates the localization of PTPα and the scaffolding protein Cas to adhesion sites where Cas interacts with and is phosphorylated by Src to initiate Cas signaling. Linking these events, we identify BCAR3 as a molecular connector of PTPα and Cas, with phospho-Tyr789 PTPα serving as the first defined cellular ligand for the BCAR3 SH2 domain that recruits BCAR3-Cas to adhesions. Our findings reveal a novel role of PTPα in integrin-induced adhesion assembly that enables Src-mediated activation of the pivotal function of Cas in migration.  相似文献   

20.
Integrin-mediated cell adhesion triggers intracellular signaling cascades, including tyrosine phosphorylation of intracellular proteins. Among these are the focal adhesion proteins p130cas (Cas) and focal adhesion kinase (FAK). Here we identify the kinase(s) mediating integrin-induced Cas phosphorylation and characterize protein-protein interactions mediated by phosphorylated Cas. We found that expression of a constitutively active FAK in fibroblasts results in a consecutive tyrosine phosphorylation of Cas. This effect required the autophosphorylation site of FAK, which is a binding site for Src family kinases. Integrin-mediated phosphorylation of Cas was not, however, compromised in fibroblasts lacking FAK. In contrast, adhesion-induced tyrosine phosphorylation of Cas was reduced in cells lacking Src, whereas enhanced phosphorylation of Cas was observed Csk- cells, in which Src kinases are activated. These results suggest that Src kinases are responsible for the integrin-mediated tyrosine phosphorylation of Cas. FAK seems not to be necessary for phosphorylation of Cas, but when autophosphorylated, FAK may recruit Src family kinases to phosphorylate Cas. Cas was found to form complexes with Src homology 2 (SH2) domain-containing signaling molecules, such as the SH2/SH3 adapter protein Crk, following integrin-induced tyrosine phosphorylation. Guanine nucleotide exchange factors C3G and Sos were found in the Cas-Crk complex upon integrin ligand binding. These observations suggest that Cas serves as a docking protein and may transduce signals to downstream signaling pathways following integrin-mediated cell adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号