首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biallelic inactivation of LKB1, a serine/threonine kinase, has been detected in 30% of lung adenocarcinomas, and inhibition of breast tumor growth has been demonstrated. We have identified the tumor suppressor, Nischarin, as a novel binding partner of LKB1. Our mapping analysis shows that the N terminus of Nischarin interacts with amino acids 44–436 of LKB1. Time lapse microscopy and Transwell migration data show that the absence of both Nischarin and LKB1 from an invasive breast cancer cell line (MDA-MB-231) enhances migration as measured by increased distance and speed of migrating cells. Our data suggest that this is a result of elevated PAK1 and LIMK1 phosphorylation. Moreover, the absence of Nischarin and LKB1 increased tumor growth in vivo. Consistent with this, the percentage of S phase cells was increased, as demonstrated by flow cytometry and enhanced cyclin D1. The absence of Nischarin and LKB1 also led to a dramatic increase in the formation of lung metastases. Our studies, for the first time, demonstrate functional interaction between LKB1 and Nischarin to inhibit cell migration and breast tumor progression. Mechanistically, we show that these two proteins together regulate PAK-LIMK-Cofilin and cyclin D1/CDK4 pathways.  相似文献   

2.
The inducible T cell kinase-spleen tyrosine kinase (ITK-SYK) oncogene consists of the Tec homology-pleckstrin homology domain of ITK and the kinase domain of SYK, and it is believed to be the cause of peripheral T cell lymphoma. We and others have recently demonstrated that this fusion protein is constitutively tyrosine-phosphorylated and is transforming both in vitro and in vivo. To gain a deeper insight into the molecular mechanism(s) underlying its activation and signaling, we mutated a total of eight tyrosines located in the SYK portion of the chimera into either phenylalanine or to the negatively charged glutamic acid. Although mutations in the interdomain-B region affected ITK-SYK kinase activity, they only modestly altered downstream signaling events. In contrast, mutations that were introduced in the kinase domain triggered severe impairment of downstream signaling. Moreover, we show here that SLP-76 is critical for ITK-SYK activation and is particularly required for the ITK-SYK-dependent phosphorylation of SYK activation loop tyrosines. In Jurkat cell lines, we demonstrate that expression of ITK-SYK fusion requires an intact SLP-76 function and significantly induces IL-2 secretion and CD69 expression. Furthermore, the SLP-76-mediated induction of IL-2 and CD69 could be further enhanced by SYK or ZAP-70, but it was independent of their kinase activity. Notably, ITK-SYK expression in SYF cells phosphorylates SLP-76 in the absence of SRC family kinases. Altogether, our data suggest that ITK-SYK exists in the active conformation state and is therefore capable of signaling without SRC family kinases or stimulation of the T cell receptor.  相似文献   

3.
The Eph receptors and their membrane-bound ligands, ephrins, play important roles in various biological processes such as cell adhesion and movement. The transmembrane ephrinBs transduce reverse signaling in a tyrosine phosphorylation-dependent or -independent, as well as PDZ-dependent manner. Here, we show that ephrinB1 interacts with Connector Enhancer of KSR1 (CNK1) in an EphB receptor-independent manner. In cultured cells, cotransfection of ephrinB1 with CNK1 increases JNK phosphorylation. EphrinB1/CNK1-mediated JNK activation is reduced by overexpression of dominant-negative RhoA. Overexpression of CNK1 alone is sufficient for activation of RhoA; however, both ephrinB1 and CNK1 are required for JNK phosphorylation. Co-immunoprecipitation data showed that ephrinB1 and CNK1 act as scaffold proteins that connect RhoA and JNK signaling components, such as p115RhoGEF and MKK4. Furthermore, adhesion to fibronectin or active Src overexpression increases ephrinB1/CNK1 binding, whereas blocking Src activity by a pharmacological inhibitor decreases not only ephrinB1/CNK1 binding, but also JNK activation. EphrinB1 overexpression increases cell motility, however, CNK1 depletion by siRNA abrogates ephrinB1-mediated cell migration and JNK activation. Moreover, Rho kinase inhibitor or JNK inhibitor treatment suppresses ephrinB1-mediated cell migration. Taken together, our findings suggest that CNK1 is required for ephrinB1-induced JNK activation and cell migration.  相似文献   

4.
EB1 is key factor in the organization of the microtubule cytoskeleton by binding to the plus-ends of microtubules and serving as a platform for a number of interacting proteins (termed +TIPs) that control microtubule dynamics. Together with its direct binding partner adenomatous polyposis coli (APC), EB1 can stabilize microtubules. Here, we show that Amer2 (APC membrane recruitment 2), a previously identified membrane-associated APC-binding protein, is a direct interaction partner of EB1 and acts as regulator of microtubule stability together with EB1. Amer2 binds to EB1 via specific (S/T)xIP motifs and recruits it to the plasma membrane. Coexpression of Amer2 and EB1 generates stabilized microtubules at the plasma membrane, whereas knockdown of Amer2 leads to destabilization of microtubules. Knockdown of Amer2, APC, or EB1 reduces cell migration, and morpholino-mediated down-regulation of Xenopus Amer2 blocks convergent extension cell movements, suggesting that the Amer2-EB1-APC complex regulates cell migration by altering microtubule stability.  相似文献   

5.
Lymphocyte trafficking and migration through vascular endothelial cells (ECs) in secondary lymphoid tissues is critical for immune protection. In the present study, we investigate the role of nectin cell adhesion molecules for the migration of lymphocytes through ECs. Nectins are key players for the establishment of homotypic and heterotypic cell to cell contacts; they are required for cell to cell adherens junction formation and take part in the transendothelial migration of monocytes during the step of diapedesis, when monocytes migrate through EC junctions. We first show that Nectin-3 (CD113) is the only nectin expressed by T lymphocytes and since nectins are expressed on ECs we explored Nectin-3 potential functions in lymphocyte: EC interactions. We demonstrate that Nectin-2, expressed on ECs, is the major counter-receptor of Nectin-3. A soluble form of Nectin-3 binds to Nectin-2 localized at EC junctions and blocking Nectin-2 trans-interactions with monoclonal antibodies abolishes the binding of soluble Nectin-3 to ECs. Nectin-2 is expressed on High Endothelial venules (HEVs), where lymphocyte homing occurs in vivo. Finally, we show that Nectin-3 trans-interaction with Nectin-2 is essential for the process of lymphocyte transendothelial migration in vitro as targeting with blocking monoclonal antibodies either Nectin-3, expressed on lymphocytes, or Nectin-2, expressed on ECs, inhibits lymphocyte extravasation. The nectin family of CAMs is important for the regulation of endothelial barrier functions and transendothelial migration of immune cells. Our results demonstrate for the first time that Nectin-3 trans-interacts with Nectin-2 to promote lymphocyte and monocyte extravasation.  相似文献   

6.
Migration of plasma cells to the bone marrow is critical factor to humoral immunity and controlled by chemokines. Regulator of G protein signaling 1 (RGS1) is a GTPase-activating protein that controls various crucial functions such as migration. Here, we show that RGS1 controls the chemotactic migration of RPMI 8226 human plasmacytoma cells and human plasmablasts. LPS strongly increased RGS1 expression and retarded the migration of RPMI 8226 cells by suppressing CXCL12-mediated AKT activation. RGS1 knockdown by siRNA abolished the retardation of migration and AKT suppression by LPS. RGS1-dependent regulation of migration via AKT is also observed in cultured plasmablasts. We propose novel functions of RGS1 that suppress AKT activation and the migration of RPMI 8226 cells and plasmablasts in CXCL12-mediated chemotaxis.  相似文献   

7.
The differentiation of human primary T helper 1 (Th1) cells from naïve precursor cells is regulated by a complex, interrelated signaling network. The identification of factors regulating the early steps of Th1 cell polarization can provide important insight in the development of therapeutics for many inflammatory and autoimmune diseases. The serine/threonine-specific proviral integration site for Moloney murine leukemia virus (PIM) kinases PIM1 and PIM2 have been implicated in the cytokine-dependent proliferation and survival of lymphocytes. We have established that the third member of this family, PIM3, is also expressed in human primary Th cells and identified a new function for the entire PIM kinase family in T lymphocytes. Although PIM kinases are expressed more in Th1 than Th2 cells, we demonstrate here that these kinases positively influence Th1 cell differentiation. Our RNA interference results from human primary Th cells also suggest that PIM kinases promote the production of IFNγ, the hallmark cytokine produced by Th1 cells. Consistent with this, they also seem to be important for the up-regulation of the critical Th1-driving factor, T box expressed in T cells (T-BET), and the IL-12/STAT4 signaling pathway during the early Th1 differentiation process. In summary, we have identified PIM kinases as new regulators of human primary Th1 cell differentiation, thus providing new insights into the mechanisms controlling the selective development of human Th cell subsets.  相似文献   

8.
Enabled/Vasodilator-stimulated phosphoprotein (Ena/VASP) protein family members link actin dynamics and cellular signaling pathways. VASP localizes to regions of dynamic actin reorganization such as the focal adhesion contacts, the leading edge or filopodia, where it contributes to F-actin filament elongation. Here we identify VASP as a novel substrate for protein kinase D1 (PKD1). We show that PKD1 directly phosphorylates VASP at two serine residues, Ser-157 and Ser-322. These phosphorylations occur in response to RhoA activation and mediate VASP re-localization from focal contacts to the leading edge region. The net result of this PKD1-mediated phosphorylation switch in VASP is increased filopodia formation and length at the leading edge. However, such signaling when persistent induced membrane ruffling and decreased cell motility.  相似文献   

9.
Epstein-Barr virus (EBV) is closely associated with nasopharyngeal carcinoma (NPC), a human malignancy notorious for its highly metastatic nature. Among EBV-encoded genes, latent membrane protein 1 (LMP1) is expressed in most NPC tissues and exerts oncogenicity by engaging multiple signaling pathways in a ligand-independent manner. LMP1 expression also results in actin cytoskeleton reorganization, which modulates cell morphology and cell motility— cellular process regulated by RhoGTPases, such as Cdc42. Despite the prominent association of Cdc42 activation with tumorigenesis, the molecular basis of Cdc42 activation by LMP1 in NPC cells remains to be elucidated. Here using GST-CBD (active Cdc42-binding domain) as bait in GST pull-down assays to precipitate active Cdc42 from cell lysates, we demonstrated that LMP1 acts through its transmembrane domains to preferentially induce Cdc42 activation in various types of epithelial cells, including NPC cells. Using RNA interference combined with re-introduction experiments, we identified FGD4 (FYVE, RhoGEF and PH domain containing 4) as the GEF (guanine nucleotide exchange factor) responsible for the activation of Cdc42 by LMP1. Serial deletion experiments and co-immunoprecipitation assays further revealed that ectopically expressed FGD4 modulated LMP1-mediated Cdc42 activation by interacting with LMP1. Moreover, LMP1, through its transmembrane domains, directly bound FGD4 and enhanced FGD4 activity toward Cdc42, leading to actin cytoskeleton rearrangement and increased motility of NPC cells. Depletion of FGD4 or Cdc42 significantly reduced (∼50%) the LMP1-stimulated cell motility, an effect that was partially reversed by expression of a constitutively active mutant of Cdc42. Finally, quantitative RT-PCR and immunohistochemistry analyses showed that FGD4 and LMP1 were expressed in NPC tissues, supporting the potential physiologically relevance of this mechanism in NPC. Collectively, our results not only uncover a novel mechanism underlying LMP1-mediated Cdc42 activation, namely LMP1 interaction with FGD4, but also functionally link FGD4 to NPC tumorigenesis.  相似文献   

10.
Cell migration is orchestrated by dynamic interaction of microtubules with the plasma membrane cortex. However, the regulatory mechanisms underlying the cortical actin cytoskeleton and microtubule dynamics are less characterized. Our earlier study showed that small GTPase-activating proteins, IQGAPs, regulate polarized secretion in epithelial cells (1). Here, we show that IQGAP1 links dynamic microtubules to steer cell migration via interacting with the plus-end tracking protein, SKAP. Biochemical characterizations revealed that IQGAP1 and SKAP form a cognate complex and that their binding interfaces map to the WWIQ motif and the C-terminal of SKAP, respectively. The WWIQ peptide disrupts the biochemical interaction between IQGAP1 and SKAP in vitro, and perturbation of the IQGAP1-SKAP interaction in vivo using a membrane-permeable TAT-WWIQ peptide results in inhibition of directional cell migration elicited by EGF. Mechanistically, the N-terminal of SKAP binds to EB1, and its C terminus binds to IQGAP1 in migrating cells. Thus, we reason that a novel IQGAP1 complex orchestrates directional cell migration via coupling dynamic microtubule plus-ends to the cell cortex.  相似文献   

11.
鉴定人乳头瘤病毒16型早期蛋白7(HPV16E7)过表达细胞及其迁移效应的影响,为后续基于HPV16E7靶向分子作用机制的研究奠定工作基础.脂质体转染法将本室保存的pcDNA3.1-HPV16E7重组真核表达质粒分别转染人胚肾293T细胞(HPV16型DNA阴性)、宫颈癌SiHa细胞株(HPV16 DNA阳性),转染48 h后收集细胞,提取RNA,RT-PCR扩增相应的目的基因,Western Blotting和间接免疫荧光实验检测HPV16E7目的蛋白在细胞中的表达.转染24h的细胞进行细胞划痕和Transwell实验,检测过表达细胞迁移行为的变化.RT-PCR结果显示:分别从E7质粒转染的293T、SiHa细胞的cDNA中,均可扩增到250 bp的目的条带;Western Blotting分析结果显示:以HPV16E7单克隆抗体为检测抗体,转染细胞的裂解液中均能在相对分子质量(Mr)约为15 000处出现特异性目的条带;间接免疫荧光结果显示:转染细胞中均能检测到目的绿色荧光,且分布于胞浆及细胞核周围;细胞划痕和Transwell实验结果显示:转染E7细胞的迁移效应显著提高.本研究证实了 HPV16E7转染细胞后可成功表达,且过表达细胞明显促进了细胞迁移行为,为后续基于HPV16E7迁移相关分子机制及靶向干预等研究奠定了前期工作基础.  相似文献   

12.
13.
Protein kinase C (PKC) isoforms differentially regulate platelet functional responses downstream of glycoprotein VI (GPVI) signaling, but the role of PKCs regulating upstream effectors such as Syk is not known. We investigated the role of PKC on Syk tyrosine phosphorylation using the pan-PKC inhibitor GF109203X (GFX). GPVI-mediated phosphorylation on Syk Tyr-323, Tyr-352, and Tyr-525/526 was rapidly dephosphorylated, but GFX treatment inhibited this dephosphorylation on Tyr-525/526 in human platelets but not in wild type murine platelets. GFX treatment did not affect tyrosine phosphorylation on FcRγ chain or Src family kinases. Phosphorylation of Lat Tyr-191 and PLCγ2 Tyr-759 was also increased upon treatment with GFX. We evaluated whether secreted ADP is required for such dephosphorylation. Exogenous addition of ADP to GFX-treated platelets did not affect tyrosine phosphorylation on Syk. FcγRIIA- or CLEC-2-mediated Syk tyrosine phosphorylation was also potentiated with GFX in human platelets. Because potentiation of Syk phosphorylation is not observed in murine platelets, PKC-deficient mice cannot be used to identify the PKC isoform regulating Syk phosphorylation. We therefore used selective inhibitors of PKC isoforms. Only PKCβ inhibition resulted in Syk hyperphosphorylation similar to that in platelets treated with GFX. This result indicates that PKCβ is the isoform responsible for Syk negative regulation in human platelets. In conclusion, we have elucidated a novel pathway of Syk regulation by PKCβ in human platelets.  相似文献   

14.
15.
Lee JH  Rho SB  Chun T 《Biotechnology letters》2005,27(14):1011-1015
Programmed cell death 6 (PDCD6) protein is a 22 kDa EF-hand type Ca2+-binding protein involved in apoptosis. To define the regulating mechanism of PDCD6 activity in the apoptotic pathway, we searched a human ovary cDNA library for a novel PDCD6 binding protein using a yeast two-hybrid system. The selected protein was the human death-associated protein kinase 1 (DAPk1), another protein that functions as a positive mediator of apoptosis. Co-transfection of PDCD6 and DAPk1 cDNA into a tumor cell line accelerated apoptosis via caspase-3 dependent pathway.J.H. Lee and S.B. Rho contributed equally to this workRevisions requested 4 March 2005; Revisions received 10 May 2005  相似文献   

16.
Dendritic cells (DCs) capture and process antigens in peripheral tissues, migrate to lymphoid tissues, and present the antigens to T cells. PTPN12, also known as PTP-PEST, is an intracellular protein tyrosine phosphatase (PTP) involved in cell-cell and cell-substratum interactions. Herein, we examined the role of PTPN12 in DCs, using a genetically engineered mouse lacking PTPN12 in DCs. Our data indicated that PTPN12 was not necessary for DC differentiation, DC maturation, or cytokine production in response to inflammatory stimuli. However, it was needed for full induction of T cell-dependent immune responses in vivo. This function largely correlated with the need of PTPN12 for DC migration from peripheral sites to secondary lymphoid tissues. Loss of PTPN12 in DCs resulted in hyperphosphorylation of the protein tyrosine kinase Pyk2 and its substrate, the adaptor paxillin. Pharmacological inhibition of Pyk2 or downregulation of Pyk2 expression also compromised DC migration, suggesting that Pyk2 deregulation played a pivotal role in the migration defect caused by PTPN12 deficiency. Together, these findings identified PTPN12 as a key regulator in the ability of DCs to induce antigen-induced T cell responses. This is due primarily to the role of PTPN12 in DC migration from peripheral sites to secondary lymphoid organs through regulation of Pyk2.  相似文献   

17.
TCR stimulation leads to an increase in cellular adhesion among other outcomes. The adhesion and degranulation promoting adapter protein (ADAP) is known to be rapidly phosphorylated after T cell stimulation and relays the TCR signal to adhesion molecules of the integrin family. While three tyrosine phosphorylation sites have been characterized biochemically, the binding capabilities and associated functions of several other potential phosphotyrosine motifs remain unclear. Here, we utilize in vitro phosphorylation and mass spectrometry to map novel phosphotyrosine sites in the C-terminal part of human ADAP (486–783). Individual tyrosines were then mutated to phenylalanine and their relevance for cellular adhesion and migration was tested experimentally. Functionally important tyrosine residues include two sites within the folded hSH3 domains of ADAP and two at the C-terminus. Furthermore, using a peptide pulldown approach in combination with stable isotope labeling in cell culture (SILAC) we identified SLP-76, PLCγ, PIK3R1, Nck, CRK, Gads, and RasGAP as phospho-dependent binding partners of a central YDDV motif of ADAP. The phosphorylation-dependent interaction between ADAP and Nck was confirmed by yeast two-hybrid analysis, immunoprecipitation and binary pulldown experiments, indicating that ADAP directly links integrins to modulators of the cytoskeleton independent of SLP-76.  相似文献   

18.
19.

Background

The immunosuppressive drug rapamycin (RAPA) promotes the expansion of CD4+ CD25highFoxp3+ regulatory T cells via mechanisms that remain unknown. Here, we studied expansion, IL-2R-γ chain signaling, survival pathways and resistance to apoptosis in human Treg responding to RAPA.

Methodology/Principal Findings

CD4+CD25+ and CD4+CD25neg T cells were isolated from PBMC of normal controls (n = 21) using AutoMACS. These T cell subsets were cultured in the presence of anti-CD3/CD28 antibodies and 1000 IU/mL IL-2 for 3 to 6 weeks. RAPA (1–100 nM) was added to half of the cultures. After harvest, the cell phenotype, signaling via the PI3K/mTOR and STAT pathways, expression of survival proteins and Annexin V binding were determined and compared to values obtained with freshly-separated CD4+CD25high and CD4+CD25neg T cells. Suppressor function was tested in co-cultures with autologous CFSE-labeled CD4+CD25neg or CD8+CD25neg T-cell responders. The frequency and suppressor activity of Treg were increased after culture of CD4+CD25+ T cells in the presence of 1–100 nM RAPA (p<0.001). RAPA-expanded Treg were largely CD4+CD25highFoxp3+ cells and were resistant to apoptosis, while CD4+CD25neg T cells were sensitive. Only Treg upregulated anti-apoptotic and down-regulated pro-apoptotic proteins. Treg expressed higher levels of the PTEN protein than CD4+CD25neg cells. Activated Treg±RAPA preferentially phosphorylated STAT5 and STAT3 and did not utilize the PI3K/mTOR pathway.

Conclusions/Significance

RAPA favors Treg expansion and survival by differentially regulating signaling, proliferation and sensitivity to apoptosis of human effector T cells and Treg after TCR/IL-2 activation.  相似文献   

20.
Mitogen-activated protein kinase (MAPK) cascades consist ofmembers of three families of protein kinases: the MAPK family,the MAPK kinase family, and the MAPK kinase kinase (MAPKKK)family. Some of these cascades have been shown to play centralroles in the transmission of signals that control various cellularprocesses including cell proliferation. Protein kinase NPK1is a structural and functional tobacco homologue of MAPKKK,but its physiological function is yet unknown. In the presentstudy, we have investigated sites of expression of the NPK1gene in a tobacco plant and developmental and physiologicalcontrols of this expression. After germination, expression ofNPK1 was first detected in tips of a radicle and cotyledons,then in shoot and root apical meristems, surrounding tissuesof the apical meristems, primordia of lateral roots, and youngdeveloping organs. No expression was, however, observed in matureorgans. Incubation of discs from mature leaves of tobacco withboth auxin and cytokinin induced NPK1 expression before thedivision of cells. It was also induced at early stages of thedevelopment of primordia of lateral roots and adventitious roots.Thus, NPK1 expression appears to be tightly correlated withcell division or division competence. Even when an inhibitorof DNA synthesis was added during the germination or the inductionof lateral roots by auxin, NPK1 expression was detected. Theseresults showed that the NPK1 expression precedes DNA replication.We propose that NPK1 participates in a process involving thedivision of plant cells. (Received January 26, 1998; Accepted April 9, 1998)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号