首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Hypoxia-inducible factors (HIFs) are master regulators of adaptive responses to low oxygen, and their α-subunits are rapidly degraded through the ubiquitination-dependent proteasomal pathway after hydroxylation. Aberrant accumulation or activation of HIFs is closely linked to many types of cancer. However, how hydroxylation of HIFα and its delivery to the ubiquitination machinery are regulated remains unclear. Here we show that Rho-related BTB domain-containing protein 3 (RHOBTB3) directly interacts with the hydroxylase PHD2 to promote HIFα hydroxylation. RHOBTB3 also directly interacts with the von Hippel-Lindau (VHL) protein, a component of the E3 ubiquitin ligase complex, facilitating ubiquitination of HIFα. Remarkably, RHOBTB3 dimerizes with LIMD1, and constructs a RHOBTB3/LIMD1-PHD2-VHL-HIFα complex to effect the maximal degradation of HIFα. Hypoxia reduces the RHOBTB3-centered complex formation, resulting in an accumulation of HIFα. Importantly, the expression level of RHOBTB3 is greatly reduced in human renal carcinomas, and RHOBTB3 deficiency significantly elevates the Warburg effect and accelerates xenograft growth. Our work thus reveals that RHOBTB3 serves as a scaffold to organize a multi-subunit complex that promotes the hydroxylation, ubiquitination and degradation of HIFα.  相似文献   

3.
The tumor suppressor PTEN plays a critical role in the regulation of multiple cellular processes that include survival, cell cycle, proliferation, and apoptosis. PTEN is frequently mutated or deleted in various human cancer cells to promote tumorigenesis. PTEN is regulated by SUMOylation, but the SUMO E3 ligase involved in the SUMOylation of PTEN remains unclear. Here, we demonstrated that PIASxα is a SUMO E3 ligase for PTEN. PIASxα physically interacted with PTEN both in vitro and in vivo. Their interaction depended on the integrity of phosphatase and C2 domains of PTEN and the region of PIASxα comprising residues 134–347. PIASxα enhanced PTEN protein stability by reducing PTEN ubiquitination, whereas the mutation of PTEN SUMO1 conjugation sites neutralized the effect of PIASxα on PTEN protein half-life. Functionally, PIASxα, as a potential tumor suppressor, negatively regulated the PI3K-Akt pathway through stabilizing PTEN protein. Overexpression of PIASxα led to G0/G1 cell cycle arrest, thus triggering cell proliferation inhibition and tumor suppression, whereas PIASxα knockdown or deficiency in catalytic activity abolished the inhibition. Together our studies suggest that PIASxα is a novel SUMO E3 ligase for PTEN, and it positively regulates PTEN protein level in tumor suppression.  相似文献   

4.
AMP-activated protein kinase (AMPK) is a sensor of cellular energy status. It is a heterotrimer composed of a catalytic α and two regulatory subunits (β and γ). AMPK activity is regulated allosterically by AMP and by the phosphorylation of residue Thr-172 within the catalytic domain of the AMPKα subunit by upstream kinases. We present evidence that the AMPKβ2 subunit may be posttranslationally modified by sumoylation. This process is carried out by the E3-small ubiquitin-like modifier (SUMO) ligase protein inhibitor of activated STAT PIASy, which modifies the AMPKβ2 subunit by the attachment of SUMO2 but not SUMO1 moieties. Of interest, AMPKβ1 is not a substrate for this modification. We also demonstrate that sumoylation of AMPKβ2 enhances the activity of the trimeric α2β2γ1 AMPK complex. In addition, our results indicate that sumoylation is antagonist and competes with the ubiquitination of the AMPKβ2 subunit. This adds a new layer of complexity to the regulation of the activity of the AMPK complex, since conditions that promote ubiquitination result in inactivation, whereas those that promote sumoylation result in the activation of the AMPK complex.  相似文献   

5.
6.
It is well recognized that PIAS1, a SUMO (small ubiquitin-like modifier) E3 ligase, modulates such cellular processes as cell proliferation, DNA damage responses, and inflammation responses. Recent studies have shown that PIAS1 also plays a part in cell differentiation. However, the role of PIAS1 in adipocyte differentiation remains unknown. CCAAT/enhancer-binding protein β (C/EBPβ), a major regulator of adipogenesis, is a target of SUMOylation, but the E3 ligase responsible for the SUMOylation of C/EBPβ has not been identified. The present study showed that PIAS1 functions as a SUMO E3 ligase of C/EBPβ to regulate adipogenesis. PIAS1 expression was significantly and transiently induced on day 4 of 3T3-L1 adipocyte differentiation, when C/EBPβ began to decline. PIAS1 was found to interact with C/EBPβ through the SAP (scaffold attachment factor A/B/acinus/PIAS) domain and SUMOylate it, leading to increased ubiquitination and degradation of C/EBPβ. C/EBPβ became more stable when PIAS1 was silenced by RNA interference (RNAi). Moreover, adipogenesis was inhibited by overexpression of wild-type PIAS1 and promoted by knockdown of PIAS1. The mutational study indicated that the catalytic activity of SUMO E3 ligase was required for PIAS1 to restrain adipogenesis. Importantly, the inhibitory effect of PIAS1 overexpression on adipogenesis was rescued by overexpressed C/EBPβ. Thus, PIAS1 could play a dynamic role in adipogenesis by promoting the SUMOylation of C/EBPβ.  相似文献   

7.
The hypoxia-inducible factors (HIFs), HIF-1α and HIF-2α, are the central mediators of the homeostatic response that enables cells to survive and differentiate in low-oxygen conditions. Previous studies indicated that disruption of the von Hippel-Lindau gene (Vhl) coincides with the activation of HIFα signaling. Here we show that inactivation of Vhl in mature osteoblasts/osteocytes induces their apoptosis and disrupts the cell/canalicular network. VHL-deficient (ΔVHL) mice exhibited a significantly increased cortical bone area resulting from enhanced proliferation and osteogenic differentiation of the bone marrow stromal cells (BMSCs) by inducing the expression of β-catenin in the BMSC. Our data suggest that the VHL/HIFα pathway in mature osteoblasts/osteocytes plays a critical role in the bone cell/canalicular network and that the changes of osteocyte morphology/function and cell/canalicular network may unleash the bone formation, The underlying mechanism of which was the accumulation of β-catenin in the osteoblasts/osteoprogenitors of the bone marrow.  相似文献   

8.
The nuclear receptor peroxisome proliferator-activated receptor α (PPARα) is a key regulator of genes implicated in lipid homeostasis and inflammation. PPARα trans-activity is enhanced by recruitment of coactivators such as SRC1 and CBP/p300 and is inhibited by binding of corepressors such as NCoR and SMRT. In addition to ligand binding, PPARα activity is regulated by post-translational modifications such as phosphorylation and ubiquitination. In this report, we demonstrate that hPPARα is SUMOylated by SUMO-1 on lysine 185 in the hinge region. The E2-conjugating enzyme Ubc9 and the SUMO E3- ligase PIASy are implicated in this process. In addition, ligand treatment decreases the SUMOylation rate of hPPARα. Finally, our results demonstrate that SUMO-1 modification of hPPARα down-regulates its trans-activity through the specific recruitment of corepressor NCoR but not SMRT leading to the differential expression of a subset of PPARα target genes. In conclusion, hPPARα SUMOylation on lysine 185 down-regulates its trans-activity through the selective recruitment of NCoR.  相似文献   

9.
10.
11.
Thyroid hormone receptor (TR) α and β mediate thyroid hormone action at target tissues. TR isoforms have specific roles in development and in adult tissues. The mechanisms underlying TR isoform-specific action, however, are not well understood. We demonstrate that posttranslational modification of TR by conjugation of small SUMO to TRα and TRβ plays an important role in triiodothyronine (T3) action and TR isoform specificity. TRα was sumoylated at lysines 283 and 389, and TRβ at lysines 50, 146, and 443. Sumoylation of TRβ was ligand-dependent, and sumoylation of TRα was ligand-independent. TRα-SUMO conjugation utilized the E3 ligase PIASxβ and TRβ-SUMO conjugation utilized predominantly PIAS1. SUMO1 and SUMO3 conjugation to TR was important for T3-dependent gene regulation, as demonstrated in transient transfection assay and studies of endogenous gene regulation. The functional role of SUMO1 and SUMO3 in T3 induction in transient expression assays was closely matched to the pattern of TR and cofactor recruitment to thyroid hormone response elements (TREs) as determined by ChIP assays. SUMO1 was required for the T3-induced recruitment of the co-activator CREB-binding protein (CBP) and release of nuclear receptor co-repressor (NCoR) on a TRE but had no significant effect on TR DNA binding. SUMO1 was required for T3-mediated recruitment of NCoR and release of CBP from the TSHβ-negative TRE. SUMO3 was required for T3-stimulated TR binding to the TSHβ-negative TRE and recruitment of NCoR. These findings demonstrate that conjugation of SUMO to TR has a TR-isoform preference and is important for T3-dependent gene induction and repression.  相似文献   

12.
13.
14.
BNIP3 is a mitophagy receptor with context‐dependent roles in cancer, but whether and how it modulates melanoma growth in vivo remains unknown. Here, we found that elevated BNIP3 levels correlated with poorer melanoma patient’s survival and depletion of BNIP3 in B16‐F10 melanoma cells compromised tumor growth in vivo. BNIP3 depletion halted mitophagy and enforced a PHD2‐mediated downregulation of HIF‐1α and its glycolytic program both in vitro and in vivo. Mechanistically, we found that BNIP3‐deprived melanoma cells displayed increased intracellular iron levels caused by heightened NCOA4‐mediated ferritinophagy, which fostered PHD2‐mediated HIF‐1α destabilization. These effects were not phenocopied by ATG5 or NIX silencing. Restoring HIF‐1α levels in BNIP3‐depleted melanoma cells rescued their metabolic phenotype and tumor growth in vivo, but did not affect NCOA4 turnover, underscoring that these BNIP3 effects are not secondary to HIF‐1α. These results unravel an unexpected role of BNIP3 as upstream regulator of the pro‐tumorigenic HIF‐1α glycolytic program in melanoma cells.  相似文献   

15.
16.
Recent discoveries have unveiled the roles of a complicated network of E3 ubiquitin ligases in regulating cell migration machineries. The E3 ubiquitin ligases Smurf1 and Cul/BACURD ubiquitinate RhoA to regulate stress fiber formation and cell polarity, and ASB2α ubiquitinates filamins to modulate cytoskeletal stiffness, thus regulating cell spreading and cell migration. HACE1, XIAP, and Skp1-Cul1-F-box bind to Rac1 and cause its ubiquitination and degradation, thus suppressing lamellipodium protrusions, while PIAS3, a SUMO ligase, activates Rac1 to promote lamellipodium dynamics. Smurf1 also enhances Rac1 activation but it does not ubiquitinate Rac1. Both Smurf1 and HECTD1 regulate focal adhesion (FA) assembly and (or) disassembly through ubiquitinating the talin head domain and phosphatidylinositol 4 phosphate 5-kinase type I γ (PIPKIγ90), respectively. Thus, E3 ubiquitin ligases regulate stress fiber formation, cell polarity, lamellipodium protrusions, and FA dynamics through ubiquitinating the key proteins that control these processes.  相似文献   

17.
Chromosomal translocations are a major source of genetic abnormalities causally linked to certain malignancies. Synovial sarcoma is an aggressive soft tissue tumor characterized by a chromosomal translocation between chromosome 18 and X, generating oncoproteins such as SYT-SSX1 and SYT-SSX2. The molecular mechanism underlying the oncogenic potential of SYT-SSX1/2 is not clear. Here we show that SYT-SSX1 leads to up-regulation of NCOA3, a protein critical for the formation of various cancers. The increase of NCOA3 is essential for SYT-SSX1-mediated synovial sarcoma formation. SYT-SSX1 does so by increasing the sumoylation of NCOA3 through interaction with a SUMO E3 ligase, PIASy, as well as the sumoylation of NEMO. NEMO has also been shown to physically interact with NCOA3. Increased sumoylation of NCOA3 leads to its increased steady state level and nuclear localization. Our findings represent the first example that an oncoprotein directly regulates substrate modification by a SUMO E3 ligase, and leads to overexpression of a protein essential for tumor formation. Such a mechanistic finding provides an opportunity to design specific therapeutic interventions to treat synovial sarcoma.  相似文献   

18.
BackgroundAdipose tissue-derived stem cells (ASCs) have been recently isolated from human subcutaneous adipose tissue. ASCs may be useful in regenerative medicine as an alternative to bone marrow-derived stem cells. Changes in the oxygen concentration influence physiological activities, such as stem cell proliferation. However, the effects of the oxygen concentration on ASCs remain unclear. In the present study, the effects of hypoxia on ASC proliferation were examined.MethodsNormal human adipose tissue was collected from the lower abdomen, and ASCs were prepared with collagenase treatment. The ASCs were cultured in hypoxic (1%) or normoxic (20%) conditions. Cell proliferation was investigated in the presence or absence of inhibitors of various potentially important kinases. Hypoxia inducible factor (HIF)-1α expression and MAP kinase phosphorylation in the hypoxic culture were determined with western blotting. In addition, the mRNA expression of vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF)-2 in hypoxic or normoxic conditions were determined with real-time RT-PCR. The effects of these growth factors on ASC proliferation were investigated. Chromatin immunoprecipitation (ChIP) of the HIF–1α-binding hypoxia responsive element in FGF–2 was performed. HIF–1α was knocked down by siRNA, and FGF–2 expression was investigated.ResultsASC proliferation was significantly enhanced in the hypoxic culture and was inhibited by ERK and Akt inhibitors. Hypoxia for 5–15 minutes stimulated the phosphorylation of ERK1/2 among MAP kinases and induced HIF–1α expression. The levels of VEGF and FGF–2 mRNA and protein in the ASCs were significantly enhanced in hypoxia, and FGF–2 increased ASC proliferation. The ChIP assay revealed an 8-fold increase in the binding of HIF–1α to FGF–2 in hypoxia. HIF–1α knockdown by siRNA partially inhibited the FGF–2 expression of ASCs induced by hypoxia.ConclusionASC proliferation was enhanced by hypoxia. HIF–1α activation, FGF–2 production, and the ERK1/2 and Akt pathway were involved in this regulatory mechanism.  相似文献   

19.
Protein modification by SUMO (small ubiquitin-like modifier) is an important regulatory mechanism for multiple cellular processes. SUMO-1 modification of NEMO (NF-kappaB essential modulator), the IkappaB kinase (IKK) regulatory subunit, is critical for activation of NF-kappaB by genotoxic agents. However, the SUMO ligase, and the mechanisms involved in NEMO sumoylation, remain unknown. Here, we demonstrate that although small interfering RNAs (siRNAs) against PIASy (protein inhibitor of activated STATy) inhibit NEMO sumoylation and NF-kappaB activation in response to genotoxic agents, overexpression of PIASy enhances these events. PIASy preferentially stimulates site-selective modification of NEMO by SUMO-1, but not SUMO-2 and SUMO-3, in vitro. PIASy-NEMO interaction is increased by genotoxic stress and occurs in the nucleus in a manner mutually exclusive with IKK interaction. In addition, hydrogen peroxide (H2O2) also increases PIASy-NEMO interaction and NEMO sumoylation, whereas antioxidants prevent these events induced by DNA-damaging agents. Our findings demonstrate that PIASy is the first SUMO ligase for NEMO whose substrate specificity seems to be controlled by IKK interaction, subcellular targeting and oxidative stress conditions.  相似文献   

20.
SUMO conjugation of cellular proteins is essential for proper progression of mitosis. PIASy, a SUMO E3 ligase, is required for mitotic SUMOylation of chromosomal proteins, yet the regulatory mechanism behind the PIASy-dependent SUMOylation during mitosis has not been determined. Using a series of truncated PIASy proteins, we have found that the N terminus of PIASy is not required for SUMO modification in vitro but is essential for mitotic SUMOylation in Xenopus egg extracts. We demonstrate that swapping the N terminus of PIASy protein with the corresponding region of other PIAS family members abolishes chromosomal binding and mitotic SUMOylation. We further show that the N-terminal domain of PIASy is sufficient for centromeric localization. We identified that the N-terminal domain of PIASy interacts with the Rod/Zw10 complex, and immunofluorescence further reveals that PIASy colocalizes with Rod/Zw10 in the centromeric region. We show that the Rod/Zw10 complex interacts with the first 47 residues of PIASy which were particularly important for mitotic SUMOylation. Finally, we show that depletion of Rod compromises the centromeric localization of PIASy and SUMO2/3 in mitosis. Together, we demonstrate a fundamental mechanism of PIASy to localize in the centromeric region of chromosome to execute centromeric SUMOylation during mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号