首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel cytoplasmic structure has been recently characterized by confocal and electron microscopy in H. pylori-infected human gastric epithelium, as an accumulation of barrel-like proteasome reactive particles colocalized with polyubiquitinated proteins, H. pylori toxins and the NOD1 receptor. This proteasome particle-rich cytoplasmic structure (PaCS), a sort of focal proteasome hyperplasia, was also detected in dysplastic cells and was found to be enriched in SHP2 and ERK proteins, known to play a role in H. pylori-mediated gastric carcinogenesis. However, no information is available on its occurrence in neoplastic growths. In this study, surgical specimens of gastric cancer and various other human epithelial neoplasms have been investigated for PaCSs by light, confocal and electron microscopy including correlative confocal and electron microscopy (CCEM). PaCSs were detected in gastric cohesive, pulmonary large cell and bronchioloalveolar, thyroid papillary, parotid gland, hepatocellular, ovarian serous papillary, uterine cervix and colon adenocarcinomas, as well as in pancreatic serous microcystic adenoma. H. pylori bodies, their virulence factors (VacA, CagA, urease, and outer membrane proteins) and the NOD1 bacterial proteoglycan receptor were selectively concentrated inside gastric cancer PaCSs, but not in PaCSs from other neoplasms which did, however, retain proteasome and polyubiquitinated proteins reactivity. No evidence of actual microbial infection was obtained in most PaCS-positive neoplasms, except for H. pylori in gastric cancer and capsulated bacteria in a colon cancer case. Particle lysis and loss of proteasome distinctive immunoreactivities were seen in some tumour cell PaCSs, possibly ending in sequestosomes or autophagic bodies. It is concluded that PaCSs are widely represented in human neoplasms and that both non-infectious and infectious factors activating the ubiquitin-proteasome system are likely to be involved in their origin. PaCS detection might help clarify the role of the ubiquitin-proteasome system in carcinogenesis.  相似文献   

2.
Helicobacter pylori is a human specific gastric pathogen. H. pylori pathogenesis process involves a number of well-studied virulence factors that include the ‘vacuolating cytotoxin’ and the ‘cytotoxin associated gene A’. Analysis of the H. pylori genome, however, indicates presence of additional virulence factors that are yet to be characterized in molecular detail. For example, H. pylori genome harbors a gene that has potential to encode a protein with sequence similarity to those of the TlyA-like proteins of several pathogenic bacteria. Earlier studies have indicated potential association of this H. pylori tlyA gene in the virulence mechanism of the organism. Despite such notions, however, the TlyA-like protein of H. pylori has not been studied previously in molecular detail. In particular, purified form of H. pylori TlyA has never been studied before toward exploring its functional properties. Here, we report characterization of the H. pylori TlyA protein purified from the recombinant over-expression system in Escherichia coli. Purified form of the recombinant TlyA exhibits prominent hemolytic activity against human erythrocytes, presumably via formation of pores of specific diameter in the cell membrane. Purified TlyA also triggers prominent cytotoxic responses in human gastric adenocarcinoma cells. Altogether, our study establishes H. pylori TlyA as a potential virulence factor of the organism.  相似文献   

3.
Highly dynamic integrin-based focal adhesions provide an important structural basis for anchoring the cellular actin cytoskeleton to the surrounding extracellular matrix. The human pathogen Helicobacter pylori (H. pylori) directly targets integrins with drastic consequences on the epithelial cell morphology and migration, which might contribute to the disruption of the gastric epithelium in vivo. In this review, we summarize the recent findings concerning the complex mechanism through which H. pylori interferes with host integrin signaling thereby deregulating focal adhesions and the actin cytoskeleton of motile epithelial cells.  相似文献   

4.
5.

Background

Helicobacter mustelae causes gastritis, ulcers and gastric cancer in ferrets and other mustelids. H. mustelae remains the only helicobacter other than H. pylori that causes gastric ulceration and cancer in its natural host. To improve understanding of H. mustelae pathogenesis, and the ulcerogenic and carcinogenic potential of helicobacters in general, we sequenced the H. mustelae genome, and identified 425 expressed proteins in the envelope and cytosolic proteome.

Results

The H. mustelae genome lacks orthologs of major H. pylori virulence factors including CagA, VacA, BabA, SabA and OipA. However, it encodes ten autotransporter surface proteins, seven of which were detected in the expressed proteome, and which, except for the Hsr protein, are of unknown function. There are 26 putative outer membrane proteins in H. mustelae, some of which are most similar to the Hof proteins of H. pylori. Although homologs of putative virulence determinants of H. pylori (NapA, plasminogen adhesin, collagenase) and Campylobacter jejuni (CiaB, Peb4a) are present in the H. mustelae genome, it also includes a distinct complement of virulence-related genes including a haemagglutinin/haemolysin protein, and a glycosyl transferase for producing blood group A/B on its lipopolysaccharide. The most highly expressed 264 proteins in the cytosolic proteome included many corresponding proteins from H. pylori, but the rank profile in H. mustelae was distinctive. Of 27 genes shown to be essential for H. pylori colonization of the gerbil, all but three had orthologs in H. mustelae, identifying a shared set of core proteins for gastric persistence.

Conclusions

The determination of the genome sequence and expressed proteome of the ulcerogenic species H mustelae provides a comparative model for H. pylori to investigate bacterial gastric carcinogenesis in mammals, and to suggest ways whereby cag minus H. pylori strains might cause ulceration and cancer. The genome sequence was deposited in EMBL/GenBank/DDBJ under accession number FN555004.  相似文献   

6.
  1. Download : Download high-res image (68KB)
  2. Download : Download full-size image
Highlights
  • H. pylori dysregulates the in vivo gastric proteome of gerbils in a strain-specific manner.
  • H. pylori increases RABEP2 and G3BP2 levels in cell culture.
  • H. pylori upregulates RABEP2 and G3BP2 in gerbil and human gastric epithelium.
  • •Levels of RABEP2 and G3BP2 increase with severity of malignant lesions in vivo.
  相似文献   

7.
Helicobacter pylori infection is a risk factor for the development of gastric adenocarcinoma, a disease that has a high incidence in East Asia. Genes that are highly divergent in East Asian H. pylori strains compared to non-Asian strains are predicted to encode proteins that differ in functional activity and could represent novel determinants of virulence. To identify such proteins, we undertook a comparative analysis of sixteen H. pylori genomes, selected equally from strains classified as East Asian or non-Asian. As expected, the deduced sequences of two known virulence determinants (CagA and VacA) are highly divergent, with 77% and 87% mean amino acid sequence identities between East Asian and non-Asian groups, respectively. In total, we identified 57 protein sequences that are highly divergent between East Asian and non-Asian strains, but relatively conserved within East Asian strains. The most highly represented functional groups are hypothetical proteins, cell envelope proteins and proteins involved in DNA metabolism. Among the divergent genes with known or predicted functions, population genetic analyses indicate that 86% exhibit evidence of positive selection. McDonald-Kreitman tests further indicate that about one third of these highly divergent genes, including cagA and vacA, are under diversifying selection. We conclude that, similar to cagA and vacA, most of the divergent genes identified in this study evolved under positive selection, and represent candidate factors that may account for the disproportionately high incidence of gastric cancer associated with East Asian H. pylori strains. Moreover, these divergent genes represent robust biomarkers that can be used to differentiate East Asian and non-Asian H. pylori strains.  相似文献   

8.
Heat shock proteins (HSPs) are crucial proteins in maintaining the homeostasis of human gastric epithelial cells. Tumor necrosis factor receptor-associated protein 1 (TRAP1), a member of the HSP90 family, has been shown to be involved in various crucial physiological processes, particularly against apoptosis. However, the regulation and function of TRAP1 in Helicobacter pylori infection is still unknown. Here, we found that TRAP1 expression was downregulated on human gastric epithelial cells during H. pylori infection by real-time polymerase chain reaction (PCR) and western blot analysis. Through virulence factors mutant H. pylori strains infection and inhibitors screening, we found that H. pylori vacuolating cytotoxin A ( vacA), but not cytotoxin-associated gene A ( cagA) protein, induced human gastric epithelial cells to downregulate TRAP1 via P38MAPK pathway by real-time PCR and western blot analysis. Furthermore, downregulation of TRAP1 with lentivirus carrying TRAP1 short hairpin RNA constructs impairs mitochondrial function, and increases apoptosis of gastric epithelial cells. The results indicate that H. pylori vacA downregulated TRAP1 is involved in the regulation of gastric epithelial cell apoptosis.  相似文献   

9.
Helicobacter pylori persistently colonizes the gastric mucosa of half the human population. It is one of the most genetically diverse bacterial organisms and subvariants are continuously emerging within an H. pylori population. In this study we characterized a number of single-colony isolates from H. pylori communities in various environmental settings, namely persistent human gastric infection, in vitro bacterial subcultures on agar medium, and experimental in vivo infection in mice. The lipopolysaccharide (LPS) O-antigen chain revealed considerable phenotypic diversity between individual cells in the studied bacterial communities, as demonstrated by size variable O-antigen chains and different levels of Lewis glycosylation. Absence of high-molecular-weight O-antigen chains was notable in a number of experimentally passaged isolates in vitro and in vivo. This phenotype was not evident in bacteria obtained from a human gastric biopsy, where all cells expressed high-molecular-weight O-antigen chains, which thus may be the preferred phenotype for H. pylori colonizing human gastric mucosa. Genotypic variability was monitored in the two genes encoding α1,3-fucosyltransferases, futA and futB, that are involved in Lewis antigen expression. Genetic modifications that could be attributable to recombination events within and between the two genes were commonly detected and created a diversity, which together with phase variation, contributed to divergent LPS expression. Our data suggest that the surrounding environment imposes a selective pressure on H. pylori to express certain LPS phenotypes. Thus, the milieu in a host will select for bacterial variants with particular characteristics that facilitate adaptation and survival in the gastric mucosa of that individual, and will shape the bacterial community structure.  相似文献   

10.
Helicobacter pylori (H. pylori) is a major gastric pathogen that has been associated with humans for more than 60,000 years. H. pylori causes different gastric diseases including dyspepsia, ulcers and gastric cancers. Disease development depends on several factors including the infecting H. pylori strain, environmental and host factors. Another factor that might influence H. pylori colonization and diseases is the gastric microbiota that was overlooked for long because of the belief that human stomach was a hostile environment that cannot support microbial life. Once established, H. pylori mainly resides in the gastric mucosa and interacts with the resident bacteria. How these interactions impact on H. pylori-caused diseases has been poorly studied in human. In this study, we analyzed the interactions between H. pylori and two bacteria, Streptocccus mitis and Lactobacillus fermentum that are present in the stomach of both healthy and gastric disease human patients. We have found that S. mitis produced and released one or more diffusible factors that induce growth inhibition and coccoid conversion of H. pylori cells. In contrast, both H. pylori and L. fermentum secreted factors that promote survival of S. mitis during the stationary phase of growth. Using a metabolomics approach, we identified compounds that might be responsible for the conversion of H. pylori from spiral to coccoid cells. This study provide evidences that gastric bacteria influences H. pylori physiology and therefore possibly the diseases this bacterium causes.  相似文献   

11.
Infection with Helicobacter pylori is responsible for gastritis and gastroduodenal ulcers but is also a high risk factor for the development of gastric adenocarcinoma and lymphoma. The most pathogenic H. pylori strains (i.e., the so-called type I strains) associate the CagA virulence protein with an active VacA cytotoxin but the rationale for this association is unknown. CagA, directly injected by the bacterium into colonized epithelium via a type IV secretion system, leads to cellular morphological, anti-apoptotic and proinflammatory effects responsible in the long-term (years or decades) for ulcer and cancer. VacA, via pinocytosis and intracellular trafficking, induces epithelial cell apoptosis and vacuolation. Using human gastric epithelial cells in culture transfected with cDNA encoding for either the wild-type 38 kDa C-terminal signaling domain of CagA or its non-tyrosine-phosphorylatable mutant form, we found that, depending on tyrosine-phosphorylation by host kinases, CagA inhibited VacA-induced apoptosis by two complementary mechanisms. Tyrosine-phosphorylated CagA prevented pinocytosed VacA to reach its target intracellular compartments. Unphosphorylated CagA triggered an anti-apoptotic activity blocking VacA-induced apoptosis at the mitochondrial level without affecting the intracellular trafficking of the toxin. Assaying the level of apoptosis of gastric epithelial cells infected with wild-type CagA+/VacA+ H. pylori or isogenic mutants lacking of either CagA or VacA, we confirmed the results obtained in cells transfected with the CagA C-ter constructions showing that CagA antagonizes VacA-induced apoptosis. VacA toxin plays a role during H. pylori stomach colonization. However, once bacteria have colonized the gastric niche, the apoptotic action of VacA might be detrimental for the survival of H. pylori adherent to the mucosa. CagA association with VacA is thus a novel, highly ingenious microbial strategy to locally protect its ecological niche against a bacterial virulence factor, with however detrimental consequences for the human host.  相似文献   

12.
Pathogenicity of the human pathogen Helicobacter pylori relies upon its capacity to adapt to a hostile environment and to escape from the host response. Therefore, cell shape, motility, and pH homeostasis of these bacteria are specifically adapted to the gastric mucus. We have found that the helical shape of H. pylori depends on coiled coil rich proteins (Ccrp), which form extended filamentous structures in vitro and in vivo, and are differentially required for the maintenance of cell morphology. We have developed an in vivo localization system for this pathogen. Consistent with a cytoskeleton-like structure, Ccrp proteins localized in a regular punctuate and static pattern within H. pylori cells. Ccrp genes show a high degree of sequence variation, which could be the reason for the morphological diversity between H. pylori strains. In contrast to other bacteria, the actin-like MreB protein is dispensable for viability in H. pylori, and does not affect cell shape, but cell length and chromosome segregation. In addition, mreB mutant cells displayed significantly reduced urease activity, and thus compromise a major pathogenicity factor of H. pylori. Our findings reveal that Ccrp proteins, but not MreB, affect cell morphology, while both cytoskeletal components affect the development of pathogenicity factors and/or cell cycle progression.  相似文献   

13.
《The ISME journal》2021,15(1):78
Helicobacter pylori is a common component of the human stomach microbiota, possibly dating back to the speciation of Homo sapiens. A history of pathogen evolution in allopatry has led to the development of genetically distinct H. pylori subpopulations, associated with different human populations, and more recent admixture among H. pylori subpopulations can provide information about human migrations. However, little is known about the degree to which some H. pylori genes are conserved in the face of admixture, potentially indicating host adaptation, or how virulence genes spread among different populations. We analyzed H. pylori genomes from 14 countries in the Americas, strains from the Iberian Peninsula, and public genomes from Europe, Africa, and Asia, to investigate how admixture varies across different regions and gene families. Whole-genome analyses of 723 H. pylori strains from around the world showed evidence of frequent admixture in the American strains with a complex mosaic of contributions from H. pylori populations originating in the Americas as well as other continents. Despite the complex admixture, distinctive genomic fingerprints were identified for each region, revealing novel American H. pylori subpopulations. A pan-genome Fst analysis showed that variation in virulence genes had the strongest fixation in America, compared with non-American populations, and that much of the variation constituted non-synonymous substitutions in functional domains. Network analyses suggest that these virulence genes have followed unique evolutionary paths in the American populations, spreading into different genetic backgrounds, potentially contributing to the high risk of gastric cancer in the region.Subject terms: Population genetics, Microbial genetics  相似文献   

14.
The human gastric pathogen Helicobacter pylori is usually acquired during childhood and, in the absence of treatment, chronic infection persists through most of the host''s life. However, the frequency and importance of H. pylori transmission between adults is underestimated. Here we sequenced the complete genomes of H. pylori strains that were transmitted between spouses and analysed the genomic changes. Similar to H. pylori from chronic infection, a significantly high proportion of the determined 31 SNPs and 10 recombinant DNA fragments affected genes of the hop family of outer membrane proteins, some of which are known to be adhesins. In addition, changes in a fucosyltransferase gene modified the LPS component of the bacterial cell surface, suggesting strong diversifying selection. In contrast, virulence factor genes were not affected by the genomic changes. We propose a model of the genomic changes that are associated with the transmission and adaptation of H. pylori to a new human host.  相似文献   

15.
Helicobacter pylori is a human pathogen that has been associated with gastritis, peptic ulcer and gastric carcinoma. The role of the direct action of H. pylori virulence factors and of the induction of autoreactive immunity in the development of chronic gastritis has not been clarified yet. Here we report the cloning and molecular characterization of a gene of H. pylori coding for a protein of 58kDa, recognized by sera of patients affected by H. pylori-induced gastroduodenal diseases. This antigen is present in all the H. pylori strains tested and it belongs to the Hsp60 family of heat-shock proteins, with high homology with other bacterial and eukaryotic proteins of the same family. This class of homologous proteins has been implicated in the induction of autoimmune disorders in different systems. The presence in infected patients of anti-H. pylori Hsp60 antibodies, potentially cross-reacting with the human homologue, and cross-reactivity between human Hsp60 and a rabbit antiserum against H. pylori Hsp60 suggest that a role of this protein in gastroduodenal diseases is possible.  相似文献   

16.
Instructions for authors   总被引:2,自引:0,他引:2  
Although Helicobacter pylori infects 50% of the total human population, only a small fraction of the infected people suffer from severe diseases like peptic ulcers and gastric adenocarcinoma. H. pylori strains, host genotypes and environmental factors play important role in deciding the extent and severity of the gastroduodenal diseases. The bacteria has developed a unique set of virulence factors to survive in the extreme ecological niche of human stomach. Together these virulence factors make H. pylori one of the most successful human pathogenic bacteria colonizing more than half of the human population. Understanding the mechanism of action of the major H. pylori virulence factors will shed light into the molecular basis of its pathogenicity.  相似文献   

17.
A variety of ubiquitinated protein-containing cytoplasmic structures has been reported, from aggresomes to aggresome-like induced structures/sequestosomes or particle-rich cytoplasmic structures (PaCSs) that we recently observed in some human diseases. Nevertheless, the morphological and cytochemical patterns of the different structures remain largely unknown thus jeopardizing their univocal identification. Here, we show that PaCSs resulted from proteasome and polyubiquitinated protein accumulation into well-demarcated, membrane-free, cytoskeleton-poor areas enriched in glycogen and glycosaminoglycans. A major requirement for PaCS detection by either electron or confocal microscopy was the addition of osmium to aldehyde fixatives. However, by analyzing living cells, we found that proteasome chymotrypsin-like activity concentrated in well-defined cytoplasmic structures identified as PaCSs by ultrastructural morphology and immunocytochemistry of the same cells. PaCSs differed ultrastructurally and cytochemically from sequestosomes which may coexist with PaCSs. In human dendritic or natural killer cells, PaCSs were induced in vitro by cytokines/trophic factors during differentiation/activation from blood progenitors. Our results provide evidence that PaCS is indeed a novel distinctive cytoplasmic structure which may play a critical role in the ubiquitin–proteasome system response to immune, infectious or proneoplastic stimuli.  相似文献   

18.
Helicobacter pylori (H. pylori) contributes to various gastric diseases such as chronic gastritis, gastric ulcer, and gastric carcinoma. Host innate immune response against the pathogen plays a significant role in elimination of pathogen infection. Importantly, pathogen elimination is closely related to numerous inflammatory-related genes that participate in complex biological response of cells to harmful stimuli. Here we studied effects of the KH-type splicing regulatory protein (KSRP), a RNA-binding protein, on innate immune response against H. pylori infection. We found that H. pylori infection downregulated KSRP expression directly, and that KSRP overexpression repressed upregulation of CXCL-2 expression induced by H. pylori and facilitated H. pylori proliferation in vitro. Similarly, KSRP overexpression in H. pylori mice also facilitated H. pylori proliferation and colonization, and induced more severe gastric mucosal damage. Intriguingly, CXCL-2 and HMOX-1 were upregulated in H. pylori infected mice after KSRP overexpression. This difference in expression of these genes implicated that KSRP was closely associated with and directly participated in the innate immune response against H. pylori. These results were beneficial for understanding the in vivo function of KSRP on innate immune response against pathogen infection.  相似文献   

19.
The pathogen Helicobacter pylori, which infects half of the world's population, is a major risk factor for the development of gastric diseases including chronic gastritis and gastric cancer. Among H. pylori's virulence factors is the cytotoxin-associated gene pathogenicity island (cagPAI), which encodes for a type IV secretion system (T4SS). The T4SS induces fast canonical nuclear factor-kappa B (NF-κB) signaling, a major factor increasing inflammation, supressing apoptotic cell death and thereby promoting the development of neoplasia. However, H. pylori's capability to mediate fast non-canonical NF-κB signaling is unresolved, despite a contribution of non-canonical NF-κB signaling to gastric cancer has been suggested.We analyzed signaling elements within non-canonical NF-κB in response to H.?pylori in epithelial cell lines by immunoprecipitation, immunoblot, electrophoretic mobility shift assay and RNA interference knockdown. In addition, tissue samples of H. pylori-infected patients were investigated by immunohistochemistry.Here, we provide evidence for a T4SS-dependent direct activation of non-canonical NF-κB signaling. We identified the lymphotoxin beta receptor (LTβR) to elicit the fast release of NF-κB inducing kinase (NIK) from the receptor complex leading to non-canonical NF-κB signaling. Further, NIK expression was increased in human biopsies of H. pylori-associated gastritis. Thus, NIK could represent a novel target to reduce Helicobacter pylori-induced gastric inflammation and pathology.  相似文献   

20.
Helicobacter pylori (H. pylori) is a common gastric pathogen that infects approximately half of the world’s population. Infection with H. pylori can lead to diverse pathological conditions, including chronic gastritis, peptic ulcer disease, and cancer. The latter is the most severe consequence of H. pylori infection. According to epidemiological studies, gastric infection with H. pylori is the strongest known risk factor for non-cardia gastric cancer (GC), which remains one of the leading causes of cancer-related deaths worldwide. However, it still remains to be poorly understood how host-microbe interactions result in cancer development in the human stomach. Here we focus on the H. pylori bacterial factors that affect the host ubiquitin proteasome system. We investigated E3 ubiquitin ligases SIVA1 and ULF that regulate p14ARF (p19ARF in mice) tumor suppressor. ARF plays a key role in regulation of the oncogenic stress response and is frequently inhibited during GC progression. Expression of ARF, SIVA1 and ULF proteins were investigated in gastroids, H. pylori-infected mice and human gastric tissues. The role of the H. pylori type IV secretion system was assessed using various H. pylori isogenic mutants. Our studies demonstrated that H. pylori infection results in induction of ULF, decrease in SIVA1 protein levels, and subsequent ubiquitination and degradation of p14ARF tumor suppressor. Bacterial CagA protein was found to sequentially bind to SIVA1 and ULF proteins. This process is regulated by CagA protein phosphorylation at the EPIYA motifs. Downregulation of ARF protein leads to inhibition of cellular apoptosis and oncogenic stress response that may promote gastric carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号