首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
Human cytomegalovirus (HCMV) is a widely circulating pathogen that causes severe disease in immunocompromised patients and infected fetuses. By immortalizing memory B cells from HCMV-immune donors, we isolated a panel of human monoclonal antibodies that neutralized at extremely low concentrations (90% inhibitory concentration [IC90] values ranging from 5 to 200 pM) HCMV infection of endothelial, epithelial, and myeloid cells. With the single exception of an antibody that bound to a conserved epitope in the UL128 gene product, all other antibodies bound to conformational epitopes that required expression of two or more proteins of the gH/gL/UL128-131A complex. Antibodies against gB, gH, or gM/gN were also isolated and, albeit less potent, were able to neutralize infection of both endothelial-epithelial cells and fibroblasts. This study describes unusually potent neutralizing antibodies against HCMV that might be used for passive immunotherapy and identifies, through the use of such antibodies, novel antigenic targets in HCMV for the design of immunogens capable of eliciting previously unknown neutralizing antibody responses.Human cytomegalovirus (HCMV) is a member of the herpesvirus family which is widely distributed in the human population and can cause severe disease in immunocompromised patients and upon infection of the fetus. HCMV infection causes clinical disease in 75% of patients in the first year after transplantation (58), while primary maternal infection is a major cause of congenital birth defects including hearing loss and mental retardation (5, 33, 45). Because of the danger posed by this virus, development of an effective vaccine is considered of highest priority (51).HCMV infection requires initial interaction with the cell surface through binding to heparan sulfate proteoglycans (8) and possibly other surface receptors (12, 23, 64, 65). The virus displays a broad host cell range (24, 53), being able to infect several cell types such as endothelial cells, epithelial cells (including retinal cells), smooth muscle cells, fibroblasts, leukocytes, and dendritic cells (21, 37, 44, 54). Endothelial cell tropism has been regarded as a potential virulence factor that might influence the clinical course of infection (16, 55), whereas infection of leukocytes has been considered a mechanism of viral spread (17, 43, 44). Extensive propagation of HCMV laboratory strains in fibroblasts results in deletions or mutations of genes in the UL131A-128 locus (1, 18, 21, 36, 62, 63), which are associated with the loss of the ability to infect endothelial cells, epithelial cells, and leukocytes (15, 43, 55, 61). Consistent with this notion, mouse monoclonal antibodies (MAbs) to UL128 or UL130 block infection of epithelial and endothelial cells but not of fibroblasts (63). Recently, it has been shown that UL128, UL130, and UL131A assemble with gH and gL to form a five-protein complex (thereafter designated gH/gL/UL128-131A) that is an alternative to the previously described gCIII complex made of gH, gL, and gO (22, 28, 48, 63).In immunocompetent individuals T-cell and antibody responses efficiently control HCMV infection and reduce pathological consequences of maternal-fetal transmission (13, 67), although this is usually not sufficient to eradicate the virus. Albeit with controversial results, HCMV immunoglobulins (Igs) have been administered to transplant patients in association with immunosuppressive treatments for prophylaxis of HCMV disease (56, 57), and a recent report suggests that they may be effective in controlling congenital infection and preventing disease in newborns (32). These products are plasma derivatives with relatively low potency in vitro (46) and have to be administered by intravenous infusion at very high doses in order to deliver sufficient amounts of neutralizing antibodies (4, 9, 32, 56, 57, 66).The whole spectrum of antigens targeted by HCMV-neutralizing antibodies remains poorly characterized. Using specific immunoabsorption to recombinant antigens and neutralization assays using fibroblasts as model target cells, it was estimated that 40 to 70% of the serum neutralizing activity is directed against gB (6). Other studies described human neutralizing antibodies specific for gB, gH, or gM/gN viral glycoproteins (6, 14, 26, 29, 34, 41, 52, 60). Remarkably, we have recently shown that human sera exhibit a more-than-100-fold-higher potency in neutralizing infection of endothelial cells than infection of fibroblasts (20). Similarly, CMV hyperimmunoglobulins have on average 48-fold-higher neutralizing activities against epithelial cell entry than against fibroblast entry (10). However, epitopes that are targeted by the antibodies that comprise epithelial or endothelial cell-specific neutralizing activity of human immune sera remain unknown.In this study we report the isolation of a large panel of human monoclonal antibodies with extraordinarily high potency in neutralizing HCMV infection of endothelial and epithelial cells and myeloid cells. With the exception of a single antibody that recognized a conserved epitope of UL128, all other antibodies recognized conformational epitopes that required expression of two or more proteins of the gH/gL/UL128-131A complex.  相似文献   

6.
Varicella-zoster virus (VZV) infection is usually mild in healthy individuals but can cause severe disease in immunocompromised patients. Prophylaxis with varicella-zoster immunoglobulin can reduce the severity of VZV if given shortly after exposure. Glycoprotein H (gH) is a highly conserved herpesvirus protein with functions in virus entry and cell-cell spread and is a target of neutralizing antibodies. The anti-gH monoclonal antibody (MAb) 206 neutralizes VZV in vitro. To determine the requirement for gH in VZV pathogenesis in vivo, MAb 206 was administered to SCID mice with human skin xenografts inoculated with VZV. Anti-gH antibody given at 6 h postinfection significantly reduced the frequency of skin xenograft infection by 42%. Virus titers, genome copies, and lesion size were decreased in xenografts that became infected. In contrast, administering anti-gH antibody at 4 days postinfection suppressed VZV replication but did not reduce the frequency of infection. The neutralizing anti-gH MAb 206 blocked virus entry, cell fusion, or both in skin in vivo. In vitro, MAb 206 bound to plasma membranes and to surface virus particles. Antibody was internalized into vacuoles within infected cells, associated with intracellular virus particles, and colocalized with markers for early endosomes and multivesicular bodies but not the trans-Golgi network. MAb 206 blocked spread, altered intracellular trafficking of gH, and bound to surface VZV particles, which might facilitate their uptake and targeting for degradation. As a consequence, antibody interference with gH function would likely prevent or significantly reduce VZV replication in skin during primary or recurrent infection.Varicella-zoster virus (VZV) causes chicken pox (varicella) upon primary infection. Lifelong latency is established in neurons of the sensory ganglia, and reactivation leads to shingles (herpes zoster) (1). Disease is usually inconsequential in immunocompetent people but can be severe in immunocompromised patients. The current prophylaxis for these high-risk individuals exposed to VZV is high-titer immunoglobulin to VZV administered within 96 h of exposure. This prophylaxis does not always prevent disease, but the severity of symptoms and mortality rates are usually reduced (32).Glycoprotein H (gH) is a type 1 transmembrane protein that is required for virus-cell and cell-cell spread in all herpesviruses studied (12, 15, 24, 26). gH is an important target of the host immune system. Individuals who have had primary infection with VZV or herpes simplex virus (HSV), the most closely related human alphaherpesvirus, have humoral and cellular immunity against gH (1, 56). Immunization of mice with a recombinant vaccinia virus expressing VZV gH and its chaperone, glycoprotein L (gL), induced specific antibodies capable of neutralizing VZV in vitro (28, 37). Immunization of mice with purified HSV gH/gL protein resulted in the production of neutralizing antibodies and protected mice from HSV challenge (5, 44), and administration of an anti-HSV gH monoclonal antibody (MAb) protected mice from HSV challenge (16). Antibodies to HSV and Epstein-Barr virus gH effectively neutralize during virus penetration but not during adsorption in vitro, indicating an essential role for gH in the fusion of viral and cellular membranes but not in initial attachment of the virus to the cell (18, 33).Anti-gH MAb 206, an immunoglobulin G1 (IgG1) antibody which recognizes a conformation-dependent epitope on the mature glycosylated form of gH, neutralizes VZV infection in vitro in the absence of complement (35). MAb 206 inhibits cell-cell fusion in vitro, based on reductions in the number of infected cells and the number of infected nuclei within syncytia, and appears to inhibit the ability of virus particles to pass from the surface of an infected epithelial cell to a neighboring cell via cell extensions (8, 35, 43). When infected cells were treated with MAb 206 for 48 h postinfection (hpi), virus egress and syncytium formation were not apparent, but they were evident within 48 h after removal of the antibody, suggesting that the effect of the antibody was reversible and that there was a requirement for new gH synthesis and trafficking to produce cell-cell fusion. Conversely, nonneutralizing antibodies to glycoproteins E (gE) and I (gI), as well as an antibody to immediate-early protein 62 (IE62), had no effect on VZV spread (46).Like that of other herpesviruses, VZV entry into cells is presumed to require fusion of the virion envelope with the cell membrane or endocytosis followed by fusion. One of the hallmarks of VZV infection is cell fusion and formation of syncytia (8). Cell fusion can be detected as early as 9 hpi in vitro, although VZV spread from infected to uninfected cells is evident within 60 min (45). In vivo, VZV forms syncytia through its capacity to cause fusion of epidermal cells. Syncytia are evident in biopsies of varicella and herpes zoster skin lesions during natural infection and in SCIDhu skin xenografts (34). VZV gH is produced, processed in the Golgi apparatus, and trafficked to the cell membrane, where it might be involved in cell-cell fusion (11, 29, 35). gH then undergoes endocytosis and is trafficked back to the trans-Golgi network (TGN) for incorporation into the virion envelope (20, 31, 42). Since VZV is highly cell associated in vitro, little is known about the glycoproteins required for entry, but VZV gH is present in abundance in the skin vesicles during human chickenpox and zoster (55).Investigating the functions of gH in the pathogenesis of VZV infection in vivo is challenging because it is an essential protein and VZV is species specific for the human host. The objective of this study was to investigate the role of gH in VZV pathogenesis by establishing whether antibody-mediated interference with gH function could prevent or modulate VZV infection of differentiated human tissue in vivo, using the SCIDhu mouse model. The effects of antibody administration at early and later times after infection were determined by comparing infectious virus titers, VZV genome copies, and lesion formation in anti-gH antibody-treated xenografts. In vitro experiments were performed to determine the potential mechanism(s) of MAb 206 interference with gH during VZV replication, virion assembly, and cell-cell spread. The present study has implications for understanding the contributions of gH to VZV replication in vitro and in vivo, the mechanisms by which production of antibodies to gH by the host might restrict VZV infection, and the use of passive antibody prophylaxis in patients at high risk of serious illness caused by VZV.  相似文献   

7.
Varicella-zoster virus (VZV) causes varicella and herpes zoster, diseases characterized by distinct cutaneous rashes. Dendritic cells (DC) are essential for inducing antiviral immune responses; however, the contribution of DC subsets to immune control during natural cutaneous VZV infection has not been investigated. Immunostaining showed that compared to normal skin, the proportion of cells expressing DC-SIGN (a dermal DC marker) or DC-LAMP and CD83 (mature DC markers) were not significantly altered in infected skin. In contrast, the frequency of Langerhans cells was significantly decreased in VZV-infected skin, whereas there was an influx of plasmacytoid DC, a potent secretor of type I interferon (IFN). Langerhans cells and plasmacytoid DC in infected skin were closely associated with VZV antigen-positive cells, and some Langerhans cells and plasmacytoid DC were VZV antigen positive. To extend these in vivo observations, both plasmacytoid DC (PDC) isolated from human blood and Langerhans cells derived from MUTZ-3 cells were shown to be permissive to VZV infection. In VZV-infected PDC cultures, significant induction of alpha IFN (IFN-α) did not occur, indicating the VZV inhibits the capacity of PDC to induce expression of this host defense cytokine. This study defines changes in the response of DC which occur during cutaneous VZV infection and implicates infection of DC subtypes in VZV pathogenesis.Varicella-zoster virus (VZV) is a highly species-specific human herpesvirus that causes the diseases varicella (chicken pox) and herpes zoster (shingles). Varicella results from the primary phase of infection and is characterized by a diffuse rash of vesiculopustular lesions that appear in crops and usually resolve within 1 to 2 weeks (7, 26). Primary infection is initiated by inoculation of mucosal sites, such as the upper respiratory tract and the conjunctiva, with infectious virus, usually contained within respiratory droplets (3, 23). Following inoculation, there is a 10- to 21-day incubation period during which VZV is transported to the regional lymph nodes; however, it remains unclear which cell types are responsible for transport of VZV during natural infection (3). It has been hypothesized that dendritic cells (DC) of the respiratory mucosa may be among the first cells to encounter VZV during primary infection and are capable of virus transport to the draining lymph nodes (1, 45). It is postulated that within lymph nodes, VZV undergoes a period of replication, resulting in a primary cell-associated viremia, during which time virus is transported to the reticuloendothelial organs, where it undergoes another period of replication that results in a secondary cell-associated viremia and virus transport to the skin (3, 23). However, VZV has recently been shown to have tropism for human tonsillar CD4+ T lymphocytes (37), and it has been demonstrated that these T lymphocytes express skin homing markers that may allow them to transport VZV directly from the lymph node to the skin during primary viremia (38). Once the virus reaches the skin, it infects cutaneous epithelial cells, resulting in distinctive vesiculopustular lesions.During the course of primary infection, VZV establishes a lifelong latent infection within the sensory ganglia, from which virus may reactivate years later to cause herpes zoster (22, 42, 53). VZV reactivation results in the production of new infectious virus and a characteristic vesiculopustular rash, which differs from that of varicella insofar as the distribution of the lesions is typically unilateral and covers only 1 to 2 dermatomes (8). In both primary and reactivated VZV infection of human skin, VZV antigens are detectable in the epidermis and dermis (2, 30, 46, 47, 49, 52), and although some studies have examined the immune infiltrate present in these lesions, most have focused on T lymphocytes, macrophages, and NK cells (40, 48, 50, 51, 58). The role of DC subsets in VZV infection in human skin has not been previously explored in vivo.Our laboratory provided the first evidence that VZV could productively infect human immature and mature monocyte-derived dendritic cells (MDDC) in vitro (1, 45), and Hu and Cohen (2005) showed that VZV ORF47 was critical for replication of virus in human immature DC but not mature DC (29). However, whether DC become directly infected during natural VZV skin infection and the impact VZV infection may have on DC subsets has yet to be elucidated. The two subsets of DC that are normally present in the skin and which may be involved in the pathogenesis of VZV infection are the Langerhans cells (LC) of the epidermis and dermal DC (DDC) (60). LC are present in an immature state in uninfected skin and in upper respiratory tract epithelium. Upon capture of foreign antigens, LC have the capacity to migrate from the periphery to the lymph nodes, where they seek interaction with T lymphocytes (60). Although the location of cutaneous DC suggests that they are a DC subset likely to be involved in the pathogenesis of VZV infection, other subsets of DC, such as the blood-derived myeloid DC (MDC) and plasmacytoid DC (PDC), are also potentially important in the pathogenesis of VZV infection. Of particular interest are PDC, since these cells are important in innate antiviral immune responses due to their ability to recruit to sites of inflammation and secrete high levels of alpha interferon (IFN-α) (6, 18, 56). PDC also participate in adaptive immune responses through their secretion of cytokines and chemokines that promote activation of effector cells, including NK cells, NKT cells, B lymphocytes, and T lymphocytes, and also through their capacity to present antigen to T lymphocytes (9, 63). Whether PDC and LC can be infected with VZV and their roles during infection have not been previously studied.In this study, we sought to identify and compare the subsets of DC present in human skin lesions following natural VZV infection and to assess DC permissiveness to VZV infection. We utilized immunohistochemical (IHC) and immunofluorescent (IFA) staining to characterize DC subsets within the skin of multiple patients with either varicella or herpes zoster, and identified profound changes in the frequency of LC and PDC as a consequence of cutaneous VZV infection. In addition, some LC and PDC costained with a range of VZV antigens indicative of productive infection. PDC isolated from human blood and LC derived from the MUTZ-3 cells were shown to be permissive to productive VZV infection in vitro. This study defines changes in the type and distribution of DC during natural cutaneous VZV infection and implicates infection of specific DC subsets in VZV pathogenesis.  相似文献   

8.
The first morphological evidence of African swine fever virus (ASFV) assembly is the appearance of precursor viral membranes, thought to derive from the endoplasmic reticulum, within the assembly sites. We have shown previously that protein p54, a viral structural integral membrane protein, is essential for the generation of the viral precursor membranes. In this report, we study the role of protein p17, an abundant transmembrane protein localized at the viral internal envelope, in these processes. Using an inducible virus for this protein, we show that p17 is essential for virus viability and that its repression blocks the proteolytic processing of polyproteins pp220 and pp62. Electron microscopy analyses demonstrate that when the infection occurs under restrictive conditions, viral morphogenesis is blocked at an early stage, immediately posterior to the formation of the viral precursor membranes, indicating that protein p17 is required to allow their progression toward icosahedral particles. Thus, the absence of this protein leads to an accumulation of these precursors and to the delocalization of the major components of the capsid and core shell domains. The study of ultrathin serial sections from cells infected with BA71V or the inducible virus under permissive conditions revealed the presence of large helicoidal structures from which immature particles are produced, suggesting that these helicoidal structures represent a previously undetected viral intermediate.African swine fever virus (ASFV) (61, 72) is the only known DNA-containing arbovirus and the sole member of the Asfarviridae family (24). Infection by this virus of its natural hosts, the wild swine warthogs and bushpigs and the argasid ticks of the genus Ornithodoros, results in a mild disease, often asymptomatic, with low viremia titers, that in many cases develops into a persistent infection (3, 43, 71). In contrast, infection of domestic pigs leads to a lethal hemorrhagic fever for which the only available methods of disease control are the quarantine of the affected area and the elimination of the infected animals (51).The ASFV genome is a lineal molecule of double-stranded DNA of 170 to 190 kbp in length with convalently closed ends and terminal inverted repeats. The genome encodes more than 150 open reading frames, half of which lack any known or predictable function (16, 75).The virus particle, with an overall icosahedral shape and an average diameter of 200 nm (11), is organized in several concentric layers (6, 11, 15) containing more than 50 structural proteins (29). Intracellular particles are formed by an inner viral core, which contains the central nucleoid surrounded by a thick protein coat, referred to as core shell. This core is enwrapped by an inner lipid envelope (7, 34) on top of which the icosahedral capsid is assembled (26, 27, 31). Extracellular virions possess an additional membrane acquired during the budding from the plasma membrane (11). Both forms of the virus, intracellular and extracellular, are infective (8).The assembly of ASFV particles occurs in the cytoplasm of the infected cell, in viral factories located close to the cell nucleus (6, 13, 49). ASFV factories possess several characteristics similar to those of the cellular aggresomes (35), which are accumulations of aggregates of cellular proteins that form perinuclear inclusions (44).Current models propose that ASFV assembly begins with the modification of endoplasmic reticulum (ER) membranes, which are subsequently recruited to the viral factories and transformed into viral precursor membranes. These ER-derived viral membranes represent the precursors of the inner viral envelope and are the first morphological evidence of viral assembly (7, 60). ASFV viral membrane precursors evolve into icosahedral intermediates and icosahedral particles by the progressive assembly of the outer capsid layer at the convex face of the precursor membranes (5, 26, 27, 31) through an ATP- and calcium-dependent process (19). At the same time, the core shell is formed underneath the concave face of the viral envelope, and the viral DNA and nucleoproteins are packaged and condensed to form the innermost electron-dense nucleoid (6, 9, 12, 69). However, the assembly of the capsid and the internal envelope appears to be largely independent of the components of the core of the particle, since the absence of the viral polyprotein pp220 during assembly produces empty virus-like particles that do not contain the core (9).Comparative genome analysis suggests that ASFV shares a common origin with the members of the proposed nucleocytoplasmic large DNA viruses (NCLDVs) (40, 41). The reconstructed phylogeny of NCLDVs as well as the similitude in the structures and organizations of the genomes indicates that ASFV is more closely related to poxviruses than to other members of the NCLDVs. A consensus about the origin and nature of the envelope of the immature form of vaccinia virus (VV), the prototypical poxvirus, seems to be emerging (10, 17, 20, 54). VV assembly starts with the appearance of crescent-shaped structures within specialized regions of the cytoplasm also known as viral factories (21, 23). The crescent membranes originate from preexisting membranes derived from some specialized compartment of the ER (32, 37, 52, 53, 67), and an operative pathway from the ER to the crescent membrane has recently been described (38, 39). VV crescents apparently grow in length while maintaining the same curvature until they become closed circles, spheres in three dimensions, called immature virions (IV) (22). The uniform curvature is produced by a honeycomb lattice of protein D13L (36, 70), which attaches rapidly to the membranes so that nascent viral membranes always appear to be coated over their entirety. The D13L protein is evolutionarily related to the capsid proteins of the other members of the NCLDV group, including ASFV, but lacks the C-terminal jelly roll motif (40). This structural difference is probably related to the fact that poxviruses are the only member of this group without an icosahedral capsid; instead, the spherical D13L coat acts as a scaffold during the IV stage but is discarded in subsequent steps of morphogenesis (10, 28, 46, 66). Thus, although crescents in VV and precursors of the inner envelope in ASFV are the first morphogenetic stages discernible in the viral factories of these viruses, they seem to be different in nature. Crescents are covered by the D13L protein and are more akin to the icosahedral intermediates of ASFV assembly, whereas ASFV viral membrane precursors are more similar to the naked membranes seen when VV morphogenesis is arrested by rifampin treatment (33, 47, 48, 50) or when the expression of the D13L and A17L proteins are repressed during infection with lethal conditional VV viruses (45, 55, 56, 68, 74, 76).Although available evidence strongly supports the reticular origin of the ASFV inner envelope (7, 60), the mechanism of acquisition remains unknown, and the number of membranes present in the inner envelope is controversial. The traditional view of the inner envelope as formed by two tightly opposed membranes derived from ER collapsed cisternae (7, 59, 60) has recently been challenged by the careful examination of the width of the internal membrane of viral particles and the single outer mitochondrial membrane, carried out using chemical fixation, cryosectioning, and high-pressure freezing (34). The results suggest that the inner envelope of ASFV is a single lipid bilayer, which raises the question of how such a structure can be generated and stabilized in the precursors of the ASFV internal envelope. In the case of VV, the coat of the D13L protein has been suggested to play a key role in the stabilization of the single membrane structure of the crescent (10, 17, 36), but the ASFV capsid protein p72 is not a component of the viral membrane precursors. The identification and functional characterization of the proteins involved in the generation of these structures are essential for the understanding of the mechanisms involved in these early stages of viral assembly. For this reason, we are focusing our interest on the study of abundant structural membrane proteins that reside at the inner envelope of the viral particle. We have shown previously that one of these proteins, p54, is essential for the recruitment of ER membranes to the viral factory (59). Repression of protein p54 expression has a profound impact on virus production and leads to an early arrest in virion morphogenesis, resulting in the virtual absence of membranes in the viral factory.Protein p17, encoded by the late gene D117L in the BA71V strain, is an abundant structural protein (60, 65). Its sequence, which is highly conserved among ASFV isolates (16), does not show any significant similarity with the sequences present in the databases. Protein p17 is an integral membrane protein (18) that is predicted to insert in membranes with a Singer type I topology and has been localized in the envelope precursors as well as in both intracellular and extracellular mature particles (60), suggesting that it resides at the internal envelope, the only membranous structure of the intracellular particles.In this work, we analyze the role of protein p17 in viral assembly by means of an IPTG (isopropyl-β-d-thiogalactopyranoside)-dependent lethal conditional virus. The data presented indicate that protein p17 is essential for viral morphogenesis. The repression of this protein appears to block assembly at the level of viral precursor membranes, resulting in their accumulation at the viral factory.From the electron microscopy analysis of serial sections of viral factories at very early times during morphogenesis, we present experimental evidence that suggests that, during assembly, viral precursor membranes and core material organize into large helicoidal intermediates from which icosahedral particles emerge. The possible role of these structures during ASFV morphogenesis is discussed.  相似文献   

9.
Varicella-zoster virus (VZV) causes varicella (chicken pox) and establishes latency in ganglia, from where it reactivates to cause herpes zoster (shingles), which is often followed by postherpetic neuralgia (PHN), causing severe neuropathic pain that can last for years after the rash. Despite the major impact of herpes zoster and PHN on quality of life, the nature and kinetics of the virus-immune cell interactions that result in ganglion damage have not been defined. We obtained rare material consisting of seven sensory ganglia from three donors who had suffered from herpes zoster between 1 and 4.5 months before death but who had not died from herpes zoster. We performed immunostaining to investigate the site of VZV infection and to phenotype immune cells in these ganglia. VZV antigen was localized almost exclusively to neurons, and in at least one case it persisted long after resolution of the rash. The large immune infiltrate consisted of noncytolytic CD8+ T cells, with lesser numbers of CD4+ T cells, B cells, NK cells, and macrophages and no dendritic cells. VZV antigen-positive neurons did not express detectable major histocompatibility complex (MHC) class I, nor did CD8+ T cells surround infected neurons, suggesting that mechanisms of immune control may not be dependent on direct contact. This is the first report defining the nature of the immune response in ganglia following herpes zoster and provides evidence for persistence of non-latency-associated viral antigen and inflammation beyond rash resolution.Varicella-zoster virus (VZV) is a highly species-specific human alphaherpesvirus that infects a majority of the world''s population. VZV causes two clinically significant diseases; varicella (chicken pox) and herpes zoster (shingles) (5, 8, 19). Varicella is characterized by widespread cutaneous vesicular lesions and is a consequence of primary VZV infection in VZV-naïve individuals. While varicella is a relatively mild disease in immunocompetent children, it can cause significant morbidity in healthy adults and is frequently life threatening in immunocompromised individuals (3, 4, 22). The innate and adaptive immune responses act to eliminate replicating virus during varicella, but not all virus is cleared during this time, with some presumed to access nerve axons in the skin, enabling transport to neurons in sensory ganglia, where the virus is able to establish a lifelong latent infection (5, 8, 12, 13, 20, 32). An alternative possibility is that virus is transported to ganglia via hematogenous spread (36). The ability of VZV to establish latency in the host is critical to the success of this virus as a human pathogen.VZV reactivation from latency (herpes zoster) causes serious disease in older and immunocompromised individuals and is characterized by vesicular skin rash in a dermatomal distribution with preceding and concomitant pain (7, 10, 21, 68). During reactivation, sensory ganglia are sites of viral replication, where an intense inflammatory response is induced and widespread necrosis of glial cells and neurons ensues (14, 19, 27, 71, 72). Before the appearance of the zoster rash, VZV travels along the affected sensory nerves to the skin, where it produces the characteristic rash (10, 53) and neural and dermoepidermal inflammation. Clinically, herpes zoster is associated with severe, acute pain, as well as often prolonged severe pain, or postherpetic neuralgia (PHN), that often requires follow-up medical care for months or even years after the initial attack (29, 62, 73). PHN is estimated to occur in 40% of herpes zoster cases in individuals older than 50 years and 75% of adults older than 75 years (15, 43, 56). It is estimated that 1 million or more individuals are afflicted by herpes zoster each year in the United States (54). Herpes zoster pain, and especially PHN, can be disabling and can have a major negative impact on patients'' quality of life (15). In the coming years, the number of individuals suffering from herpes zoster is predicted to rise, concomitant with the increasing number of patients who are elderly or who are receiving immunosuppressive therapies for cancer or transplantation.New antiviral drugs and a vaccine for herpes zoster have been only partially successful, indicating the need for continuing studies of VZV immunopathogenesis to understand the reasons for this partial success and to provide the foundation for developing new immunotherapeutics and vaccines (38, 39, 65). Antiviral therapy, while effective against the rash and pain of acute herpes zoster, appears at best to prevent only 50% of PHN (16, 23, 24, 45, 75, 76). The zoster vaccine was demonstrated to prevent 51% of herpes zoster and 60% of postherpetic neuralgia in patients over the age of 60, although it appeared to be less effective against zoster in the older age group (54). Remarkably, despite the importance of ganglionic infection to the pathogenesis of herpes zoster and PHN, there have been no reports defining the immune response in human ganglia following natural VZV reactivation. Until now, the lack of available ganglia from patients following an episode of herpes zoster has limited these studies. We have overcome this hurdle by obtaining rare naturally infected human ganglia at autopsy from three donors who, near the time of death, had evidence of herpes zoster but who did not die from herpes zoster. The aim of this study was to undertake a comprehensive immunohistological examination of human ganglia following herpes zoster. Specifically, we utilized immunohistochemical (IHC) and immunofluorescent (IF) staining to characterize the infiltrating immune cell subsets and to assess the presence of VZV antigen within ganglia following herpes zoster. This study provides the first detailed examination of the types and distribution of immune cells present following natural VZV reactivation in human ganglia and provides new insights into the immunological mechanisms that may be important in controlling virus infection following the reactivation of a human herpesvirus infection in human ganglia in vivo.  相似文献   

10.
11.
UL31 and UL34 of herpes simplex virus type 1 form a complex necessary for nucleocapsid budding at the inner nuclear membrane (INM). Previous examination by immunogold electron microscopy and electron tomography showed that pUL31, pUL34, and glycoproteins D and M are recruited to perinuclear virions and densely staining regions of the INM where nucleocapsids bud into the perinuclear space. We now show by quantitative immunogold electron microscopy coupled with analysis of variance that gD-specific immunoreactivity is significantly reduced at both the INM and outer nuclear membrane (ONM) of cells infected with a UL34 null virus. While the amount of gM associated with the nuclear membrane (NM) was only slightly (P = 0.027) reduced in cells infected with the UL34 null virus, enrichment of gM in the INM at the expense of that in the ONM was greatly dependent on UL34 (P < 0.0001). pUL34 also interacted directly or indirectly with immature forms of gD (species expected to reside in the endoplasmic reticulum or nuclear membrane) in lysates of infected cells and with the cytosolic tail of gD fused to glutathione S-transferase in rabbit reticulocyte lysates, suggesting a role for the pUL34/gD interaction in recruiting gD to the NM. The effects of UL34 on gD and gM localization were not a consequence of decreased total expression of gD and gM, as determined by flow cytometry. Separately, pUL31 was dispensable for targeting gD and gM to the two leaflets of the NM but was required for (i) the proper INM-versus-ONM ratio of gD and gM in infected cells and (ii) the presence of electron-dense regions in the INM, representing nucleocapsid budding sites. We conclude that in addition to their roles in nucleocapsid envelopment and lamina alteration, UL31 and UL34 play separate but related roles in recruiting appropriate components to nucleocapsid budding sites at the INM.Herpesvirus virions comprise a nucleocapsid containing genomic viral DNA, a proteinaceous tegument layer surrounding the nucleocapsid, and a virion envelope surrounding the tegument. The envelope of extracellular herpes simplex virus (HSV) virions contains glycoproteins gB, gC, gD, gE, gI, gG, gH, gK, gL, and gM (23, 51).As viewed by electron microscopy, nascent virions form as the nucleocapsid buds through densely staining regions of the nuclear membrane (NM) (21, 41). Electron tomograms of HSV perinuclear virions compared to those of extracellular virions infer that the former contain glycoproteins of considerably less glycosylation and a relatively sparse tegument layer compared to their counterparts in mature extracellular virions (6). The lower levels of glycosylation in HSV perinuclear virions are consistent with the fact that the lumen of the perinuclear space is continuous with that of the endoplasmic reticulum. Thus, the polysaccharide moieties of virion glycoproteins become fully processed as virions access Golgi enzymes during their egress to the extracellular space. Although the full proteome of the nascent perinuclear virion is unknown, immunogold studies have shown that they contain at least pUL31, pUL34, pUS3, gB, gC, gD, gH, gM, and the VP16 and pUL11 tegument proteins in addition to the proteins that comprise the viral capsid (4, 5, 15, 25, 37, 40, 47, 50, 55).The UL31 and UL34 gene products of HSV-1 (pUL31 and pUL34, respectively) form a complex that localizes at the inner and outer NMs (INM and ONM, respectively) of infected cells (40). Both proteins are essential for nucleocapsid envelopment at the INM and become incorporated into nascent virions when nucleocapsids bud through the INM into the perinuclear space (39, 40, 42). The proteins and their essential role in nucleocapsid envelopment are conserved in all herpesvirus subfamilies (14, 20, 32, 45). pUL31 of HSV-1 is a mostly hydrophobic phosphoprotein that is held in close approximation to the nucleoplasmic face of the INM by interaction with pUL34, an integral membrane protein of type II orientation (33, 40, 46, 56). The first 248 amino acids of pUL34 are predicted to reside in the nucleoplasm or cytoplasm, depending on whether the protein localizes in the INM or ONM, respectively. This is followed by an approximately 22-amino acid transmembrane domain with up to 5 amino acids residing in the perinuclear space or lumen of the endoplasmic reticulum.In the most prominent model of herpesvirion egress, the envelope of the perinuclear virion fuses with the ONM, releasing the deenveloped nucleocapsid into the cytoplasm, where it subsequently buds into cytoplasmic membranous organelles such as the Golgi or trans-Golgi network (34, 49). This model is supported by the observation that pUL31 and pUL34 are located in the perinuclear virion but not extracellular virions (18, 40). Thus, these proteins are lost from the virion upon fusion of the virion envelope with the ONM. Also supporting this egress model is the observation that deletion of both gB and gH causes virions to accumulate aberrantly in the perinuclear space (15). The involvement of gH and gB is potentially satisfying because these proteins comprise essential components of the machinery that mediates fusion of the virion envelope with the plasma or endosomal membranes during the initiation of infection (9, 12, 16, 44, 52). Moreover, expression of a combination of gB, gD, gH, and gL is sufficient to mediate fusion of cell membranes, whereas coexpression with gM or gK inhibits this fusion (3, 8, 11). Although the mechanism of fusion is unclear, gD is known to bind viral receptors on cell surfaces, and the structure of gB indicates features reminiscent of other viral fusion proteins (24, 35, 48). gD has been shown to interact with gB and gH at least transiently, suggesting that these interactions may be important for the fusion reaction (1, 2). Thus, fusion between the nascent and mature virion envelopes with target membranes may share mechanistic similarities.On the other hand, it is likely that the two fusion events are mechanistically distinct because (i) single deletion of either gH or gB precludes viral entry and cell/cell fusion but does not cause nascent virions to accumulate in the perinuclear space (9, 16, 31, 43) and (ii) the activity of a viral kinase encoded by US3 is dispensable for entry but believed to promote fusion of the perinuclear virion and ONM (28, 40). Moreover, the lack of glycoproteins from the pseudorabies virus perinuclear virion suggests that fusion is mediated by an entirely different mechanism in this system (26).The current study focuses on how glycoproteins are incorporated into the nascent virion. We show that optimal recruitment of gD to both leaflets of the NM and gM to the INM requires pUL34 and pUL31. We also show that immature gD interacts with pUL34, suggesting a mechanism by which pUL34 might recruit gD to the NM.  相似文献   

12.
13.
14.
15.
16.
Glycoprotein B (gB), the most conserved protein in the family Herpesviridae, is essential for the fusion of viral and cellular membranes. Information about varicella-zoster virus (VZV) gB is limited, but homology modeling showed that the structure of VZV gB was similar to that of herpes simplex virus (HSV) gB, including the putative fusion loops. In contrast to HSV gB, VZV gB had a furin recognition motif ([R]-X-[KR]-R-|-X, where | indicates the position at which the polypeptide is cleaved) at residues 491 to 494, thought to be required for gB cleavage into two polypeptides. To investigate their contribution, the putative primary fusion loop or the furin recognition motif was mutated in expression constructs and in the context of the VZV genome. Substitutions in the primary loop, W180G and Y185G, plus the deletion mutation Δ491RSRR494 and point mutation 491GSGG494 in the furin recognition motif did not affect gB expression or cellular localization in transfected cells. Infectious VZV was recovered from parental Oka (pOka)-bacterial artificial chromosomes that had either the Δ491RSRR494 or 491GSGG494 mutation but not the point mutations W180G and Y185G, demonstrating that residues in the primary loop of gB were essential but gB cleavage was not required for VZV replication in vitro. Virion morphology, protein localization, plaque size, and replication were unaffected for the pOka-gBΔ491RSRR494 or pOka-gB491GSGG494 virus compared to pOka in vitro. However, deletion of the furin recognition motif caused attenuation of VZV replication in human skin xenografts in vivo. This is the first evidence that cleavage of a herpesvirus fusion protein contributes to viral pathogenesis in vivo, as seen for fusion proteins in other virus families.Varicella-zoster virus (VZV), an alphaherpesvirus, causes chicken pox (varicella) as a primary infection and shingles (zoster) upon reactivation from infected ganglia in humans (reviewed in reference 16). Although not yet investigated in VZV, herpesvirus entry requires fusion of the virus envelope with cell membranes governed by viral glycoprotein B (gB) and gH/gL, which are conserved across the family Herpesviridae (12, 27, 57). gB is the most conserved glycoprotein, with its function as a fusion protein well documented for several of the herpesviruses (10, 19, 38, 48, 51, 52).Open reading frame 31 (ORF31) codes for the 931 amino acids of VZV gB (18, 37). The successive N- and O-linked glycosylation plus the sialation and sulfation of VZV gB yields a mature protein with a molecular mass of approximately 140 kDa (45). Upon maturation, gB is cleaved, presumably by cellular proteases, into two polypeptides of 66 and 68 kDa. Intracellular trafficking of gB was shown to be dependent upon amino acid motifs in the cytoplasmic domain (24-26). In transfection studies, gB was transported to the cellular surface where it was endocytosed and localized to the trans-Golgi, where envelopment of viral particles is thought to occur.The structures of gB in the two human alphaherpesviruses, VZV and herpes simplex virus type 1 (HSV-1), are likely to be very similar as they have 49% amino acid identity (reviewed in reference 16). The ectodomain of HSV-1 gB was shown to form a spike that consisted of trimers with the structural homology to gG of vesicular stomatitis virus (28). Heldwein et al. (28) proposed that HSV-1 gB is a class II fusion protein based on homology to VSV G. The herpesvirus gB monomer was divided into five domains, I to V. Domain I consisted of a continuous amino acid sequence that folded into a pleckstrin homology-like domain, while domain II was comprised of two discontinuous segments, which also had a pleckstrin homology-like domain. A loop region exposed to the exterior of gB connected domain II with domain III. Domain III was comprised of three discontinuous segments and connected to the external loop by a long α helix that ended in a central coiled coil. Domain IV crowned gB and was connected to domain V, which stretched from the top to the bottom of the gB monomer, forming the core of the trimer making contacts with the two other subunits. The structural homology and lack of furin cleavage suggest that the herpesvirus gB and VSV G proteins have undergone convergent evolution.Although not proven experimentally, VZV gB is likely to be cleaved by the subtilisin-like proprotein convertase furin as the glycoprotein has a furin recognition motif [R]-X-[KR]-R-|-X (where | indicates the position at which the polypeptide is cleaved) (29). The [R]-X-[KR]-R-|-X motif is conserved in gBs for all of the herpesvirus families (5, 9, 21, 36, 40, 53, 63, 64). This site has been shown to be dispensable for the replication of human cytomegalovirus (HCMV), bovine herpesvirus type 1 (BHV-1), and pseudorabies virus (PRV) in vitro (32, 49, 58). Furin site mutants for BHV-1 and PRV show an altered phenotype in vitro, but effects were not examined in vivo. HSV-1 gB is not cleaved and lacks the [R]-X-[KR]-R-|-X motif at the canonical site, which is of interest because HSV-1 is genetically the most closely related human herpesvirus to VZV.Domain I of HSV gB showed structural conservation of putative fusion loops similar to those found in domain IV of the VSV G protein (28). Despite the lack of conserved amino acids within these loops, the hydrophobicity of the residues appears to be conserved for the Herpesviridae (4). Substitution of hydrophobic residues in Epstein-Barr virus gB and linker insertion mutagenesis close to the putative fusion loops of HSV-1 gB abrogated fusion based on in vitro transfection studies (4, 22, 34). However, the effect of substitutions in these putative fusion loops on viral replication has not been characterized. Since the development of fusion assays for VZV has proven elusive, the effect of substitutions in the putative fusion loop using viral mutagenesis to make recombinant viruses provides an alternative approach for identifying functional residues in VZV gB.In contrast to HSV-1, VZV is a human-restricted pathogen (reviewed in reference 16). To study the pathogenesis of VZV in vivo, well-established human xenograft models have been developed using SCID mice (6, 7, 13, 14, 41, 44, 54, 65). Lesions formed by VZV in the skin are similar to those seen in human subjects following primary infection (15, 43). The relevance of the model was demonstrated by studies with the varicella vaccine virus (vOka) that exhibited decreased growth in skin xenografts in vivo but does not cause disease in the healthy human host. In contrast, the vaccine virus and its parent strain, parental Oka (pOka), have indistinguishable replication kinetics in vitro (15, 43).The present study was designed to investigate the effects of structure-based targeted mutations in VZV gB on viral replication in cultured cells and in human skin xenografts in the SCIDhu mouse model. This was performed in the context of infectious virus recovered using the self-excisable bacterial artificial chromosome (BAC) containing the genome of a clinical isolate, Oka (62). The roles of the conserved residues W180 (gB-W180G) and Y185 (gB-Y185G) in the putative fusion loop were evaluated using glycine substitution, and the role of the furin recognition motif (491RSRR494) was assessed by a complete deletion of the furin motif (gBΔ491RSRR494) or a substitution of the arginine residues with glycine (gB491GSGG494) to conserve the carbon backbone.  相似文献   

17.
Human immunodeficiency virus type 1 (HIV-1) envelope protein (Env) is subject to both neutralizing antibody (NAb) and CD8 T-cell (cytotoxic T-lymphocyte [CTL]) immune pressure. We studied the reversion of the Env CTL escape mutant virus to the wild type and the relationship between the reversion of CTL mutations with N-linked glycosylation site (NLGS)-driven NAb escape in pigtailed macaques. Env CTL mutations either did not revert to the wild type or only transiently reverted 5 to 7 weeks after infection. The CTL escape mutant reversion was coincident, for the same viral clones, with the loss of NLGS mutations. At one site studied, both CTL and NLGS mutations were needed to confer NAb escape. We conclude that CTL and NAb escape within Env can be tightly linked, suggesting opportunities to induce effective multicomponent anti-Env immunity.CD8 T-cell responses against human immunodeficiency virus (HIV) have long been observed to select for viral variants that avoid cytotoxic T-lymphocyte (CTL) recognition (2, 5, 15, 18, 27). These immune escape mutations may, however, result in reduced replication competence (“fitness cost”) (11, 20, 26). CTL escape variants have been shown to revert to the wild type (WT) upon passage to major histocompatibility complex-mismatched hosts, both in macaques with simian immunodeficiency virus (SIV) or chimeric SIV/HIV (SHIV) infection (11, 12) and in humans with HIV type 1 (HIV-1) infection (1, 19).Most analyses of CTL escape and reversion have studied Gag CTL epitopes known to facilitate control of viremia (7, 14, 21, 30). Fewer analyses have studied Env-specific CTL epitopes. Recent sequencing studies suggest the potential for mutations within predicted HIV-1 Env-specific CTL epitopes to undergo reversion to the WT (16, 23). Env-specific CTL responses may, however, have less impact on viral control of both HIV-1 and SIV/SHIV than do Gag CTL responses (17, 24, 25), presumably reflecting either less-potent inhibition of viral replication or minimal fitness cost of escape (9).Serial viral escape from antibody pressure also occurs in both macaques and humans (3, 13, 28). Env is extensively glycosylated, and this “evolving glycan shield” can sterically block antibody binding without mutation at the antibody-binding site (8, 16, 31). Mutations at glycosylation sites, as well as other mutations, are associated with escape from neutralizing antibody (NAb) responses (4, 13, 29). Mutations in the amino acid sequences of N-linked glycosylation sites (NLGS) can alter the packing of the glycan cloud that surrounds the virion, by a loss, gain, or shift of an NLGS (32), thus facilitating NAb escape.Env is the only viral protein targeted by both CTL and NAb responses. The serial viral escape from both Env-specific CTL and NAb responses could have implications for viral fitness and the reversion of multiple mutations upon transmission to naïve hosts.We previously identified three common HIV-1 Env-specific CD8 T cell epitopes, RY8788-795, SP9110-118, and NL9671-679, and their immune escape patterns in pigtail macaques (Macaca nemestrina) infected with SHIVmn229 (25). SHIVmn229 is a chimeric virus constructed from an SIVmac239 backbone and an HIV-1HXB2 env fragment that was passaged through macaques to become pathogenic (11). This earlier work provided an opportunity for detailed studies of how viruses with Env-specific CTL escape mutations, as well as mutations in adjacent NLGS, evolve when transmitted to naïve pigtail macaques.  相似文献   

18.
19.
Cellular integrins were identified as human cytomegalovirus (HCMV) entry receptors and signaling mediators in both fibroblasts and endothelial cells. The goal of these studies was to determine the mechanism by which HCMV binds to cellular integrins to mediate virus entry. HCMV envelope glycoprotein B (gB) has sequence similarity to the integrin-binding disintegrin-like domain found in the ADAM (a disintegrin and metalloprotease) family of proteins. To test the ability of this region to bind to cellular integrins, we generated a recombinant soluble version of the gB disintegrin-like domain (gB-DLD). The gB-DLD protein bound to human fibroblasts in a specific, dose-dependent and saturable manner that required the expression of an intact β1 integrin ectodomain. Furthermore, a physical association between gB-DLD and β1 integrin was demonstrated through in vitro pull-down assays. The function of this interaction was shown by the ability of cell-bound gB-DLD to efficiently block HCMV entry and the infectivity of multiple in vivo target cells. Additionally, rabbit polyclonal antibodies raised against gB-DLD neutralized HCMV infection. Mimicry of the ADAM family disintegrin-like domain by HCMV gB represents a novel mechanism for integrin engagement by a virus and reveals a unique therapeutic target for HCMV neutralization. The strong conservation of the DLD across beta- and gammaherpesviruses suggests that integrin recognition and utilization may be a more broadly conserved feature throughout the Herpesviridae.Like many other herpesviruses, human cytomegalovirus (HCMV) is an opportunistic pathogen that is able to asymptomatically infect the human population with high incidence throughout the world. Primary infection is followed by a life-long latent phase that may reactivate and cause disease during the immunosuppression experienced by AIDS patients and organ transplant recipients (14, 52). HCMV disease is also a cause of significant morbidity and mortality during primary congenital infections (66). Currently there is no effective HCMV vaccine, and HCMV antiviral therapies, such as ganciclovir, are highly toxic and unsuitable for treating pregnant women in the congenital setting (92).HCMV disease can manifest itself in most organ systems and tissue types. Pathology from HCMV-infected individuals reveals that HCMV can infect most cell types, including fibroblasts, endothelial cells, epithelial cells, smooth muscle cells, stromal cells, monocytes/macrophages, neutrophils, neuronal cells, and hepatocytes (20, 25, 77, 83, 87). The broad intrahost organ and tissue tropism of HCMV is paralleled in vitro with the virus'' ability to bind and fuse with nearly every vertebrate cell type tested (40, 62, 78). However, full productive infection is limited to secondary strains of fibroblasts and endothelial cells. The ability of HCMV to enter such a diverse range of cell types is indicative of multiple cell-specific receptors, broadly expressed receptors, or a complex entry pathway in which a combination of both cell-specific and broadly expressed cellular receptors are utilized.The genes that encode envelope glycoprotein B (gB) and gH are essential (37), play several key roles during virus entry and egress, and are conserved throughout the Herpesviridae (reviewed in reference 80). A soluble form of gB truncated at the transmembrane domain (gBs) binds to permissive cells specifically, blocks virus entry, and is sufficient to trigger signal transduction events that result in the activation of an interferon-responsive pathway that is also activated by HCMV virions (10, 12, 13).HCMV entry requires initial tethering of virions to cell surface heparan sulfate proteoglycans (HSPGs) (22, 80). The HCMV envelope contains at least two separate glycoprotein complexes with affinities for heparan sulfate: gB (22) and the gM/gN complex (48). The gM/gN complex is more abundant than gB within the envelope (88) and binds heparin with higher affinity (49). Thus, the gM/gN complex is thought to be the primary heparin-binding component of the HCMV envelope.Virus-cell tethering via HSPGs is followed by a more stable interaction and subsequent signal transduction cascades. This interaction was proposed to be mediated via cell surface epidermal growth factor receptor (EGFR) (17, 95). These data, however, conflicted with more recent reports that demonstrate EGFR is not explicitly required for infection (21, 42). Platelet-derived growth factor receptor (PDGFR) has also been reported to function as an attachment receptor that functions to activate signaling cascades required for infection (79). The relative contribution of signaling and virus-host cell attachment for each of these growth factor receptors remains to be further characterized. The possibility also exists that additional attachment receptors still remain unidentified.Integrins are expressed on the cell surfaces of all vertebrate cells, a characteristic that parallels the promiscuity of HCMV entry. Additionally, β1 integrins are capable of mediating many of the same signal transduction pathways that are triggered during HCMV entry into host cells. Upon binding and fusing with host cell surfaces, HCMV triggers changes in Ca2+ homeostasis (36) and the activation of phospholipases C and A2, as well as an increased release of arachidonic acid and its metabolites (2). Additionally, mitogen-activated protein kinase (MAPK) (44, 45), phosphatidylinositol-3-OH kinase (PI3-K) (46), and G proteins are activated (73). Indeed, it was shown that HCMV entry led to an activation of integrin signaling pathways that reorganized the actin cytoskeleton (31) and phosphorylated β1 and β3 integrin cytoplasmic domains (31), focal adhesion kinase (FAK) (31), and Src (94). Integrin antibody blocking studies in combination with HCMV infectivity assays in β1 integrin-null GD25 cells identified α2β1, α6β1, and αVβ3 integrins as HCMV “postattachment” entry receptors (31). Certain integrin signaling events could be triggered by both HCMV and a soluble version of gB and require the expression of β1 integrin, identifying this specific viral ligand in integrin engagement (31).ADAM family members are multifunctional proteins that contain a metalloproteinase domain involved in ectodomain shedding and a disintegrin module of approximately 90 amino acids that confers RGD-independent integrin binding (43, 81, 99). The minimum component of the disintegrin module required for integrin engagement is the 12- to 13-amino-acid disintegrin loop, for which a consensus sequence has been described: RX6DLXXF (29). The 20-amino-acid stretch encompassing the gB disintegrin-like domain is highly conserved, with greater than 98% amino acid identity among HCMV clinical isolates. Additionally, this domain is present in most gammaherpesviruses and all betaherpesviruses, suggesting that integrin engagement may be a conserved feature for most of the Herpesviridae. Synthetic peptides of the gB disintegrin loop block virus fusion (tegument delivery) but not virus attachment (31). This fact suggests a disintegrin-mediated molecular mechanism of herpesvirus-integrin engagement. Glycoprotein H (gH) has also been identified as an αVβ3 integrin ligand (94). However, gH contains no previously identified integrin recognition motifs, and the αVβ3 integrin heterodimer does not typically engage ADAM family proteins.Herein, we explore the molecular mechanism of integrin engagement by HCMV envelope gB. We provide multiple lines of evidence that demonstrate a physical interaction between the gB disintegrin module with β1 integrin. Furthermore, this interaction has significant consequences to the viral life cycle, since a soluble version of the gB disintegrin module efficiently blocks HCMV infection at a postattachment step during entry into multiple in vivo cell targets. Similarly, polyclonal antibodies directed against the gB disintegrin-like domain neutralize HCMV infectivity. These data identify the molecular mechanism of an HCMV ligand-receptor interaction required for virus-host fusion.  相似文献   

20.
Human immunodeficiency virus type 1 (HIV-1) can disseminate between CD4+ T cells via diffusion-limited cell-free viral spread or by directed cell-cell transfer using virally induced structures termed virological synapses. Although T-cell virological synapses have been well characterized, it is unclear whether this mode of viral spread is susceptible to inhibition by neutralizing antibodies and entry inhibitors. We show here that both cell-cell and cell-free viral spread are equivalently sensitive to entry inhibition. Fluorescence imaging analysis measuring virological synapse lifetimes and inhibitor time-of-addition studies implied that inhibitors can access preformed virological synapses and interfere with HIV-1 cell-cell infection. This concept was supported by electron tomography that revealed the T-cell virological synapse to be a relatively permeable structure. Virological synapse-mediated HIV-1 spread is thus efficient but is not an immune or entry inhibitor evasion mechanism, a result that is encouraging for vaccine and drug design.As with enveloped viruses from several viral families, the human immunodeficiency virus type 1 (HIV-1) can disseminate both by fluid-phase diffusion of viral particles and by directed cell-cell transfer (39). The primary target cell for HIV-1 replication in vivo is the CD4+ T-cell (13), which is infectible by CCR5-tropic (R5) and CXCR4-tropic (X4) viral variants (29). R5 HIV-1 is the major transmitted viral phenotype and dominates the global pandemic, whereas X4 virus is found later in infection in ca. 50% of infected individuals, and its presence indicates a poor disease progression prognosis (23). Cell-cell HIV-1 transfer between T cells is more efficient than diffusion-limited spread (8, 16, 32, 38), although recent estimates for the differential range from approximately 1 (42) to 4 (6) orders of magnitude. Two structures have been proposed to support contact-mediated intercellular movement of HIV-1 between T cells: membrane nanotubes (33, 43) and macromolecular adhesive contacts termed virological synapses (VS) (15, 17, 33). VS appear to be the dominant structure involved in T-cell-T-cell spread (33), and both X4 (17) and R5 HIV-1 (6, 15, 42) can spread between T cells via this mechanism.VS assembly and function are dependent on HIV-1 envelope glycoprotein (Env) engaging its primary cellular receptor CD4 (2, 6, 17). This interaction recruits more CD4 and coreceptor to the site of cell-cell contact in an actin-dependent manner (17). Adhesion molecules cluster at the intercellular junction and are thought to stabilize the VS (18). In parallel, viral Env and Gag are recruited to the interface by a microtubule-dependent mechanism (19), where polarized viral budding may release virions into the synaptic space across which the target cell is infected (17). The precise mechanism by which HIV-1 subsequently enters the target T-cell cytoplasm remains unclear: by fusion directly at the plasma membrane, fusion from within an endosomal compartment, or both (4, 6, 15, 25, 34).Viruses from diverse families including herpesviruses (9), poxviruses (22) and hepatitis C virus (44) evade neutralizing antibody attack by direct cell-cell spread, since the tight junctions across which the these viruses move are antibody impermeable. It has been speculated that transfer of HIV-1 across VS may promote evasion from immune or therapeutic intervention with the inference that the junctions formed in retroviral VS may be nonpermissive to antibody entry (39). However, available evidence regarding whether neutralizing antibodies (NAb) and other entry inhibitors can inhibit HIV-1 cell-cell spread is inconsistent (25). An early analysis suggested that HIV-1 T-cell-T-cell spread is relatively resistant to neutralizing monoclonal antibodies (NMAb) (12). A later study agreed with this conclusion by demonstrating a lack of permissivity of HIV-1 T-cell-T-cell spread, measured by transfer of viral Gag, to interference with viral fusion using a gp41-specific NMAb and a peptidic fusion inhibitor (6). In contrast, another analysis reported that anti-gp41-specific NMAb interfered effectively with HIV-1 spread between T cells (26). Inhibitors of the HIV-1 surface glycoprotein (gp120)-CD4 or gp120-CXCR4 interaction reduced X4 HIV-1 VS assembly and viral transfer if applied prior to mixing of infected and receptor-expressing target cells (17, 19), but the effect of these inhibitors has not been tested on preformed VS. Thus, the field is currently unclear on whether direct T-cell-T-cell infectious HIV-1 spread is susceptible or not to antibody and entry inhibitor-mediated disruption of VS assembly, and the related question, whether the VS is permeable to viral entry inhibitors, including NAb. Addressing these questions is of central importance to understanding HIV-1 pathogenesis and informing future drug and vaccine design.Since estimates reported in the literature of the relative efficiency of direct HIV-1 T-cell-T-cell spread compared to cell-free spread vary by approximately 3 orders of magnitude (6, 38, 42), and the evidence for the activity of viral entry inhibitors on cell-cell spread is conflicting, we set out to quantify the efficiency of infection across the T-cell VS and analyze the susceptibility of this structure to NAb and viral entry inhibitors. Assays reporting on events proximal to productive infection show that the R5 HIV-1 T-cell VS is approximately 1 order of magnitude more efficient than cell-free virus infection, and imaging analyses reveal that the VS assembled by HIV-1 is most likely permeable to inhibitors both during, and subsequent to, VS assembly. Thus, we conclude that the T-cell VS does not provide a privileged environment allowing HIV-1 escape from entry inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号