共查询到20条相似文献,搜索用时 0 毫秒
1.
Yan Li Dolores Córdoba-Ca?ero Weiqiang Qian Xiaohong Zhu Kai Tang Huiming Zhang Rafael R. Ariza Teresa Roldán-Arjona Jian-Kang Zhu 《PLoS genetics》2015,11(1)
Active DNA demethylation in plants occurs through base excision repair, beginning with removal of methylated cytosine by the ROS1/DME subfamily of 5-methylcytosine DNA glycosylases. Active DNA demethylation in animals requires the DNA glycosylase TDG or MBD4, which functions after oxidation or deamination of 5-methylcytosine, respectively. However, little is known about the steps following DNA glycosylase action in the active DNA demethylation pathways in plants and animals. We show here that the Arabidopsis APE1L protein has apurinic/apyrimidinic endonuclease activities and functions downstream of ROS1 and DME. APE1L and ROS1 interact in vitro and co-localize in vivo. Whole genome bisulfite sequencing of ape1l mutant plants revealed widespread alterations in DNA methylation. We show that the ape1l/zdp double mutant displays embryonic lethality. Notably, the ape1l+/−zdp−/− mutant shows a maternal-effect lethality phenotype. APE1L and the DNA phosphatase ZDP are required for FWA and MEA gene imprinting in the endosperm and are important for seed development. Thus, APE1L is a new component of the active DNA demethylation pathway and, together with ZDP, regulates gene imprinting in Arabidopsis. 相似文献
2.
3.
Lloyd V 《Genetica》2000,109(1-2):35-44
Genetic imprinting is a form of epigenetic silencing. But with a twist. The twist is that while imprinting results in the
silencing of genes, chromosome regions or entire chromosome sets, this silencing occurs only after transmission of the imprinted
region by one sex of parent. Thus genetic imprinting reflects intertwined levels of epigenetic and developmental modulation
of gene expression. Imprinting has been well documented and studied in Drosophila, however, these studies have remained largely unknown due to nothing more significant than differences in terminology. Imprinting
in Drosophilais invariably associated with heterochromatin or regions with unusual chromatin structure. The imprint appears to spread from
imprinted centers that reside within heterochromatin and these are, seemingly, the only regions that are normally imprinted
in Drosophila. This is significant as it implies that while imprinting occurs in Drosophila, it is generally without phenotypic consequence. Hence the evolution of imprinting, at least in Drosophila, is unlikely to be driven by the function of specific imprinted genes. Thus, the study of imprinting in Drosophilahas the potential to illuminate the mechanism and biological function of imprinting, and challenge models based solely on
imprinting of mammalian genes.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
4.
Glucosinolates are plant secondary metabolites present in Brassicaceae plants such as the model plant Arabidopsis thaliana. Intact glucosinolates are believed to be biologically inactive, whereas degradation products after hydrolysis have multiple roles in growth regulation and defense. The degradation of glucosinolates is catalyzed by thioglucosidases called myrosinases and leads by default to the formation of isothiocyanates. The interaction of a protein called epithiospecifier protein (ESP) with myrosinase diverts the reaction toward the production of epithionitriles or nitriles depending on the glucosinolate structure. Here we report the identification of a new group of nitrile-specifier proteins (AtNSPs) in A. thaliana able to generate nitriles in conjunction with myrosinase and a more detailed characterization of one member (AtNSP2). Recombinant AtNSP2 expressed in Escherichia coli was used to test its impact on the outcome of glucosinolate hydrolysis using a gas chromatography-mass spectrometry approach. AtNSP proteins share 30–45% sequence homology with A. thaliana ESP. Although AtESP and AtNSP proteins can switch myrosinase-catalyzed degradation of 2-propenylglucosinolate from isothiocyanate to nitrile, only AtESP generates the corresponding epithionitrile. Using the aromatic benzylglucosinolate, recombinant AtNSP2 is also able to direct product formation to the nitrile. Analysis of glucosinolate hydrolysis profiles of transgenic A. thaliana plants overexpressing AtNSP2 confirms its nitrile-specifier activity in planta. In silico expression analysis reveals distinctive expression patterns of AtNSPs, which supports a biological role for these proteins. In conclusion, we show that AtNSPs belonging to a new family of A. thaliana proteins structurally related to AtESP divert product formation from myrosinase-catalyzed glucosinolate hydrolysis and, thereby, likely affect the biological consequences of glucosinolate degradation. We discuss similarities and properties of AtNSPs and related proteins and the biological implications.Brassicaceae plants such as oilseed rape (Brassica napus), turnip (Brassica rapa), and white mustard (Sinapis alba) as well as the model plant Arabidopsis thaliana contain a group of secondary metabolites known as glucosinolates (GSLs)2 (1, 2). These are β-thioglucoside N-hydroxysulfates with a sulfur-linked β-d-glucopyranose moiety and a variable side chain that is derived from one of eight amino acids or their methylene group-elongated derivatives. Aliphatic GSLs are derived from alanine, leucine, isoleucine, valine, or predominantly methionine. Tyrosine or phenylalanine give aromatic GSLs, and tryptophan-derived GSLs are called indolic GSLs (for review, see Ref. 3). Although more than 120 different GSLs have been identified in total so far, individual plant species usually contain only a few GSLs (2). Quantitative and qualitative differences of GSL profiles are also observed within a species, such as, for example, for different A. thaliana ecotypes (4–6). In addition, GSL composition varies among organs and during the life cycle of plants (7, 8) and is affected by external factors (9).Intact GSLs are mostly considered to be biologically inactive. Most GSL degradation products have toxic effects on insect, fungal, and bacterial pests, serve as attractants for specialist insects, or may have beneficial health effects for humans (10–15). The enzymatic degradation of GSLs (Fig. 1A), which occurs massively upon tissue damage, is catalyzed by plant thioglucosidases called myrosinases (EC 3.2.1.147; glycoside hydrolase family 1). Depending on several factors (e.g. GSL structure, proteins, cofactors, pH) myrosinase-catalyzed hydrolysis of GSLs can lead to a variety of products (Fig. 1B; for review, see Refs. 16 and 17). Of these, isothiocyanates are the most common as their formation only requires myrosinase activity. Thiocyanates on the other hand are only produced from a very limited number of GSLs, and their formation necessitates the presence of a thiocyanate-forming factor in addition to myrosinase (18). A thiocyanate-forming protein (TFP) has recently been identified in Lepidium sativum (19). Alkenyl GSLs, a subgroup of aliphatic GSLs containing a terminal unsaturation in their side chain, can lead to the production of epithionitriles through the cooperative action of myrosinase and a protein called epithiospecifier protein (ESP (20)) in a ferrous ion-dependent way (21–23). Both TFP and ESP contain a series of Kelch repeats (19). Kelch repeats are involved in protein-protein interactions, and Kelch repeat-containing proteins are involved in a number of diverse biological processes (24). In addition to isothiocyanates, nitriles are the major group of GSL hydrolysis products. Although ESP and TFP activities can generate nitriles (19, 21, 25, 26), indications for an ESP-independent nitrile-specifier activity exist. The GSL hydrolysis profile of A. thaliana roots, an organ that does not show ESP expression or activity (27), reveals predominantly the presence of nitriles (28). In addition, leaf tissue of A. thaliana ecotypes supposedly devoid of ESP activity produces a certain amount of nitriles upon autolysis (21). Under acidic buffer conditions, a non-enzymatic production of nitriles from GSLs is observed (Ref. 29 and references therein). Increasing Fe2+ concentrations have also been shown to favor nitrile formation over isothiocyanate formation from a number of GSLs in the presence of myrosinase and absence of ESP (21, 22). Therefore, a non-enzymatic origin of this nitrile production cannot be excluded, although the presence of a nitrile-specifier protein is a tempting alternative. Although ESP is able to generate nitriles, it has also been shown that the conversion rates of GSLs to nitriles are lower than those of GSLs to epithionitriles for ESP (21, 22).Open in a separate windowFIGURE 1.Simplified scheme of enzymatic GSL hydrolysis (A) and structures and names of GSLs and their hydrolysis products that are mentioned in the article. (B). A, myrosinase acts on GSLs to form an unstable aglycone intermediate that can rearrange spontaneously to form an isothiocyanate. Hydrolysis can be diverted from this default route under certain conditions (e.g. the presence of NSPs, ferrous ions, or at pH < 5) to give the corresponding nitrile. ESP is responsible for the formation of epithionitriles from alkenyl GSLs in a ferrous ion-dependent mechanism. B, the general structure of GSLs, indicating the variable side chain as R, is given as well as the three major classes of hydrolysis products (i.e. isothiocyanates, nitriles, and epithionitriles). The listed GSLs are the ones mentioned in this article and are arranged according to the class of GSLs they belong to and with an increase in chain length or complexity. The names of the respective hydrolysis products are given for a better understanding of the present article, and not all were encountered during our studies.A nitrile-specifier protein (NSP) that is able to redirect the hydrolysis of GSLs toward nitriles has been cloned from the larvae of the butterfly Pieris rapae (30). This protein does not, however, exhibit sequence similarity to plant ESP, and a corresponding plant nitrile-specifier protein has not yet been identified. We report here the identification of a group of six A. thaliana genes with some sequence similarity to A. thaliana ESP, providing evidence for a new family of nitrile-specifier proteins and a more detailed characterization of one member that possesses nitrile-specifier activity in vitro, when applied exogenously to plant tissue and after ectopic expression in the two A. thaliana ecotypes Col-0 and C24. Despite its sequence homology to A. thaliana epithiospecifier protein (AtESP), it does not possess epithiospecifier activity under similar conditions. Therefore, we propose to designate this protein as A. thaliana nitrile-specifier protein 2 (AtNSP2). Although the biological roles of AtNSP2 and related proteins are not yet known, their specificities and distinctive expression patterns indicate the presence of a fine-tuned mechanism for GSL degradation controlling the outcome of an array of biologically active molecules. 相似文献
5.
6.
7.
Expansins are cell wall proteins that promote cell wall loosening by inducing pH-dependent cell wall extension and stress relaxation. Expansins are required in a series of physiological developmental processes in higher plants such as seed germination. Here we identified an Arabidopsis expansin gene AtEXPA2 that is exclusively expressed in germinating seeds and the mutant shows delayed germination, suggesting that AtEXP2 is involved in controlling seed germination. Exogenous GA application increased the expression level of AtEXP2 during seed germination, while ABA application had no effect on AtEXP2 expression. Furthermore, the analysis of DELLA mutants show that RGL1, RGL2, RGA, GAI are all involved in repressing AtEXP2 expression, and RGL1 plays the most dominant role in controlling AtEXP2 expression. In stress response, exp2 mutant shows higher sensitivity than wild type in seed germination, while overexpression lines of AtEXP2 are less sensitive to salt stress and osmotic stress, exhibiting enhanced tolerance to stress treatment. Collectively, our results suggest that AtEXP2 is involved in the GA-mediated seed germination and confers salt stress and osmotic stress tolerance in Arabidopsis. 相似文献
8.
9.
Yi-Feng Chen Zhiyong Gao Robert J. Kerris III Wuyi Wang Brad M. Binder G. Eric Schaller 《PloS one》2010,5(1)
Background
The gaseous plant hormone ethylene is perceived in Arabidopsis thaliana by a five-member receptor family composed of ETR1, ERS1, ETR2, ERS2, and EIN4.Methodology/Principal Findings
Gel-filtration analysis of ethylene receptors solubilized from Arabidopsis membranes demonstrates that the receptors exist as components of high-molecular-mass protein complexes. The ERS1 protein complex exhibits an ethylene-induced change in size consistent with ligand-mediated nucleation of protein-protein interactions. Deletion analysis supports the participation of multiple domains from ETR1 in formation of the protein complex, and also demonstrates that targeting to and retention of ETR1 at the endoplasmic reticulum only requires the first 147 amino acids of the receptor. A role for disulfide bonds in stabilizing the ETR1 protein complex was demonstrated by use of reducing agents and mutation of Cys4 and Cys6 of ETR1. Expression and analysis of ETR1 in a transgenic yeast system demonstrates the importance of Cys4 and Cys6 of ETR1 in stabilizing the receptor for ethylene binding.Conclusions/Significance
These data support the participation of ethylene receptors in obligate as well as ligand-dependent non-obligate protein interactions. These data also suggest that different protein complexes may allow for tailoring of the ethylene signal to specific cellular environments and responses. 相似文献10.
Analysis of Cell Division and Elongation Underlying the
Developmental Acceleration of Root Growth in Arabidopsis
thaliana 总被引:8,自引:0,他引:8
下载免费PDF全文

To investigate the relation between cell division and expansion in the regulation of organ growth rate, we used Arabidopsis thaliana primary roots grown vertically at 20°C with an elongation rate that increased steadily during the first 14 d after germination. We measured spatial profiles of longitudinal velocity and cell length and calculated parameters of cell expansion and division, including rates of local cell production (cells mm−1 h−1) and cell division (cells cell−1 h−1). Data were obtained for the root cortex and also for the two types of epidermal cell, trichoblasts and atrichoblasts. Accelerating root elongation was caused by an increasingly longer growth zone, while maximal strain rates remained unchanged. The enlargement of the growth zone and, hence, the accelerating root elongation rate, were accompanied by a nearly proportionally increased cell production. This increased production was caused by increasingly numerous dividing cells, whereas their rates of division remained approximately constant. Additionally, the spatial profile of cell division rate was essentially constant. The meristem was longer than generally assumed, extending well into the region where cells elongated rapidly. In the two epidermal cell types, meristem length and cell division rate were both very similar to that of cortical cells, and differences in cell length between the two epidermal cell types originated at the apex of the meristem. These results highlight the importance of controlling the number of dividing cells, both to generate tissues with different cell lengths and to regulate the rate of organ enlargement. 相似文献
11.
Genes directly involved in male/female and host/parasite interactions are believed to be under positive selection. The flowering plant Arabidopsis thaliana has more than 300 defensin-like (DEFL) genes, which are likely to be involved in both natural immunity and cell-to-cell communication including pollen–pistil interactions. However, little is known of the relationship between the molecular evolution of DEFL genes and their functions. Here, we identified a recently evolved cluster of DEFL genes in A. thaliana and demonstrated that these DEFL (cysteine-rich peptide [CRP810_1]) peptides, named AtLURE1 peptides, are pollen tube attractants guiding pollen tubes to the ovular micropyle. The AtLURE1 genes formed the sole species-specific cluster among DEFL genes compared to its close relative, A. lyrata. No evidence for positive selection was detected in AtLURE1 genes and their orthologs, implying neutral evolution of AtLURE1 genes. AtLURE1 peptides were specifically expressed in egg-accompanying synergid cells and secreted toward the funicular surface through the micropyle. Genetic analyses showed that gametophytic mutants defective in micropylar guidance (myb98, magatama3, and central cell guidance) do not express AtLURE1 peptides. Downregulation of the expression of these peptides impaired precise pollen tube attraction to the micropylar opening of some populations of ovules. Recombinant AtLURE1 peptides attracted A. thaliana pollen tubes at a higher frequency compared to A. lyrata pollen tubes, suggesting that these peptides are species-preferential attractants in micropylar guidance. In support of this idea, the heterologous expression of a single AtLURE1 peptide in the synergid cell of Torenia fournieri was sufficient to guide A. thaliana pollen tubes to the T. fournieri embryo sac and to permit entry into it. Our results suggest the unique evolution of AtLURE1 genes, which are directly involved in male–female interaction among the DEFL multigene family, and furthermore suggest that these peptides are sufficient to overcome interspecific barriers in gametophytic attraction and penetration. 相似文献
12.
Jean-Luc Montillet Nathalie Leonhardt Samuel Mondy Sylvain Tranchimand Dominique Rumeau Marie Boudsocq Ana Victoria Garcia Thierry Douki Jean Bigeard Christiane Laurière Anne Chevalier Carmen Castresana Heribert Hirt 《PLoS biology》2013,11(3)
Plant stomata function in innate immunity against bacterial invasion and abscisic acid (ABA) has been suggested to regulate this process. Using genetic, biochemical, and pharmacological approaches, we demonstrate that (i) the Arabidopsis thaliana nine-specific-lipoxygenase encoding gene, LOX1, which is expressed in guard cells, is required to trigger stomatal closure in response to both bacteria and the pathogen-associated molecular pattern flagellin peptide flg22; (ii) LOX1 participates in stomatal defense; (iii) polyunsaturated fatty acids, the LOX substrates, trigger stomatal closure; (iv) the LOX products, fatty acid hydroperoxides, or reactive electrophile oxylipins induce stomatal closure; and (v) the flg22-mediated stomatal closure is conveyed by both LOX1 and the mitogen-activated protein kinases MPK3 and MPK6 and involves salicylic acid whereas the ABA-induced process depends on the protein kinases OST1, MPK9, or MPK12. Finally, we show that the oxylipin and the ABA pathways converge at the level of the anion channel SLAC1 to regulate stomatal closure. Collectively, our results demonstrate that early biotic signaling in guard cells is an ABA-independent process revealing a novel function of LOX1-dependent stomatal pathway in plant immunity. 相似文献
13.
14.
Kun-Xiao Zhang Heng-Hao Xu Wen Gong Yan Jin Ya-Ya Shi Ting-Ting Yuan Juan Li Ying-Tang Lu 《PloS one》2014,9(1)
Plants can be adapted to the changing environments through tropic responses, such as light and gravity. One of them is root negative phototropism, which is needed for root growth and nutrient absorption. Here, we show that the auxin efflux carrier PIN-FORMED (PIN) 1 is involved in asymmetric auxin distribution and root negative phototropism. In darkness, PIN1 is internalized and localized to intracellular compartments; upon blue light illumination, PIN1 relocalize to basal plasma membrane in root stele cells. The shift of PIN1 localization induced by blue light is involved in asymmetric auxin distribution and root negative phototropic response. Both blue-light-induced PIN1 redistribution and root negative phototropism is mediated by a BFA-sensitive trafficking pathway and the activity of PID/PP2A. Our results demonstrate that blue-light-induced PIN1 redistribution participate in asymmetric auxin distribution and root negative phototropism. 相似文献
15.
Interaction of Cryptochrome 1, Phytochrome, and Ion Fluxes in
Blue-Light-Induced Shrinking of Arabidopsis
Hypocotyl
Protoplasts 总被引:5,自引:1,他引:5
下载免费PDF全文

Protoplasts isolated from red-light-adapted Arabidopsis hypocotyls and incubated under red light exhibited rapid and transient shrinking within a period of 20 min in response to a blue-light pulse and following the onset of continuous blue light. Long-persisting shrinkage was also observed during continuous stimulation. Protoplasts from a hy4 mutant and the phytochrome-deficient phyA/phyB double mutant of Arabidopsis showed little response, whereas those from phyA and phyB mutants showed a partial response. It is concluded that the shrinking response itself is mediated by the HY4 gene product, cryptochrome 1, whereas the blue-light responsiveness is strictly controlled by phytochromes A and B, with a greater contribution by phytochrome B. It is shown further that the far-red-absorbing form of phytochrome (Pfr) was not required during or after, but was required before blue-light perception. Furthermore, a component that directly determines the blue-light responsiveness was generated by Pfr after a lag of 15 min over a 15-min period and decayed with similar kinetics after removal of Pfr by far-red light. The anion-channel blocker 5-nitro-2-(3-phenylpropylamino)-benzoic acid prevented the shrinking response. This result, together with those in the literature and the kinetic features of shrinking, suggests that anion channels are activated first, and outward-rectifying cation channels are subsequently activated, resulting in continued net effluxes of Cl− and K+. The postshrinking volume recovery is achieved by K+ and Cl− influxes, with contribution by the proton motive force. External Ca2+ has no role in shrinking and the recovery. The gradual swelling of protoplasts that prevails under background red light is shown to be a phytochrome-mediated response in which phytochrome A contributes more than phytochrome B. 相似文献
16.
Youn-Jeong Nam Lam-Son Phan Tran Mikiko Kojima Hitoshi Sakakibara Rie Nishiyama Ryoung Shin 《PloS one》2012,7(10)
Potassium (K) is an important plant macronutrient that has various functions throughout the whole plant over its entire life span. Cytokinins (CKs) are known to regulate macronutrient homeostasis by controlling the expression of nitrate, phosphate and sulfate transporters. Although several studies have described how CKs signal deficiencies for some macronutrients, the roles of CKs in K signaling are poorly understood. CK content has been shown to decrease under K-starved conditions. Specifically, a CK-deficient mutant was more tolerant to low K than wild-type; however, a plant with an overaccumulation of CKs was more sensitive to low K. These results suggest that K deprivation alters CK metabolism, leading to a decrease in CK content. To investigate this phenomenon further, several Arabidopsis lines, including a CK-deficient mutant and CK receptor mutants, were analyzed in low K conditions using molecular, genetic and biochemical approaches. ROS accumulation and root hair growth in low K were also influenced by CKs. CK receptor mutants lost the responsiveness to K-deficient signaling, including ROS accumulation and root hair growth, but the CK-deficient mutant accumulated more ROS and exhibited up-regulated expression of HAK5, which is a high-affinity K uptake transporter gene that is rapidly induced by low K stress in ROS- and ethylene-dependent manner in response to low K. From these results, we conclude that a reduction in CK levels subsequently allows fast and effective stimulation of low K-induced ROS accumulation, root hair growth and HAK5 expression, leading to plant adaptation to low K conditions. 相似文献
17.
Background
The genus Aquilegia is an emerging model system in plant evolutionary biology predominantly because of its wide variation in floral traits and associated floral ecology. The anatomy of the Aquilegia flower is also very distinct. There are two whorls of petaloid organs, the outer whorl of sepals and the second whorl of petals that form nectar spurs, as well as a recently evolved fifth whorl of staminodia inserted between stamens and carpels.Methodology/Principal Findings
We designed an oligonucleotide microarray based on EST sequences from a mixed tissue, normalized cDNA library of an A. formosa x A. pubescens F2 population representing 17,246 unigenes. We then used this array to analyze floral gene expression in late pre-anthesis stage floral organs from a natural A. formosa population. In particular, we tested for gene expression patterns specific to each floral whorl and to combinations of whorls that correspond to traditional and modified ABC model groupings. Similar analyses were performed on gene expression data of Arabidopsis thaliana whorls previously obtained using the Ath1 gene chips (data available through The Arabidopsis Information Resource).Conclusions/Significance
Our comparative gene expression analyses suggest that 1) petaloid sepals and petals of A. formosa share gene expression patterns more than either have organ-specific patterns, 2) petals of A. formosa and A. thaliana may be independently derived, 3) staminodia express B and C genes similar to stamens but the staminodium genetic program has also converged on aspects of the carpel program and 4) staminodia have unique up-regulation of regulatory genes and genes that have been implicated with defense against microbial infection and herbivory. Our study also highlights the value of comparative gene expression profiling and the Aquilegia microarray in particular for the study of floral evolution and ecology. 相似文献18.
19.
20.
Qi Zheng Paul Ryvkin Fan Li Isabelle Dragomir Otto Valladares Jamie Yang Kajia Cao Li-San Wang Brian D. Gregory 《PLoS genetics》2010,6(9)
The functional structure of all biologically active molecules is dependent on intra- and inter-molecular interactions. This is especially evident for RNA molecules whose functionality, maturation, and regulation require formation of correct secondary structure through encoded base-pairing interactions. Unfortunately, intra- and inter-molecular base-pairing information is lacking for most RNAs. Here, we marry classical nuclease-based structure mapping techniques with high-throughput sequencing technology to interrogate all base-paired RNA in Arabidopsis thaliana and identify ∼200 new small (sm)RNA–producing substrates of RNA–DEPENDENT RNA POLYMERASE6. Our comprehensive analysis of paired RNAs reveals conserved functionality within introns and both 5′ and 3′ untranslated regions (UTRs) of mRNAs, as well as a novel population of functional RNAs, many of which are the precursors of smRNAs. Finally, we identify intra-molecular base-pairing interactions to produce a genome-wide collection of RNA secondary structure models. Although our methodology reveals the pairing status of RNA molecules in the absence of cellular proteins, previous studies have demonstrated that structural information obtained for RNAs in solution accurately reflects their structure in ribonucleoprotein complexes. Furthermore, our identification of RNA–DEPENDENT RNA POLYMERASE6 substrates and conserved functional RNA domains within introns and both 5′ and 3′ untranslated regions (UTRs) of mRNAs using this approach strongly suggests that RNA molecules are correctly folded into their secondary structure in solution. Overall, our findings highlight the importance of base-paired RNAs in eukaryotes and present an approach that should be widely applicable for the analysis of this key structural feature of RNA. 相似文献