首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recent studies of primate models suggest that wild-type measles virus (MV) infects immune cells located in the airways before spreading systemically, but the identity of these cells is unknown. To identify cells supporting primary MV infection, we took advantage of mice expressing the MV receptor human signaling lymphocyte activation molecule (SLAM, CD150) with human-like tissue specificity. We infected these mice intranasally (IN) with a wild-type MV expressing green fluorescent protein. One, two, or three days after inoculation, nasal-associated lymphoid tissue (NALT), the lungs, several lymph nodes (LNs), the spleen, and the thymus were collected and analyzed by microscopy and flow cytometry, and virus isolation was attempted. One day after inoculation, MV replication was documented only in the airways, in about 2.5% of alveolar macrophages (AM) and 0.5% of dendritic cells (DC). These cells expressed human SLAM, and it was observed that MV infection temporarily enhanced SLAM expression. Later, MV infected other immune cell types, including B and T lymphocytes. Virus was isolated from lymphatic tissue as early as 2 days post-IN inoculation; the mediastinal lymph node was an early site of replication and supported high levels of infection. Three days after intraperitoneal inoculation, 1 to 8% of the mediastinal LN cells were infected. Thus, MV infection of alveolar macrophages and subepithelial dendritic cells in the airways precedes infection of lymphocytes in lymphatic organs of mice expressing human SLAM with human-like tissue specificity.Measles virus (MV), a member of the Morbillivirus genus of the Paramyxoviridae family, causes measles, a highly contagious disease transmitted by respiratory aerosols that induces a transient but severe immunosuppression (16, 39). In spite of eradication efforts, MV still accounts for about 4% of deaths worldwide in children under 5 years of age (4, 28), due mainly to opportunistic secondary infections facilitated by MV-induced immune suppression (16). Experimental analyses of the mechanisms of pathogenesis, including the characterization of cells and tissues supporting primary MV infection, is limited by host species specificity: old world monkeys and humans are the only natural MV hosts.MV replication has been characterized mainly around the time of rash appearance, 10 to 14 days after experimental infection of monkeys (8, 9, 26, 46). Viremia in blood cells peaks at or slightly before rash; infected B and T lymphocytes, monocytes, and dendritic cells (DC) are detected, while little if any cell-free virus is produced. Infected cells express the signaling lymphocytic activation molecule (SLAM, CD150), the lymphatic cell MV receptor (13, 20, 47). More information about the cellular targets of wild-type MV infection in the airways immediately after contagion is sought; recent studies of monkeys have suggested that MV may replicate initially in immune cells in the airways (8, 24) rather than in lung epithelial cells as previously postulated (5, 37).The limited availability and high costs of primate experimentation motivated the development of transgenic rodent models of MV infection. Studies in the ′90s were based on mice expressing human membrane cofactor protein (MCP; CD46), the receptor used only by the attenuated MV strain (11, 31, 55). These studies indicated that airway macrophages are infected by the MV vaccine strain in the first days after intranasal (IN) inoculation and that blood monocytes and tissue macrophages disseminate the infection (29, 36). To increase susceptibility to MV infection, CD46-expressing mice were crossed into an interferon receptor knockout (Ifnarko) background; this did not appear to change the cell-type specificity of viral replication (36).After human SLAM (hSLAM) was characterized as the immune cell receptor for wild-type and vaccine MV, several mouse strains expressing this protein were generated, as recently reviewed (41). SLAM is a 70-kDa, type I transmembrane glycoprotein expressed on immune cells, such as activated T cells, B cells, monocytes/macrophages, and DC (6). It belongs to the immunoglobulin protein superfamily and has two extracellular domains named V and C2; V interacts with the MV attachment protein hemagglutinin (34). SLAM determines Th2 cytokine production, such as that of IL-4, and it may be involved in the production of interleukin 12, tumor necrosis factor alpha, and nitric oxide by macrophages (44, 50, 53). In addition, SLAM may induce B-cell proliferation and immunoglobulin synthesis. Importantly, hSLAM-expressing mice, but not CD46-expressing mice, can be infected by wild-type MV strains that use SLAM but not CD46 as a receptor (32).Initially a transgenic mouse model expressing hSLAM under the control of the T-cell-specific lck promoter was reported (17). In this model, hSLAM expression was restricted to immature and mature lymphocytes in the spleen, thymus, and blood; lymphocyte proliferation was observed, but there were no clinical signs of disease. The second model was a mouse in which the hSLAM coding sequence was expressed under the control of the promoter of the ubiquitously expressed hydroxymethylglutaryl coenzyme A (HMGCoA) reductase protein (40). In suckling mice, generalized but not necessarily relevant infections of most of the major organs were documented. Adult mice were less susceptible to MV infection; only intracerebral inoculation was productive, and it yielded viral proteins but no infectious virus. The third model consisted of a transgenic mouse expressing hSLAM in DC from a cDNA under the control of the CD11c promoter (18). MV infections are limited to DC in this model and disrupt the function of these cells in stimulating adaptive immunity.An alternative approach to transgenesis seeks human-like tissue specificity of expression. Toward this, Shingai et al. (42) added a full-length hSLAM gene to the mouse genome, showed that indeed these mice express hSLAM with human-like tissue specificity, and crossed them in an Ifnarko and human CD46-positive background. In this model CD11c-positive DC are instrumental in establishing MV infections. The fifth mouse strain was generated by exchanging only the MV binding site on mouse SLAM with that in the V domain of hSLAM (33). Since humans and mice have similar tissue specificities of SLAM expression, this led to human-like expression. When these mice were crossed in an Ifnarko background, efficient MV replication suppressing proliferative responses to concanavalin A was documented.We previously generated a mouse strain expressing hSLAM with human-like tissue specificity in a STAT1-deficient background (54). We showed that hSLAM expression was restricted to B and T lymphocytes and some monocytes/macrophages and that it was inducible by lipopolysaccharide (LPS), lectins, or anti-CD3 antibodies in immune cells, as in primates. Since the Ifnarko background allows more efficient MV spread (29, 36) without apparent effects on the cell-type specificity of MV infection in mice (33, 42), we crossed here these mice in the Ifnarko background. We then used the Ifnarko-SLAMGe mice to identify the cells infected by wild-type MV immediately after IN inoculation. We document efficient early infection of alveolar macrophages (AM) and DC. We also observed subsequent infection of all lymphatic organs and in particular of the mediastinal lymph node (LN), upon both IN and intraperitoneal (IP) inoculation.  相似文献   

2.
Cotton rats (Sigmodon hispidus) replicate measles virus (MV) after intranasal infection in the respiratory tract and lymphoid tissue. We have cloned the cotton rat signaling lymphocytic activation molecule (CD150, SLAM) in order to investigate its role as a potential receptor for MV. Cotton rat CD150 displays 58% and 78% amino acid homology with human and mouse CD150, respectively. By staining with a newly generated cotton rat CD150 specific monoclonal antibody expression of CD150 was confirmed in cotton rat lymphoid cells and in tissues with a pattern of expression similar to mouse and humans. Previously, binding of MV hemagglutinin has been shown to be dependent on amino acids 60, 61 and 63 in the V region of CD150. The human molecule contains isoleucine, histidine and valine at these positions and binds to MV-H whereas the mouse molecule contains valine, arginine and leucine and does not function as a receptor for MV. In the cotton rat molecule, amino acids 61 and 63 are identical with the mouse molecule and amino acid 60 with the human molecule. After transfection with cotton rat CD150 HEK 293 T cells became susceptible to infection with single cycle VSV pseudotype virus expressing wild type MV glycoproteins and with a MV wildtype virus. After infection, cells expressing cotton rat CD150 replicated virus to lower levels than cells expressing the human molecule and formed smaller plaques. These data might explain why the cotton rat is a semipermissive model for measles virus infection.  相似文献   

3.
Signaling lymphocytic activation molecule-associated protein (SAP) is an Src homology 2 domain-only adaptor involved in multiple immune cell functions. It has also been linked to immunodeficiencies and autoimmune diseases, such as systemic lupus erythematosus. Here, we examined the role and mechanism of action of SAP in autoimmunity using a mouse model of autoimmune arthritis, collagen-induced arthritis (CIA). We found that SAP was essential for development of CIA in response to collagen immunization. It was also required for production of collagen-specific antibodies, which play a key role in disease pathogenesis. These effects required SAP expression in T cells, not in B cells. In mice immunized with a high dose of collagen, the activity of SAP was nearly independent of its ability to bind the protein tyrosine kinase Fyn and correlated with the capacity of SAP to promote full differentiation of follicular T helper (TFH) cells. However, with a lower dose of collagen, the role of SAP was more dependent on Fyn binding, suggesting that additional mechanisms other than TFH cell differentiation were involved. Further studies suggested that this might be due to a role of the SAP-Fyn interaction in natural killer T cell development through the ability of SAP-Fyn to promote Vav-1 activation. We also found that removal of SAP expression during progression of CIA attenuated disease severity. However, it had no effect on disease when CIA was clinically established. Together, these results indicate that SAP plays an essential role in CIA because of Fyn-independent and Fyn-dependent effects on TFH cells and, possibly, other T cell types.  相似文献   

4.
Despite the growing use of poxvirus vectors as vaccine candidates for multiple pathogens and cancers, their innate stimulatory properties remain poorly characterized. Here we show that the canarypox virus-based vector ALVAC induced distinct systemic proinflammatory and antiviral cytokine and chemokine levels following the vaccination of rhesus monkeys compared to the vaccinia virus-based vectors MVA and NYVAC. These data suggest that there are substantial biological differences among leading poxvirus vaccine vectors that may influence resultant adaptive immune responses following vaccination.  相似文献   

5.
The human signaling lymphocyte activation molecule (SLAM, also called CD150), a regulator of antigen-driven T-cell responses and macrophage functions, acts as a cellular receptor for measles virus (MV), and its V domain is necessary and sufficient for receptor function. We report here the generation of SLAM knockin mice in which the V domain of mouse SLAM was replaced by that of human SLAM. The chimeric SLAM had an expected distribution and normal function in the knockin mice. Splenocytes from the SLAM knockin mice permitted the in vitro growth of a virulent MV strain but not that of the Edmonston vaccine strain. Unlike in vitro infection, MV could grow only in SLAM knockin mice that also lacked the type I interferon receptor (IFNAR). After intraperitoneal or intranasal inoculation, MV was detected in the spleen and lymph nodes throughout the body but not in the thymus. Notably, the virus appeared first in the mediastinal lymph node after intranasal inoculation. Splenocytes from MV-infected IFNAR(-/-) SLAM knockin mice showed suppression of proliferative responses to concanavalin A. Thus, MV infection of SLAM knockin mice reproduces lymphotropism and immunosuppression in human infection, serving as a useful small animal model for measles.  相似文献   

6.
7.
Behavioral inhibition reflects a disposition to react warily to novel situations, and has been associated with atopic diseases such as asthma. Retrospective work established the relationship between behavioral inhibition in rhesus monkeys (Macaca mulatta) and airway hyperresponsiveness, but not atopy, and the suggestion was made that behavioral inhibition might index components of asthma that are not immune-related. In the present study, we prospectively examined the relationship between behavioral inhibition and airway hyperresponsiveness, and whether hormonal and immune measures often associated with asthma were associated with behavioral inhibition and/or airway hyperresponsiveness. In a sample of 49 yearling rhesus monkeys (mean = 1.25 years, n = 24 behaviorally inhibited animals), we measured in vitro cytokine levels (IL-4, IL-10, IL-12, IFN-γ) in response to stimulation, as well as peripheral blood cell percentages, cortisol levels, and percentage of regulatory T-cells (CD3+CD4+CD25+FOXP3+). Airway reactivity was assessed using an inhaled methacholine challenge. Bronchoalveolar lavage was performed and the proportion of immune cells was determined. Behaviorally inhibited monkeys had airway hyperresponsiveness as indicated by the methacholine challenge (p = 0.031), confirming our earlier retrospective result. Airway hyperresponsiveness was also associated with lower lymphocyte percentages in lavage fluid and marginally lower plasma cortisol concentrations. However, none of the tested measures was significantly related to both behavioral inhibition and airway hyperresponsiveness, and so could not mediate their relationship. Airway hyperresponsiveness is common to atopic and non-atopic asthma and behavioral inhibition has been related to altered autonomic activity in other studies. Our results suggest that behavioral inhibition might index an autonomically mediated reactive airway phenotype, and that a variety of stimuli (including inflammation within lung tissue that is not specifically associated with behavioral inhibition) may trigger the airways response.  相似文献   

8.
Internal fertilization without copulation or prolonged physical contact is a rare reproductive mode among vertebrates. In many newts (Salamandridae), the male deposits a spermatophore on the substrate in the water, which the female subsequently takes up with her cloaca. Because such an insemination requires intense coordination of both sexes, male newts have evolved a courtship display, essentially consisting of sending pheromones under water by tail-fanning towards their potential partner. Behavioral experiments until now mostly focused on an attractant function, i.e. showing that olfactory cues are able to bring both sexes together. However, since males start their display only after an initial contact phase, courtship pheromones are expected to have an alternative function. Here we developed a series of intraspecific and interspecific two-female experiments with alpine newt (Ichthyosaura alpestris) and palmate newt (Lissotriton helveticus) females, comparing behavior in male courtship water and control water. We show that male olfactory cues emitted during tail-fanning are pheromones that can induce all typical features of natural female mating behavior. Interestingly, females exposed to male pheromones of their own species show indiscriminate mating responses to conspecific and heterospecific females, indicating that visual cues are subordinate to olfactory cues during courtship.  相似文献   

9.
Breast milk transmission of human immunodeficiency virus (HIV) remains an important mode of infant HIV acquisition. Interestingly, the majority of infants remain uninfected during prolonged virus exposure via breastfeeding, raising the possibility that immune components in milk prevent mucosal virus transmission. HIV-specific antibody responses are detectable in the milk of HIV-infected women and simian immunodeficiency virus (SIV)-infected monkeys; however, the role of these humoral responses in virus neutralization and local virus quasispecies evolution has not been characterized. In this study, four lactating rhesus monkeys were inoculated with SIVmac251 and monitored for SIV envelope-specific humoral responses and virus evolution in milk and plasma throughout infection. While the kinetics and breadth of the SIV-specific IgG and IgA responses in milk were similar to those in plasma, the magnitude of the milk responses was considerably lower than that of the plasma responses. Furthermore, a neutralizing antibody response against the inoculation virus was not detected in milk samples at 1 year after infection, despite a measurable autologous neutralizing antibody response in plasma samples obtained from three of four monkeys. Interestingly, while IgA is the predominant immunoglobulin in milk, the milk SIV envelope-specific IgA response was lower in magnitude and demonstrated more limited neutralizing capacity against a T-cell line-adapted SIV compared to those of the milk IgG response. Finally, amino acid mutations in the envelope gene product of SIV variants in milk and plasma samples occurred in similar numbers and at similar positions, indicating that the humoral immune pressure in milk does not drive distinct virus evolution in the breast milk compartment.Breastfeeding is an important component of the maternal-infant immune system, providing the infant with passive maternal immunity and protection against infectious pathogens. In fact, non-breast-fed infants in developing nations experience higher mortality due to respiratory and diarrheal illnesses (45). However, breastfeeding is also a mode of infant human immunodeficiency virus (HIV) acquisition, contributing to a large proportion of infant HIV infections in areas of high HIV prevalence. Therefore, development of feeding strategies that promote HIV-free survival of infants born to HIV-infected mothers in developing nations poses a major public health challenge.Interestingly, in the absence of antiretroviral prophylaxis, HIV is transmitted via breast milk to only 10% of infants chronically exposed to the virus via breastfeeding (19, 25). This low rate of HIV transmission suggests that antiviral immune factors in milk may protect the majority of infants from mucosal HIV acquisition. HIV envelope-specific antibody responses have been identified in milk, but the magnitude of these responses is similar in women who transmit the virus via breast milk and women whose infants remain uninfected throughout breastfeeding (3, 11, 23). Likewise, the magnitude of simian immunodeficiency virus (SIV) envelope-specific antibody responses in the milk of SIV-infected, lactating rhesus monkeys did not differ in those mothers that did and did not transmit the virus to their suckling infant (1, 42). Proposed mechanisms for HIV-specific breast milk antibody function include virus neutralization and impairment of virus transcytosis through an epithelial cell layer (3, 7, 17). Therefore, the function, rather than the magnitude, of the HIV-specific breast milk antibody response may be the critical feature in protection against infant mucosal transmission. Importantly, passive transfer of broadly neutralizing HIV-specific antibody to neonatal monkeys protected the infants against oral simian-human immunodeficiency virus (SHIV) challenge, indicating that passively transferred humoral immunity can protect infants from virus transmission through breastfeeding (18, 41).Vertically transmitted HIV variants, including those transmitted via breast milk, have been reported to be resistant to neutralization by systemic maternal antibody responses (9, 38). However, HIV-specific neutralizing antibody responses in breast milk have not been characterized. In fact, the ability of mucosal IgA to neutralize HIV remains an important question in the HIV field. While an HIV-specific mucosal IgA response in the genital tracts of exposed-uninfected individuals has been described, the role of mucosal IgA in protection against mucosal transmission of HIV is unclear and controversial (5, 8-10). Furthermore, the contribution of locally replicating virus at mucosal surfaces to the divergence of the systemic and mucosal antibody responses is unknown. Similarly, the role of mucosal antibody in the shaping of mucosal virus quasispecies evolution is not well characterized. Delineation of the function and role of mucosal antibody responses in defining the pool of transmitted virus will be crucial for the design of immunologic interventions to reduce breast milk transmission of HIV.SIV infection of lactating rhesus monkeys provides an excellent model to characterize virus-specific immune responses and virus evolution in milk, as the sequence of the virus inoculum, the timing of the infection, and the virus-specific immunodominant responses are well defined in this model. Furthermore, SIV-infected, lactating rhesus monkeys transmit the virus to their suckling infants via breastfeeding (1). We have developed a pharmacologic protocol to induce lactation in nonpregnant rhesus monkeys, facilitating these studies without reliance on breeder monkeys. Moreover, the milk produced by hormone-induced, lactating monkeys has immunoglobulin content and a lymphocyte phenotype similar to that produced by naturally lactating monkeys (35). In this study, we characterized the neutralizing potency of the SIV envelope-specific IgG and IgA responses in milk and their role in shaping the SIV envelope gene evolution of local virus variants.  相似文献   

10.
CD226, an activating receptor that interacts with the ligands CD155 and CD112, activates natural killer (NK) cells via its immunoreceptor tyrosine-based activatory motif (ITAM). There are two extracellular domains of CD226; however, the comparative functional relevance of these domains remains unknown. In this study, two different deletion mutants, rCD226-ECD1 (the first extracellular domain) and rCD226-ECD (full extracellular domains), were recombinantly expressed. We observed that rCD226-ECD1, similar to rCD226-ECD, specifically bound to ligand-positive cell lines and that this interaction could be competitively blocked by an anti-CD226 mAb. In addition, rCD226-ECD1 was able to block the binding of CD112 mAb to tumor cells in a competitive binding assay. Importantly, based on surface plasmon resonance (SPR), we determined that rCD226-ECD1, similar to rCD226-ECD, directly bound to its ligand CD155 on a protein chip. Functionally, NK cell cytotoxicity against K562 or HeLa cells was blocked by rCD226-ECD1 by reducing the expression of CD69 and granzyme B, indicating the critical role of ECD1 in NK cell activation. We also examined the role of rCD226-ECD1 in effector/target interactions by using rCD226-ECD to block these interactions. Using flow cytometry, we found that the number of conjugates between IL-2-dependent NKL cells and HeLa cells was reduced and observed that the formation of immune synapses was also decreased under confocal microscopy. In addition, we prepared two anti-rCD226-ECD1 agonistic antibodies, 2E6 and 3B9. Both 2E6 and 3B9 antibodies could induce the phosphorylation of ERK in NK-92 cells. Taken together, our results show that CD226 functions via its first extracellular domain.  相似文献   

11.
Polyinosinic:polycytidylic acid (poly(I:C)) is a ligand of toll-like receptor (TLR) 3 that has been used as an immunostimulant in humans and mice against viral diseases based on its ability to enhance innate and adapt immunity. Antiviral effect of poly(I:C) has also been observed in teleost, however, the underling mechanism is not clear. In this study, we investigated the potential and signaling mechanism of poly(I:C) as an antiviral agent in a model of Japanese flounder (Paralichthys olivaceus) infected with megalocytivirus. We found that poly(I:C) exhibited strong antiviral activity and enhanced activation of head kidney macrophages and peripheral blood leukocytes. In vivo studies showed that (i) TLR3 as well as MDA5 knockdown reduced poly(I:C)-mediated immune response and antiviral activity to significant extents; (ii) when Myd88 was overexpressed in flounder, poly(I:C)-mediated antiviral activity was significantly decreased; (iii) when Myd88 was inactivated, the antiviral effect of poly(I:C) was significantly increased. Cellular study showed that (i) the NF-κB activity induced by poly(I:C) was upregulated in Myd88-overexpressing cells and unaffected in Myd88-inactivated cells; (ii) Myd88 overexpression inhibited and upregulated the expression of poly(I:C)-induced antiviral genes and inflammatory genes respectively; (iii) Myd88 inactivation enhanced the expression of the antiviral genes induced by poly(I:C). Taken together, these results indicate that poly(I:C) is an immunostimulant with antiviral potential, and that the immune response of poly(I:C) requires TLR3 and MDA5 and is negatively regulated by Myd88 in a manner not involving NK-κB. These results provide insights to the working mechanism of poly(I:C), TLR3, and Myd88 in fish.  相似文献   

12.
Poxvirus vector Modified Vaccinia Virus Ankara (MVA) expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (termed MVA-B) is a promising HIV/AIDS vaccine candidate, as confirmed from results obtained in a prophylactic phase I clinical trial in humans. To improve the immunogenicity elicited by MVA-B, we have generated and characterized the innate immune sensing and the in vivo immunogenicity profile of a vector with a double deletion in two vaccinia virus (VACV) genes (C6L and K7R) coding for inhibitors of interferon (IFN) signaling pathways. The innate immune signals elicited by MVA-B deletion mutants (MVA-B ΔC6L and MVA-B ΔC6L/K7R) in human macrophages and monocyte-derived dendritic cells (moDCs) showed an up-regulation of the expression of IFN-β, IFN-α/β-inducible genes, TNF-α, and other cytokines and chemokines. A DNA prime/MVA boost immunization protocol in mice revealed that these MVA-B deletion mutants were able to improve the magnitude and quality of HIV-1-specific CD4+ and CD8+ T cell adaptive and memory immune responses, which were mostly mediated by CD8+ T cells of an effector phenotype, with MVA-B ΔC6L/K7R being the most immunogenic virus recombinant. CD4+ T cell responses were mainly directed against Env, while GPN-specific CD8+ T cell responses were induced preferentially by the MVA-B deletion mutants. Furthermore, antibody levels to Env in the memory phase were slightly enhanced by the MVA-B deletion mutants compared to the parental MVA-B. These findings revealed that double deletion of VACV genes that act blocking intracellularly the IFN signaling pathway confers an immunological benefit, inducing innate immune responses and increases in the magnitude, quality and durability of the HIV-1-specific T cell immune responses. Our observations highlighted the immunomodulatory role of the VACV genes C6L and K7R, and that targeting common pathways, like IRF3/IFN-β signaling, could be a general strategy to improve the immunogenicity of poxvirus-based vaccine candidates.  相似文献   

13.
14.
Wang  Yunfei  Qi  Jialong  Cao  Han  Liu  Cunbao 《中国病毒学》2021,36(1):122-132
Virologica Sinica - The subunit herpes zoster vaccine Shingrix is superior to attenuated vaccine&;nbsp;Zostavax in both safety and efficacy, yet its unlyophilizable liposome delivery system and...  相似文献   

15.
16.
Transmigration of human immunodeficiency virus (HIV)-infected mononuclear cells through the genital mucosa is one of the possible mechanisms of sexual transmission of HIV. Here, we investigated the transmigration of cell-associated R5-tropic HIV type 1 (HIV-1) through a tight monolayer of human epithelial cells in vitro. We show that this process is dependent on an initial interaction between alphaLbeta2 integrin CD11a/CD18 on infected monocytic cells and intercellular adhesion molecule 2 (ICAM-2; CD102) and ICAM-3 (CD50) on the apical membrane of epithelial cells. The CD50 and CD102 ligands were overexpressed on epithelial cells when the cells were activated by proinflammatory cytokines in the cellular microenvironment. An accumulation of proviral DNA was found in the transmigrated cells, clearly reflecting the preferential transepithelial migration of HIV-1-infected cells under proinflammatory conditions. Our observations provide new insights supporting the hypothesis that HIV-infected mononuclear cells contained in genital secretions from infected individuals may cross the epithelial genital mucosa of an exposed receptive sexual partner, particularly under inflammatory conditions of damaged genital tissue. Understanding the fundamental aspects of the initial HIV entry process during sexual transmission remains a critical step for preventing human infection and developing further vaccinal strategies and virucidal agents.  相似文献   

17.
We have previously shown that canine signaling lymphocyte activation molecule (SLAM; also known as CD150) acts as a cellular receptor for canine distemper virus (CDV). In this study, we established Vero cells stably expressing canine SLAM (Vero.DogSLAMtag cells). Viruses were isolated in Vero.DogSLAMtag cells one day after inoculation with spleen samples from five out of seven dogs with distemper. By contrast, virus isolation with reportedly sensitive marmoset B95a cells was only successful from three diseased animals at 7 to 10 days after inoculation, and no virus was recovered from any dogs when Vero cells were used for isolation. The CDV strain isolated in Vero.DogSLAMtag cells did not cause cytopathic effects in B95a and human SLAM-expressing Vero cells, whereas the strain isolated in B95a cells from the same dog did so in canine or human SLAM-expressing Vero cells as well as B95a cells. There were two amino acid differences in the hemagglutinin sequence between these strains. Cell fusion analysis after expression of envelope proteins and vesicular stomatitis virus pseudotype assay showed that their hemagglutinins were responsible for the difference in cell tropism between them. Site-directed mutagenesis indicated that glutamic acid to lysine substitution at position 530 of the hemagglutinin was required for the adaptation to the usage of marmoset SLAM. Our results indicate that Vero cells stably expressing canine SLAM are highly sensitive to CDV in clinical specimens and that only a single amino acid substitution in the hemagglutinin can allow the virus to adapt to marmoset SLAM.  相似文献   

18.
Invasive species often display different patterns of parasite burden and virulence compared to their native counterparts. These differences may be the result of variability in host-parasite co-evolutionary relationships, the occurrence of novel host-parasite encounters, or possibly innate differences in physiological responses to infection between invasive and native hosts. Here we examine the adaptive, humoral immune responses of a resistant, native bird and a susceptible, invasive bird to an arbovirus (Buggy Creek virus; Togaviridae: Alphavirus) and its ectoparasitic arthropod vector (the swallow bug; Oeciacus vicarius). Swallow bugs parasitize the native, colonially nesting cliff swallow (Petrochelidon pyrrhonota) and the introduced house sparrow (Passer domesticus) that occupies nests in cliff swallow colonies. We measured levels of BCRV-specific and swallow bug-specific IgY levels before nesting (prior to swallow bug exposure) and after nesting (after swallow bug exposure) in house sparrows and cliff swallows in western Nebraska. Levels of BCRV-specific IgY increased significantly following nesting in the house sparrow but not in the cliff swallow. Additionally, house sparrows displayed consistently higher levels of swallow bug-specific antibodies both before and after nesting compared to cliff swallows. The higher levels of BCRV and swallow bug specific antibodies detected in house sparrows may be reflective of significant differences in both antiviral and anti-ectoparasite immune responses that exist between these two avian species. To our knowledge, this is the first study to compare the macro- and microparasite-specific immune responses of an invasive and a native avian host exposed to the same parasites.  相似文献   

19.
Hantaan virus, the prototypic member of the Hantavirus genus, causes hemorrhagic fever with renal syndrome in humans. We examined the human memory T-lymphocyte responses of three donors who had previous laboratory-acquired infections with Hantaan virus. We demonstrated virus-specific responses in bulk cultures of peripheral blood mononuclear cells (PBMC) from all donors. Bulk T-cell responses were directed against either Hantaan virus nucleocapsid (N) or G1 protein, and these responses varied between donors. We established both CD4(+) and CD8(+) N-specific cell lines from two donors and CD4(+) G1-specific cell lines from a third donor. All CD8(+) cytotoxic T-lymphocyte (CTL) lines recognized one of two epitopes on the nucleocapsid protein: one epitope spanning amino acids 12 to 20 and the other spanning amino acids 421 to 429. The CTL lines specific for amino acids 12 to 20 were restricted by HLA B51, and those specific for amino acids 421 to 429 were restricted by HLA A1. The N-specific CTL lines isolated from these two donors included both Hantaan virus-specific CTLs and hantavirus cross-reactive CTLs. Responses to both epitopes are detectable in short-term bulk cultures of PBMC from one donor, and precursor frequency analysis confirms that CTLs specific for these epitopes are present at relatively high precursor frequencies in the peripheral T-cell pool. These data suggest that infection with Hantaan virus results in the generation of CTL to limited epitopes on the nucleocapsid protein and that infection also results in the generation of cross-reactive T-cell responses to distantly related hantaviruses which cause the distinct hantavirus pulmonary syndrome. This is the first demonstration of human T-lymphocyte responses to Hantaan virus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号