首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《MABS-AUSTIN》2013,5(2):165-175
Angiogenesis is required in normal physiological processes, but is also involved in tumor growth, progression and metastasis. Vascular endothelial growth factor (VEGF), a primary mediator of angiogenesis in normal physiology and in disease, and other VEGF family members and their receptors provide targets that have been explored extensively for cancer therapy. Small molecule inhibitors and antibody/protein-based strategies that target the VEGF pathway have been studied in multiple types of cancer. This review will focus on VEGF pathway targeting antibodies that are currently being evaluated in pre-clinical and clinical studies.  相似文献   

2.
Vascular endothelial growth factor (VEGF) is a potent angiogenic factor whose expression is induced by the cAMP-dependent signalling pathway in several cell types, and by estrogens in some human breast cancer cells. Here, we investigated the cross-talk between estrogens and cAMP/PKA-dependent signalling pathway in human breast cancer MCF-7 cells. The results show that, in the absence of any CRE and ERE, forskolin induces whereas estrogens have no effect on VEGF promoter. Moreover, estrogens, through estrogen receptors, partly inhibit the forskolin-induced VEGF promoter in MCF-7 human breast cancer cells. Therefore, in breast cancers, estrogens could partly inhibit the effect of ligand-activated G protein-coupled receptors on VEGF expression.  相似文献   

3.
Vascular endothelial growth factor A (VEGF-A) is well known for its key roles in blood vessel growth. Although most studies on VEGF and VEGF receptors have been focused on their functions in angiogenesis and in endothelial cells, the role of VEGF in cancer biology appears as an emerging area of importance. In this context, the presence of VEGF receptors in tumor cells strongly suggests that VEGF-A also promotes a wide range of functions, both in vitro and in vivo, all autocrine functions on tumor cells, including adhesion, survival, migration and invasion. Ultimately, refining our knowledge of VEGF signaling pathways in tumor cells should help us to understand why the current used treatments targeting the VEGF pathway in cancer are not universally effective in inhibiting metastasis tumors, and it should also provide new avenues for future therapies.  相似文献   

4.
Vascular endothelial growth factor A (VEGF-A) is well known for its key roles in blood vessel growth. Although most studies on VEGF and VEGF receptors have been focused on their functions in angiogenesis and in endothelial cells, the role of VEGF in cancer biology appears as an emerging area of importance. In this context, the presence of VEGF receptors in tumor cells strongly suggests that VEGF-A also promotes a wide range of functions, both in vitro and in vivo, all autocrine functions on tumor cells, including adhesion, survival, migration and invasion. Ultimately, refining our knowledge of VEGF signaling pathways in tumor cells should help us to understand why the current used treatments targeting the VEGF pathway in cancer are not universally effective in inhibiting metastasis tumors, and it should also provide new avenues for future therapies.  相似文献   

5.
Many proliferative diseases, most typically cancer, are driven by uncontrolled blood vessel growth. Genetic studies have been very helpful in unraveling the cellular and molecular players in pathological blood vessel formation and have provided opportunities to reduce tumor growth and metastasis. The fact that tumor vessels and normal blood vessels have distinct properties may help in designing more specific--and therefore safer--anti-angiogenic strategies. Such strategies may interfere with angiogenesis at the cellular or molecular level. Possible molecular targets include angiogenic growth factors and their receptors, proteinases, coagulation factors, junctional/adhesion molecules and extracellular matrix (ECM) components. Some anti-angiogenic drugs, i.e., vascular endothelial growth factor (VEGF) antibodies and VEGF receptor-2 (VEGFR-2) inhibitors, have progressed into clinical cancer trials. While the results of these trials support the potential of anti-angiogenic therapy to treat cancer, they also demonstrate the need for more effective and safer alternatives. Targeting placental growth factor (PlGF) or VEGFR-1 may constitute such an alternative since animal studies have proven their pleiotropic working mechanism and attractive safety profile. Together, these insights may bring anti-angiogenic drugs closer from bench to bedside.  相似文献   

6.
It is now fully recognized that along with multiple physiological functions, angiogenesis is also involved in the fundamental process and pathobiology of several disorders including cancer. Recent studies have fully established the role of angiogenesis in cancer progression as well as invasion and metastasis. Consequently, many therapeutic agents such as monoclonal antibodies targeting angiogenesis pathway have been introduced in clinic with the hope for improving the outcomes of cancer therapy. Bevacizumab (Avastin®) was the first anti-vascular endothelial growth factor (VEGF) targeting monoclonal antibody developed with this purpose and soon received its accelerated US Food and Drug Administration (FDA) approval for treatment of patients with metastatic breast cancer in 2008. However, the failure to meet expecting results in different follow-up studies, forced FDA to remove bevacizumab approval for metastatic breast cancer. Investigations have now revealed that while suppressing VEGF pathway initially decreases tumor progression rate and vasculature density, activation of several interrelated pathways and signaling molecules following VEGF blockade compensate the insufficiency of VEGF and initially blocked angiogenesis, explaining in part the failure observed with bevacizumab single therapy. In present review, we introduce some of the main pathways and signaling molecules involved in angiogenesis and then propose how their interconnection may result in development of resistance to bevacizumab.  相似文献   

7.
Autocrine growth factors produced by epithelial cells mediate the development and proliferation of neoplastic human prostate tissue. Various approaches have been used to down-regulate neoplastic growth of prostate cancer using natural flavonoids, soluble receptors, pseudo-ligands, monoclonal antibodies and tyrosine kinase inhibitors (tyrphostins). Selected growth factor/growth factor receptor loops (mainly TGFα/EGFR and IGFs/IGFIR) have been proposed as regulators of prostate cancer cell growth. We have previously determined that blockade of IGFIR or VEGF2R signaling pathways by tyrphostin AG1024 and SU1498 inhibits autocrine growth and viability of DU145 cells in vitro. Recently, we compared the activity of AG1024 and SU1498 with the inhibiting effect of tyrphostin A23 (a selective inhibitor of EGFR). The results described in this paper confirm that DU145 cells do not produce IGFI or EGF. In contrast, DU145 cells produce a great amount of VEGF, much more than TGFα (about 60-fold), and VEGF may be the real autocrine growth factor of the investigated cells. The results indicate that the growth of DU145 may be regulated by at least three autocrine loops: TGFα/EGFR, IGFII/IGFIR and VEGF/VEGFR2. Neither AG1024 nor SU1498 affected the production of TGFα substantially, which excludes the possibility that IGFRs or VEGFR2 inhibitors arrest the growth of these cells by inhibition of synthesis and/or secretion of TGFα. The obtained data indicate that all tree investigated tyrphostins (AG1024, SU1498 and A23) inhibit signal transmission by Akt (PKB), ERK(1/2), Src and STAT in a similar manner. A comparison of the effects of the investigated tyrphostins indicates that TGFα, IGFII and VEGF stimulate cell growth by affecting the same signaling pathway. The hypothesis was confirmed by the effect of the investigated tyrphostins on activation of EGFR. All these inhibitors decreased phosphorylation of EGFR to the same extent, and after the same time of incubation with cell culture. These results strongly suggest that stimulation of EGFR kinase is the main step in the initiation of mitogen signaling in DU145 cells, regardless of the type of ligand (TGFα, IGFs or VEGF) and their specific receptors.  相似文献   

8.
MicroRNAs (miRNAs, miRs) are small (21–25 nucleotides) endogenous and noncoding RNAs involved in many cellular processes such as apoptosis, development, proliferation, and differentiation via binding to the 3′-untranslated region of the target mRNA and inhibiting its translation. Angiogenesis is a hallmark of cancer, which provides oxygen and nutrition for tumor growth while removing deposits and wastes from the tumor microenvironment. There are many angiogenesis stimulators, among which vascular endothelial growth factor (VEGF) is the most well known. VEGF has three tyrosine kinase receptors, which, following VEGF binding, initiate proliferation, invasion, migration, and angiogenesis of endothelial cells in the tumor environment. One of the tumor microenvironment conditions that induce angiogenesis through increasing VEGF and its receptors expression is hypoxia. Several miRNAs have been identified that affect different targets in the tumor angiogenesis pathway. Most of these miRNAs affect VEGF and its tyrosine kinase receptors expression downstream of the hypoxia-inducible Factor 1 (HIF-1). This review focuses on tumor angiogenesis regulation by miRNAs and the mechanism underlying this regulation.  相似文献   

9.
Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen in vitro and an angiogenic inducer in vivo. The tyrosine kinases Flt-1 (VEGFR-1) and Flk-1/KDR (VEGFR-2) are high affinity VEGF receptors. VEGF plays an essential role in developmental angiogenesis and is important also for reproductive and bone angiogenesis. Substantial evidence also implicates VEGF as a mediator of pathological angiogenesis. Anti-VEGF monoclonal antibodies and other VEGF inhibitors block the growth of several tumor cell lines in nude mice. Clinical trials with VEGF inhibitors in a variety of malignancies are ongoing. Recently, a humanized anti-VEGF monoclonal antibody (bevacizumab; Avastin) has been approved by the FDA as a first-line treatment for metastatic colorectal cancer in combination with chemotherapy. Furthermore, VEGF is implicated in intraocular neovascularization associated with diabetic retinopathy and age-related macular degeneration.  相似文献   

10.
Tumor growth and progression are critically dependent on the establishment of a vascular support system. This is often accomplished via the expression of pro-angiogenic growth factors, including members of the vascular endothelial growth factor (VEGF) family of ligands. VEGF ligands are overexpressed in a wide variety of solid tumors and therefore have inspired optimism that inhibition of the different axes of the VEGF pathway—alone or in combination—would represent powerful anti-angiogenic therapies for most cancer types. When considering treatments that target VEGF and its receptors, it is difficult to tease out the differential anti-angiogenic and anti-tumor effects of all combinations experimentally because tumor cells and vascular endothelial cells are engaged in a dynamic cross-talk that impacts key aspects of tumorigenesis, independent of angiogenesis. Here we develop a mathematical model that connects intracellular signaling responsible for both endothelial and tumor cell proliferation and death to population-level cancer growth and angiogenesis. We use this model to investigate the effect of bidirectional communication between endothelial cells and tumor cells on treatments targeting VEGF and its receptors both in vitro and in vivo. Our results underscore the fact that in vitro therapeutic outcomes do not always translate to the in vivo situation. For example, our model predicts that certain therapeutic combinations result in antagonism in vivo that is not observed in vitro. Mathematical modeling in this direction can shed light on the mechanisms behind experimental observations that manipulating VEGF and its receptors is successful in some cases but disappointing in others.  相似文献   

11.
ObjectivesVascular endothelial cell growth factor (VEGF) plays an important role in the biology of gynecological cancer, usually linked with aggressive tumour behaviour and a poor postoperative outcome. Yet, its role in benign breast/gynecological conditions is less clear.MethodsSerum VEGF was analysed in a series of 49 patients with gynecological cancer and 61 patients with benign disease and compared to those of 12 normal female subjects. In addition, the activation status of VEGFR2/KDR receptors was investigated in formalin-fixed paraffin embedded tissues and related to VEGF.ResultsMean serum levels of VEGF were significantly higher in patients with breast, endometrial and ovarian cancer compared to healthy controls and those with benign breast/gynecologic disease in the respective organs. A similar trend was noted in some cases of simple endometrial hyperplasia, fibroadenoma and fibrocystic disease of the breast. The expression of phosphorylated VEGFR2/KDR receptors was higher in breast, endometrial, ovarian cancer in patients with high VEGF serum levels and this reached a level of statistical significance when all malignancies were combined.ConclusionsSerum VEGF levels are increased in patients with breast and gynecological malignancies, but this can not be considered pathognomonic for cancer as it is also increased in certain benign conditions, including cases of fibroadenoma, fibrocystic disease of breast and simple endometrial hyperplasia. Furthermore, high serum VEGF levels are closely related to the activation status of the VEGFR2/KDR receptor in cancer cells, indicating a stimulatory effect of serum VEGF on the VEGF pathway contributing to tumor progression.  相似文献   

12.
Extracellular domains of the transmembrane glycoprotein, neuropilin-1 (Np1), specifically bind an array of factors and co-receptors including class-3 semaphorins (Sema3a), vascular endothelial growth factor (VEGF), hepatocyte growth factor, platelet-derived growth factor BB, transforming growth factor-β 1 (TGF-β1), and fibroblast growth factor2 (FGF2). Np1 may have a role in immune response, tumor cell growth, and angiogenesis, but its relative expression in comparison to its co-primary receptors, VEGF and Sema3a, is not known. In this study we determined the mRNA expression of Np1 and its co-receptors, VEGF and Sema3a, and the ratio of VEGF/Sema3a in different human and rodent cell lines. Expression of Np1, VEGF and Sema3a is very low in cells derived from normal tissues, but these proteins are highly expressed in tumor-derived cells. Furthermore, the ratio of VEGF/Sema3a is highly variable in different tumor cells. The elevated mRNA expression of Np1 and its putative receptors in tumor cells suggests a role for these proteins in tumor cell migration and angiogenesis. As different tumor cells exhibit varying VEGF/Sema3a ratios, it appears that cancer cells show differential response to angiogenic factors. These results bring to light the individual variation among the cancer-related genes, Np1, VEGF, and Sema3a, and provide an important impetus for the possible personalized therapeutic approaches for cancer patients.  相似文献   

13.
Active immunization against pro-angiogenic growth factors or their receptors is an emerging strategy for controlling tumor growth and angiogenesis. Previous studies in rodent tumor models have indicated that immunization against xenogeneic growth factors is more likely to induce effective anti-tumor responses than immunization against the autologous growth factor. However, the effectiveness or safety of the xenogeneic vaccination approach has not been previously assessed in a clinically relevant outbred, spontaneous tumor model. Therefore, we investigated the safety and anti-tumor and anti-angiogenic effects of a xenogeneic vascular endothelial cell growth factor (VEGF) vaccine in pet dogs with spontaneous cancer. Nine dogs with soft tissue sarcoma were immunized with a recombinant human VEGF vaccine over a 16-week period. The effects of immunization on antibodies to human and canine VEGF, circulating VEGF concentrations, tumor microvessel density (MVD), and tumor growth were assessed. The xenogeneic VEGF vaccine was well-tolerated by all dogs and resulted in induction of humoral responses against both human and canine VEGF in animals that remained in the study long enough to receive multiple immunizations. Three of five multiply immunized dogs also experienced sustained decreases in circulating plasma VEGF concentrations and two dogs had a significant decrease in tumor MVD. The overall tumor response rate was 30% for all treated dogs in the study. We conclude therefore that a xenogeneic VEGF vaccine may be a safe and effective alternative means of controlling tumor growth and angiogenesis.  相似文献   

14.
VEGF 家族及其在肿瘤生长中作用的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
血管内皮生长因子(Vascular Endothelial Growth Factor,VEGF)家族是一类多功能的细胞因子,在血管生成和淋巴管生成中具有直接和间接的调控作用,可促进内皮细胞增殖、促进血管生成以及增加血管的通透性。VEGF/VEGFR轴由多重配基和受体质量叠加交错组成,并且受体与配基结合具有专一性,在不同的细胞中具有不同的细胞类型表达和功能.启动VEGF信号通路,触发了一个网状的信号过程,从而促进血管内皮细胞生长、转移和存活。进来研究发现,VEGF的一个重要作用表现为可动员内皮祖细胞从骨髓向远处转移从而形成新生血管,因而有必要设计和发展针对这一途径的抑制因子。随着研究的深入,VEGF促进肿瘤血管生成的作用和与人类癌症的发病机制的关系是确定的,因此,抑制VEGF途径被确认为是一种重要的有效的抗癌模式  相似文献   

15.
Peroxisome proliferator-activated receptors (PPAR) and retinoid X receptors (RXR) are implicated in the development of several obesity-related cancers. Little is known of either the expression or function of PPARs and RXRs in endometrial cancer although this increasingly common disease is highly associated with both obesity and insulin resistance. We investigated the expression of PPAR and RXR subtypes in human endometrial cancers and normal endometrium with immunoblotting and immunohistochemistry and subsequently showed PPAR/RXR binding preferences by coimmunoprecipitation. To determine the functions of PPARs within the endometrium, we investigated proliferation, apoptosis, PTEN expression, and secretion of vascular endothelial growth factor (VEGF) in endometrial cell lines after reducing the expression of PPARα and PPARγ with antisense RNA. The functional effects of PPAR ligands were also investigated in vitro. We identified differential expression of PPAR and RXR subtypes in endometrial cancers and discovered that PPARγ expression correlated with expression of PTEN. PPARα activation influences endometrial cell growth and VEGF secretion. PPARγ activation reduces proliferation of endometrial cells via regulation of PTEN and appears to reduce VEGF secretion. We conclude that the PPAR/RXR pathway contribute to endometrial carcinogenesis by control of PTEN expression and modulation of VEGF secretion. We propose that PPAR ligands should be considered for clinical investigation in early phase studies of women with endometrial cancer.  相似文献   

16.
TSPs 1 and 2 function as endogenous inhibitors of angiogenesis. Although thrombospondins (TSPs) have been shown to induce apoptosis in HMVECs, we reasoned that a homeostatic mechanism would also be needed to inhibit EC growth without causing cell death, e.g., in the maintenance of a normal vascular endothelium. HMVECs, cultured in low serum, responded to VEGF with an increase in [(3)H]thymidine incorporation that was inhibited by TSPs and was accompanied by decreases in the phosphorylation of Akt and MAPK, without an increase in apoptosis. RAP, an inhibitor of the low-density lipoprotein (LDL) family of endocytic receptors, and blocking antibodies to VLDLR were as effective as TSPs in the inhibition of thymidine uptake in response to VEGF, and the effects of these agents were not additive. Supportive evidence for the role of the VLDLR in mediating this inhibition was provided by the demonstration of a high-affinity interaction between TSPs and the VLDLR. We propose that TSP1 and TSP2, together with the VLDLR, initiate a nonapoptotic pathway for maintenance of the normal adult vascular endothelium in a quiescent state, similar to that invoked for the regulation of mitogenesis by PDGF, but involving signaling via the VLDLR rather than LRP1.  相似文献   

17.
Vascular endothelial growth factor (VEGF) is up-regulated during mesothelial to mesenchymal transition (MMT) and has been associated with peritoneal membrane dysfunction in peritoneal dialysis (PD) patients. It has been shown that normal and malignant mesothelial cells (MCs) express VEGF receptors (VEGFRs) and co-receptors and that VEGF is an autocrine growth factor for mesothelioma. Hence, we evaluated the expression patterns and the functional relevance of the VEGF/VEGFRs/co-receptors axis during the mesenchymal conversion of MCs induced by peritoneal dialysis. Omentum-derived MCs treated with TGF-β1 plus IL-1β (in vitro MMT) and PD effluent-derived MCs with non-epithelioid phenotype (ex vivo MMT) showed down-regulated expression of the two main receptors Flt-1/VEGFR-1 and KDR/VEGFR-2, whereas the co-receptor neuropilin-1 (Nrp-1) was up-regulated. The expression of the Nrp-1 ligand semaphorin-3A (Sema-3A), a functional VEGF competitor, was repressed throughout the MMT process. These expression pattern changes were accompanied by a reduction of the proliferation capacity and by a parallel induction of the invasive capacity of MCs that had undergone an in vitro or ex vivo MMT. Treatment with neutralizing anti-VEGF or anti-Nrp-1 antibodies showed that these molecules played a relevant role in cellular proliferation only in naïve omentum-derived MCs. Conversely, treatment with these blocking antibodies, as well as with recombinant Sema-3A, indicated that the switched VEGF/VEGFRs/co-receptors axis drove the enhanced invasion capacity of MCs undergoing MMT. In conclusion, the expression patterns of VEGFRs and co-receptors change in MCs during MMT, which in turn would determine their behaviour in terms of proliferation and invasion in response to VEGF.  相似文献   

18.
19.
20.
Although bothvascular endothelial growth factor (VEGF) and fibroblast growth factor(FGF) receptors have been shown to be important in the regulation ofvascular endothelial cell growth, the roles of phospholipase C (PLC)and Ca2+ in their downstream signaling cascades are stillnot clear. We have examined the effects of VEGF and FGF on PLCphosphorylation and on changes in intracellular Ca2+ levelsin primary endothelial cells. VEGF stimulation leads to PLCactivation and increases in intracellular Ca2+, which arecorrelated with mitogen-activated protein (MAP) kinase (MAPK)activation and cell growth. Inhibition of Ca2+ increases bythe Ca2+ chelator1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid(BAPTA)-AM resulted in marked inhibition of MAPK activation, which wasshown to be linked to regulation of cell growth in these cells. Incontrast, FGF stimulation did not lead to PLC activation or tochanges in intracellular Ca2+ levels, although MAPKphosphorylation and stimulation of cell proliferation were observed.Neither BAPTA-AM nor the PLC inhibitor U-73122 had an effect on theseFGF-stimulated responses. These data demonstrate a direct role forPLC and Ca2+ in VEGF-regulated endothelial cell growth,whereas this signaling pathway is not linked to FGF-mediated effects inprimary endothelial cells. Thus endothelial cell-specific factorsregulate the ability of VEGF receptors and FGF receptors to couple tothis signaling pathway.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号