首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
孤独症谱系障碍(austim spectrum disorder, ASD)是一种以社交和沟通障碍以及重复和限制性行为为特征的神经发育障碍。ASD的表型异质性使得确定核心症状涉及的确切病因和病理生理机制困难重重,且这些症状通常伴有注意缺陷多动障碍、癫痫发作和感觉运动异常等共患病。动物模型提供了阐明疾病的病因和发病机制的重要平台。越来越多的研究利用如环境暴露、母体免疫激活(maternal immune activation, MIA)等诱导的动物模型进行孤独症谱系障碍病因病机的探讨以及药物治疗靶点的筛选。该文综述常见动物模型的不同神经网络机制、脑组织及相关因子变化、症状表型等方面,为今后进行精准动物实验研究提供针对性的动物模型选择,也可为阐明疾病神经生物学、开发潜在的治疗药物提供参考。  相似文献   

2.
编码SH3 (Src homology domain 3)和多个锚蛋白重复结构域蛋白3 (SHANK3)基因广泛分布于大脑的各个脑区,定位于兴奋性突触后致密部(postsynaptic density, PSD)。SHANK3基因不同位点突变的鼠类模型已被广泛构建,以模拟孤独症谱系障碍(autism spectrum disorder, ASD)的行为表现,探究异常行为背后的机制。各脑区的兴奋抑制平衡(E-I balance)是ASD的发生机制之一,与ASD的行为表现密切相关。SHANK3基因不同位点的突变可能会导致不同脑区E-I平衡的变化,从而产生ASD样行为。该文主要综述SHANK3基因不同位点突变ASD鼠类模型不同脑区E-I平衡的变化、与行为之间的联系及相关机制的研究进展,为SHANK3基因突变ASD鼠类模型的发病机制及干预的进一步深入研究提供借鉴。  相似文献   

3.
孤独症谱系障碍(autism spectrum disorder, ASD)是一类患病率高且病因复杂的神经发育障碍性疾病,患者主要特征为社会交往与交流障碍并表现出兴趣狭窄与重复刻板行为。临床证据表明肠道菌群失衡普遍存在于ASD患者群体中并参与ASD的发病,但其中机制还有待明确。近期研究发现肠道菌群可能间接通过其代谢产物影响ASD的发展。本综述将重点阐述两种肠道菌群代谢物——对甲酚和对乙酚与ASD之间的相关性及其潜在致病机制,以期发掘肠道菌群在ASD发病过程中的潜在作用与机理,并为ASD的诊断与治疗提供新思路。  相似文献   

4.
在患儿发育早期,某一亚类孤独症谱系障碍(autism spectrum disorders, ASDs)大脑呈过度生长趋势。研究发现,部分伴随有大脑过度增生的患者局部脑区神经元数目异常增多。进一步研究表明,神经元的增殖紊乱与局部脑区神经元数目异常增多密切相关。本综述从ASDs相关信号分子对神经元增殖的调控入手,归纳总结近年来基于神经元增殖调控异常的ASDs大脑过度增生的分子机制研究,为探究ASDs的发病机制提供一个重要的突破口。  相似文献   

5.
孤独症谱系障碍(austim spectrum disorder,ASD)近来全球发病率不断升高,但该病的病因及发病机制尚未明确,从动物模型出发探索疾病的病因及发病机制是必然趋势。国内对本病的认识及动物模型研究相对滞后,国际上ASD动物模型可大概分为基因遗传模型、特发性动物模型及调控环境因素动物模型三大类,其中基因遗传模型较多,但研究针对性过强;特发性模型中的BTBR模型及调控环境因素模型中的丙戊酸诱导模型能够较好地呈现ASD典型临床症状及部分病理学特征,为当前主要应用模型。ASD的研究尚缺乏完整符合结构有效性、表面有效性、预测有效性的理想动物模型。  相似文献   

6.
孤独症谱系障碍(autism spectrum disorder,ASD)是一种神经精神障碍,主要表现为社会交往障碍、交流障碍以及局限性的兴趣和重复刻板的行为模式三个主要核心症状.本文介绍了ASD的遗传基础和神经机制的最新研究进展.ASD具有较高的遗传率,且ASD个体的5-羟色胺和睾丸激素都较高.神经影像学研究发现,ASD个体的杏仁核、扣带回、梭状回、镜像神经元和前额叶等大脑区域在结构和功能上都与正常发育个体存在差异,但在个别区域激活模式的差异方向上仍存在不一致的地方.此外,功能连接的研究结果也证实了ASD个体连接不良的假设.未来的研究应该更多地着眼于如何利用这些基础研究成果为临床上提出有效的治疗和训练方式.  相似文献   

7.
孤独症谱系障碍(autism spectrum disorder, ASD)是一种以社交障碍及刻板行为为核心症状的神经发育疾病。其受遗传和环境等多种因素影响,病因复杂、患者异质性极高,这给疾病机制研究和治疗靶点的研究造成了阻碍。3D人脑类器官是由多能干细胞(pluripotent stem cell, PSCs)经悬浮培养及诱导分化后自组织形成的器官样三维组织,其可携带患者完整的遗传信息,可在体外模拟胚胎的早期脑发育过程并反映病理过程。脑类器官是研究孤独症谱系障碍的理想模型与平台,该文将对近年来人脑类器官在孤独症研究中的进展与成果作综述。  相似文献   

8.
王剑飞  韩俊海  张子超 《遗传》2021,(5):501-519
孤独症谱系障碍(autism spectrum disorder,ASD)是一种遗传相关的神经系统发育性疾病,患者主要呈现社交缺陷、沟通障碍、重复刻板行为和学习记忆障碍等核心症状.小鼠模型是探究孤独症谱系障碍的致病机理和寻找潜在治疗方法的重要工具,而小鼠行为学的观测和分析可以帮助人们更好地了解不同遗传操作对相应孤独症表...  相似文献   

9.
张恩铭  陈雨珊 《生命科学》2020,32(8):798-806
孤独症谱系障碍(autism spectrum disorder, ASD)是一种广泛性发育障碍,以社会交流障碍和刻板重复行为为主要临床表现。ASD的发生受到遗传和环境等因素的影响,但具体发病机制尚未明确,且目前尚无有效治疗方法。自噬(autophagy)是一种维持蛋白质和细胞稳态的庞大代谢系统,参与多种神经发育性疾病的遗传和分子发病机理,也参与调控ASD样行为和疾病发生。该文着重探讨自噬在ASD中的研究进展,分析自噬基因和通路蛋白等在ASD中的调控作用,为ASD的治疗干预提供潜在的靶标。  相似文献   

10.
大脑发育是一个极其复杂又被精确调控的过程,主要包括神经前体细胞增殖和分化、神经元迁移和形态发生(包括轴、树突发育)、突触形成与修剪、轴突髓鞘化、神经网络的形成与重塑等过程,最终形成功能完善的神经系统。其中的任何过程出现问题都有可能导致大脑发育异常,造成大脑功能障碍,即脑发育疾病。儿童脑发育疾病在医疗总负担中占比最高,因此被广泛关注。脑发育疾病通常被划分为两类:一类以大脑形态结构异常为指标,即大脑皮层发育畸形(malformation of cortical development, MCD);另一类以大脑功能障碍为指标,即神经精神疾病(neuropsychopathy)。大脑皮层发育畸形中的小颅畸形(microcephaly)和神经精神疾病中的孤独症谱系障碍(autism spectrum disorder,ASD)这两种疾病具有许多共同之处,例如小颅畸形致病基因的突变高频地出现在ASD病人中。本文针对这两类具有代表性的脑发育疾病,从症状、病因、机制和相关基因等方面展开介绍,以期为疾病的基础研究和治疗提供理论指导。  相似文献   

11.
To date, the glutamate-glutamine cycle has been the dominant paradigm for understanding the coordinated, compartmentalized activities of phosphate-activated glutaminase (PAG) and glutamine synthetase (GS) in support of functional glutamate trafficking in vivo. However, studies in cell cultures have repeatedly challenged the notion that functional glutamate trafficking is accomplished via the glutamate-glutamine cycle alone. The present study introduces and elaborates alternative cycles for functional glutamate trafficking that integrate glucose metabolism, glutamate anabolism, transport, and catabolism, and trafficking of TCA cycle intermediates from astrocytes to presynaptic neurons. Detailed stoichiometry for each of these alternative cycles is established by strict application of the principle of conservation of atomic species to cytosolic and mitochondrial compartments in both presynaptic neurons and astrocytes. In contrast to the glutamate-glutamine cycle, which requires ATP, but not necessarily oxidative metabolism, to function, cycles for functional glutamate trafficking based on intercellular transport of TCA cycle intermediates require oxidative processes to function. These proposed alternative cycles are energetically more efficient than, and incorporate an inherent mechanism for transporting nitrogen from presynaptic neurons to astrocytes in support of the coordinated activities of PAG and GS that is absent in, the glutamate-glutamine cycle. In light of these newly elaborated alternative cycles, it is premature to presuppose that functional glutamate trafficking in synaptic neurotransmission in vivo is sustained by the glutamate-glutamine cycle alone.  相似文献   

12.
In the field of autism research, recent work has been devoted to studying both behavioral and neural markers that may aide in early identification of autism spectrum disorder (ASD). These studies have often tested infants who have a significant family history of autism spectrum disorder, given the increased prevalence observed among such infants. In the present study we tested infants at high- and low-risk for ASD (based on having an older sibling diagnosed with the disorder or not) at 6- and 12-months-of-age. We computed intrahemispheric linear coherence between anterior and posterior sites as a measure of neural functional connectivity derived from electroencephalography while the infants were listening to speech sounds. We found that by 12-months-of-age infants at risk for ASD showed reduced functional connectivity compared to low risk infants. Moreover, by 12-months-of-age infants later diagnosed with ASD showed reduced functional connectivity, compared to both infants at low risk for the disorder and infants at high risk who were not later diagnosed with ASD. Significant differences in functional connectivity were also found between low-risk infants and high-risk infants who did not go onto develop ASD. These results demonstrate that reduced functional connectivity appears to be related to genetic vulnerability for ASD. Moreover, they provide further evidence that ASD is broadly characterized by differences in neural integration that emerge during the first year of life.  相似文献   

13.
Autism spectrum disorder(ASD) is a spectral neurodevelopment disorder affecting approximately 1% of the population. ASD is characterized by impairments in reciprocal social interaction, communication deficits and restricted patterns of behavior. Multiple factors, including genetic/genomic, epigenetic/epigenomic and environmental, are thought to be necessary for autism development. Recent reviews have provided further insight into the genetic/genomic basis of ASD. It has long been suspected that epigenetic mechanisms, including DNA methylation, chromatin structures and long non-coding RNAs may play important roles in the pathology of ASD. In addition to genetic/genomic alterations and epigenetic/epigenomic influences, environmental exposures have been widely accepted as an important role in autism etiology, among which immune dysregulation and gastrointestinal microbiota are two prominent ones.  相似文献   

14.
Autism spectrum disorder (ASD) is a severe neuropsychiatric disorder which has complex pathobiology with profound influences of genetic factors in its development. Although the numerous autism susceptible genes were identified, the etiology of autism is not fully explained. Using DNA microarray, we examined gene expression profiling in peripheral blood from 21 individuals in each of the four groups; young adults with ASD, age- and gender-matched healthy subjects (ASD control), healthy mothers having children with ASD (asdMO), and asdMO control. There was no blood relationship between ASD and asdMO. Comparing the ASD group with control, 19 genes were found to be significantly changed. These genes were mainly involved in cell morphology, cellular assembly and organization, and nerve system development and function. In addition, the asdMO group possessed a unique gene expression signature shown as significant alterations of protein synthesis despite of their nonautistic diagnostic status. Moreover, an ASD-associated gene expression signature was commonly observed in both individuals with ASD and asdMO. This unique gene expression profiling detected in peripheral leukocytes from affected subjects with ASD and unaffected mothers having ASD children suggest that a genetic predisposition to ASD may be detectable even in peripheral cells. Altered expression of several autism candidate genes such as FMR-1 and MECP2, could be detected in leukocytes. Taken together, these findings suggest that the ASD-associated genes identified in leukocytes are informative to explore the genetic, epigenetic, and environmental background of ASD and might become potential tools to assess the crucial factors related to the clinical onset of the disorder.  相似文献   

15.
Applied Psychophysiology and Biofeedback - Research suggest that in autism spectrum disorder (ASD) a disturbance in the coordinated interactions of neurons within local networks gives rise to...  相似文献   

16.
Autism spectrum disorders (ASDs) are a group of neurodevelopmental disorders characterized by ritualistic-repetitive behaviors and impaired verbal and non-verbal communication. Boys are more likely to be diagnosed with ASD than girls. Genetics have been shown to play a key role in the etiology of autism. Many genes were found to be implicated in the inheritance of idiopathic autism. Analysis of mutation abnormalities associated with autism contributes significantly to the identification of autism candidate genes. Whole-exome sequencing has been shown as an application of the next generation sequencing technology used to determine the variations of all coding regions, or exons of the known genes. In the present study, we have found two novel heterozygous missense mutations (p.L111P and p.R3048C) on the RYR3 gene, which was located in the autism susceptibility region (15q14-q15) in a 9-year-old boy with ASD. Therefore, the sequence missense mutations provide the first suggestive link between a genetic abnormality in the RYR3 gene and a neurodevelopmental disorder.  相似文献   

17.
A rise in the prevalence of diagnosed cases of autism spectrum disorder (ASD) has been reported in several studies in recent years. While this rise in ASD prevalence is at least partially related to increased awareness and broadened diagnostic criteria, the role of environmental factors cannot be ruled out, especially considering that the cause of most cases of ASD remains unknown. The study of families with multiple affected children can provide clues about ASD etiology. While the majority of research on ASD multiplex families has focused on identifying genetic anomalies that may underlie the disorder, the study of symptom severity across ASD birth order may provide evidence for environmental factors in ASD. We compared social and cognitive measures of behavior between over 300 first and second affected siblings within multiplex autism families obtained from the Autism Genetic Resource Exchange dataset. Measures included nonverbal IQ assessed with the Ravens Colored Progressive Matrices, verbal IQ assessed with the Peabody Picture Vocabulary Test, and autism severity assessed with the Social Responsiveness Scale (SRS), an instrument established as a quantitative measure of autism. The results indicated that females were more severely impacted by ASD than males, especially first affected siblings. When first and second affected siblings were compared, significant declines in nonverbal and verbal IQ scores were observed. In addition, SRS results demonstrated a significant increase in autism severity between first and second affected siblings consistent with an overall decline in function as indicated by the IQ data. These results remained significant after controlling for the age and sex of the siblings. Surprisingly, the SRS scores were found to only be significant when the age difference between siblings was less than 2 years. These results suggest that some cases of ASD are influenced by a dosage effect involving unknown epigenetic, environmental, and/or immunological factors.  相似文献   

18.
Autism spectrum disorders (ASD) are neurodevelopmental conditions characterized by impaired social interaction, communication skills, and restricted and repetitive behavior. The genetic causes for autism are largely unknown. Previous studies implicate CACNA1C (L-type Ca(V)1.2) calcium channel mutations in a disorder associated with autism (Timothy syndrome). Here, we identify missense mutations in the calcium channel gene CACNA1H (T-type Ca(V)3.2) in 6 of 461 individuals with ASD. These mutations are located in conserved and functionally relevant domains and are absent in 480 ethnically matched controls (p = 0.014, Fisher's exact test). Non-segregation within the pedigrees between the mutations and the ASD phenotype clearly suggest that the mutations alone are not responsible for the condition. However, functional analysis shows that all these mutations significantly reduce Ca(V)3.2 channel activity and thus could affect neuronal function and potentially brain development. We conclude that the identified mutations could contribute to the development of the ASD phenotype.  相似文献   

19.
20.
Environmental factors have been severally established to play major roles in the pathogenesis of neurodevelopmental disorders including autism spectrum disorder (ASD). ASD is a neurodevelopmental disorder that is associated with symptoms that reduce the quality of life of affected individuals such as social interaction deficit, cognitive impairment, intellectual disabilities, restricted and repetitive behavioural patterns. ASD pathogenesis has been associated with environmental and genetic factors that alter physiologic processes during development. Here, we review literatures highlighting the environmental impact on neurodevelopmental disorders, and mechanisms by which environmental toxins may influence neurodevelopment. Furthermore, this review discusses reports highlighting neurotoxic metals (specifically, lead, mercury, cadmium, nickel and manganese) as environmental risk factors in the aetiology of ASD. This work, thus suggests that improving the environment could be vital in the management of ASD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号