首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Habier D  Fernando RL  Dekkers JC 《Genetics》2007,177(4):2389-2397
The success of genomic selection depends on the potential to predict genome-assisted breeding values (GEBVs) with high accuracy over several generations without additional phenotyping after estimating marker effects. Results from both simulations and practical applications have to be evaluated for this potential, which requires linkage disequilibrium (LD) between markers and QTL. This study shows that markers can capture genetic relationships among genotyped animals, thereby affecting accuracies of GEBVs. Strategies to validate the accuracy of GEBVs due to LD are given. Simulations were used to show that accuracies of GEBVs obtained by fixed regression-least squares (FR-LS), random regression-best linear unbiased prediction (RR-BLUP), and Bayes-B are nonzero even without LD. When LD was present, accuracies decrease rapidly in generations after estimation due to the decay of genetic relationships. However, there is a persistent accuracy due to LD, which can be estimated by modeling the decay of genetic relationships and the decay of LD. The impact of genetic relationships was greatest for RR-BLUP. The accuracy of GEBVs can result entirely from genetic relationships captured by markers, and to validate the potential of genomic selection, several generations have to be analyzed to estimate the accuracy due to LD. The method of choice was Bayes-B; FR-LS should be investigated further, whereas RR-BLUP cannot be recommended.  相似文献   

2.
Accuracy of genomic breeding values in multi-breed dairy cattle populations   总被引:1,自引:0,他引:1  

Background

Two key findings from genomic selection experiments are 1) the reference population used must be very large to subsequently predict accurate genomic estimated breeding values (GEBV), and 2) prediction equations derived in one breed do not predict accurate GEBV when applied to other breeds. Both findings are a problem for breeds where the number of individuals in the reference population is limited. A multi-breed reference population is a potential solution, and here we investigate the accuracies of GEBV in Holstein dairy cattle and Jersey dairy cattle when the reference population is single breed or multi-breed. The accuracies were obtained both as a function of elements of the inverse coefficient matrix and from the realised accuracies of GEBV.

Methods

Best linear unbiased prediction with a multi-breed genomic relationship matrix (GBLUP) and two Bayesian methods (BAYESA and BAYES_SSVS) which estimate individual SNP effects were used to predict GEBV for 400 and 77 young Holstein and Jersey bulls respectively, from a reference population of 781 and 287 Holstein and Jersey bulls, respectively. Genotypes of 39,048 SNP markers were used. Phenotypes in the reference population were de-regressed breeding values for production traits. For the GBLUP method, expected accuracies calculated from the diagonal of the inverse of coefficient matrix were compared to realised accuracies.

Results

When GBLUP was used, expected accuracies from a function of elements of the inverse coefficient matrix agreed reasonably well with realised accuracies calculated from the correlation between GEBV and EBV in single breed populations, but not in multi-breed populations. When the Bayesian methods were used, realised accuracies of GEBV were up to 13% higher when the multi-breed reference population was used than when a pure breed reference was used. However no consistent increase in accuracy across traits was obtained.

Conclusion

Predicting genomic breeding values using a genomic relationship matrix is an attractive approach to implement genomic selection as expected accuracies of GEBV can be readily derived. However in multi-breed populations, Bayesian approaches give higher accuracies for some traits. Finally, multi-breed reference populations will be a valuable resource to fine map QTL.  相似文献   

3.
The pattern of linkage disequilibrium in German Holstein cattle   总被引:1,自引:0,他引:1  
This study presents a second generation of linkage disequilibrium (LD) map statistics for the whole genome of the Holstein–Friesian population, which has a four times higher resolution compared with that of the maps available so far. We used DNA samples of 810 German Holstein–Friesian cattle genotyped by the Illumina Bovine SNP50K BeadChip to analyse LD structure. A panel of 40 854 (75.6%) markers was included in the final analysis. The pairwise r2 statistic of SNPs up to 5 Mb apart across the genome was estimated. A mean value of r2 = 0.30 ± 0.32 was observed in pairwise distances of <25 kb and it dropped to 0.20 ± 0.24 at 50–75 kb, which is nearly the average inter‐marker space in this study. The proportion of SNPs in useful LD (r20.25) was 26% for the distance of 50 and 75 kb between SNPs. We found a lower level of LD for SNP pairs at the distance ≤100 kb than previously thought. Analysis revealed 712 haplo‐blocks spanning 4.7% of the genome and containing 8.0% of all SNPs. Mean and median block length were estimated as 164 ± 117 kb and 144 kb respectively. Allele frequencies of the SNPs have a considerable and systematic impact on the estimate of r2. It is shown that minimizing the allele frequency difference between SNPs reduces the influence of frequency on r2 estimates. Analysis of past effective population size based on the direct estimates of recombination rates from SNP data showed a decline in effective population size to Ne = 103 up to ~4 generations ago. Systematic effects of marker density and effective population size on observed LD and haplotype structure are discussed.  相似文献   

4.
Estimated breeding values (EBVs) and genomic enhanced breeding values (GEBVs) for milk production of young genotyped Holstein bulls were predicted using a conventional BLUP – Animal Model, a method fitting regression coefficients for loci (RRBLUP), a method utilizing the realized genomic relationship matrix (GBLUP), by a single-step procedure (ssGBLUP) and by a one-step blending procedure. Information sources for prediction were the nation-wide database of domestic Czech production records in the first lactation combined with deregressed proofs (DRP) from Interbull files (August 2013) and domestic test-day (TD) records for the first three lactations. Data from 2627 genotyped bulls were used, of which 2189 were already proven under domestic conditions. Analyses were run that used Interbull values for genotyped bulls only or that used Interbull values for all available sires. Resultant predictions were compared with GEBV of 96 young foreign bulls evaluated abroad and whose proofs were from Interbull method GMACE (August 2013) on the Czech scale. Correlations of predictions with GMACE values of foreign bulls ranged from 0.33 to 0.75. Combining domestic data with Interbull EBVs improved prediction of both EBV and GEBV. Predictions by Animal Model (traditional EBV) using only domestic first lactation records and GMACE values were correlated by only 0.33. Combining the nation-wide domestic database with all available DRP for genotyped and un-genotyped sires from Interbull resulted in an EBV correlation of 0.60, compared with 0.47 when only Interbull data were used. In all cases, GEBVs had higher correlations than traditional EBVs, and the highest correlations were for predictions from the ssGBLUP procedure using combined data (0.75), or with all available DRP from Interbull records only (one-step blending approach, 0.69). The ssGBLUP predictions using the first three domestic lactation records in the TD model were correlated with GMACE predictions by 0.69, 0.64 and 0.61 for milk yield, protein yield and fat yield, respectively.  相似文献   

5.

Background

Genomic prediction of breeding values involves a so-called training analysis that predicts the influence of small genomic regions by regression of observed information on marker genotypes for a given population of individuals. Available observations may take the form of individual phenotypes, repeated observations, records on close family members such as progeny, estimated breeding values (EBV) or their deregressed counterparts from genetic evaluations. The literature indicates that researchers are inconsistent in their approach to using EBV or deregressed data, and as to using the appropriate methods for weighting some data sources to account for heterogeneous variance.

Methods

A logical approach to using information for genomic prediction is introduced, which demonstrates the appropriate weights for analyzing observations with heterogeneous variance and explains the need for and the manner in which EBV should have parent average effects removed, be deregressed and weighted.

Results

An appropriate deregression for genomic regression analyses is EBV/r2 where EBV excludes parent information and r2 is the reliability of that EBV. The appropriate weights for deregressed breeding values are neither the reliability nor the prediction error variance, two alternatives that have been used in published studies, but the ratio (1 - h2)/[(c + (1 - r2)/r2)h2] where c > 0 is the fraction of genetic variance not explained by markers.

Conclusions

Phenotypic information on some individuals and deregressed data on others can be combined in genomic analyses using appropriate weighting.  相似文献   

6.
Climate change and the increasing demand for sustainable energy resources require urgent strategies to increase the accuracy of selection in tree breeding (associated with higher gain). We investigated the combined pedigree and genomic-based relationship approach and its impact on the accuracy of predicted breeding values using data from 5-year-old Eucalyptus grandis progeny trial. The number of trees that can be genotyped in a tree breeding population is limited; therefore, the combined approach can be a feasible and efficient strategy to increase the genetic gain and provide more accurate predicted breeding values. We calculated the accuracy of predicted breeding values for two growth traits, diameter at breast height and total height, using two evaluation approaches: the combined approach and the classical pedigree-based approach. We also investigated the influence of two different trait heritabilities as well as the inclusion of competition genetic effects or environmental heterogeneity in an individual-tree mixed model on the estimated variance components and accuracy of breeding values. The genomic information of genotyped trees is automatically propagated to all trees with the combined approach, including the non-genotyped mothers. This increased the accuracy of overall breeding values, except for the non-genotyped trees from the competition model. The increase in the accuracy was higher for the total height, the trait with low heritability. The combined approach is a simple, fast, and accurate genomic selection method for genetic evaluation of growth traits in E. grandis and tree species in general. It is simple to implement in a traditional individual-tree mixed model and provides an easy extension to individual-tree mixed models with competition effects and/or environmental heterogeneity.  相似文献   

7.

Background

Genomic selection is a recently developed technology that is beginning to revolutionize animal breeding. The objective of this study was to estimate marker effects to derive prediction equations for direct genomic values for 16 routinely recorded traits of American Angus beef cattle and quantify corresponding accuracies of prediction.

Methods

Deregressed estimated breeding values were used as observations in a weighted analysis to derive direct genomic values for 3570 sires genotyped using the Illumina BovineSNP50 BeadChip. These bulls were clustered into five groups using K-means clustering on pedigree estimates of additive genetic relationships between animals, with the aim of increasing within-group and decreasing between-group relationships. All five combinations of four groups were used for model training, with cross-validation performed in the group not used in training. Bivariate animal models were used for each trait to estimate the genetic correlation between deregressed estimated breeding values and direct genomic values.

Results

Accuracies of direct genomic values ranged from 0.22 to 0.69 for the studied traits, with an average of 0.44. Predictions were more accurate when animals within the validation group were more closely related to animals in the training set. When training and validation sets were formed by random allocation, the accuracies of direct genomic values ranged from 0.38 to 0.85, with an average of 0.65, reflecting the greater relationship between animals in training and validation. The accuracies of direct genomic values obtained from training on older animals and validating in younger animals were intermediate to the accuracies obtained from K-means clustering and random clustering for most traits. The genetic correlation between deregressed estimated breeding values and direct genomic values ranged from 0.15 to 0.80 for the traits studied.

Conclusions

These results suggest that genomic estimates of genetic merit can be produced in beef cattle at a young age but the recurrent inclusion of genotyped sires in retraining analyses will be necessary to routinely produce for the industry the direct genomic values with the highest accuracy.  相似文献   

8.
9.
Accuracy of predicting genomic breeding values for carcass merit traits including hot carcass weight, longissimus muscle area (REA), carcass average backfat thickness (AFAT), lean meat yield (LMY) and carcass marbling score (CMAR) was evaluated based on 543 Angus and 400 Charolais steers genotyped on the Illumina BovineSNP50 Beadchip. For the genomic prediction within Angus, the average accuracy was 0.35 with a range from 0.32 (LMY) to 0.37 (CMAR) across different training/validation data‐splitting strategies and statistical methods. The within‐breed genomic prediction for Charolais yielded an average accuracy of 0.36 with a range from 0.24 (REA) to 0.46 (AFAT). The across‐breed prediction had the lowest accuracy, which was on average near zero. When the data from the two breeds were combined to predict the breeding values of either breed, the prediction accuracy averaged 0.35 for Angus with a range from 0.33 (REA) to 0.39 (CMAR) and averaged 0.33 for Charolais with a range from 0.18 (REA) to 0.46 (AFAT). The prediction accuracy was slightly higher on average when the data were split by animal's birth year than when the data were split by sire family. These results demonstrate that the genetic relationship or relatedness of selection candidates with the training population has a great impact on the accuracy of predicting genomic breeding values under the density of the marker panel used in this study.  相似文献   

10.

Background

In national evaluations, direct genomic breeding values can be considered as correlated traits to those for which phenotypes are available for traditional estimation of breeding values. For this purpose, estimates of the accuracy of direct genomic breeding values expressed as genetic correlations between traits and their respective direct genomic breeding values are required.

Methods

We derived direct genomic breeding values for 2239 registered Limousin and 2703 registered Simmental beef cattle genotyped with either the Illumina BovineSNP50 BeadChip or the Illumina BovineHD BeadChip. For the 264 Simmental animals that were genotyped with the BovineHD BeadChip, genotypes for markers present on the BovineSNP50 BeadChip were extracted. Deregressed estimated breeding values were used as observations in weighted analyses that estimated marker effects to derive direct genomic breeding values for each breed. For each breed, genotyped individuals were clustered into five groups using K-means clustering, with the aim of increasing within-group and decreasing between-group pedigree relationships. Cross-validation was performed five times for each breed, using four groups for training and the fifth group for validation. For each trait, we then applied a weighted bivariate analysis of the direct genomic breeding values of genotyped animals from all five validation sets and their corresponding deregressed estimated breeding values to estimate variance and covariance components.

Results

After minimizing relationships between training and validation groups, estimated genetic correlations between each trait and its direct genomic breeding values ranged from 0.39 to 0.76 in Limousin and from 0.29 to 0.65 in Simmental. The efficiency of selection based on direct genomic breeding values relative to selection based on parent average information ranged from 0.68 to 1.28 in genotyped Limousin and from 0.51 to 1.44 in genotyped Simmental animals. The efficiencies were higher for 323 non-genotyped young Simmental animals, born after January 2012, and ranged from 0.60 to 2.04.

Conclusions

Direct genomic breeding values show promise for routine use by Limousin and Simmental breeders to improve the accuracy of predicted genetic merit of their animals at a young age and increase response to selection. Benefits from selecting on direct genomic breeding values are greater for breeders who use natural mating sires in their herds than for those who use artificial insemination sires. Producers with unregistered commercial Limousin and Simmental cattle could also benefit from being able to identify genetically superior animals in their herds, an opportunity that has in the past been limited to seed stock animals.  相似文献   

11.
The objective of the present study was to compare genetic gain and inbreeding coefficients of dairy cattle in organic breeding program designs by applying stochastic simulations. Evaluated breeding strategies were: (i) selecting bulls from conventional breeding programs, and taking into account genotype by environment (G×E) interactions, (ii) selecting genotyped bulls within the organic environment for artificial insemination (AI) programs and (iii) selecting genotyped natural service bulls within organic herds. The simulated conventional population comprised 148 800 cows from 2976 herds with an average herd size of 50 cows per herd, and 1200 cows were assigned to 60 organic herds. In a young bull program, selection criteria of young bulls in both production systems (conventional and organic) were either ‘conventional’ estimated breeding values (EBV) or genomic estimated breeding values (GEBV) for two traits with low (h2=0.05) and moderate heritability (h2=0.30). GEBV were calculated for different accuracies (rmg), and G×E interactions were considered by modifying originally simulated true breeding values in the range from rg=0.5 to 1.0. For both traits (h2=0.05 and 0.30) and rmg⩾0.8, genomic selection of bulls directly in the organic population and using selected bulls via AI revealed higher genetic gain than selecting young bulls in the larger conventional population based on EBV; also without the existence of G×E interactions. Only for pronounced G×E interactions (rg=0.5), and for highly accurate GEBV for natural service bulls (rmg>0.9), results suggests the use of genotyped organic natural service bulls instead of implementing an AI program. Inbreeding coefficients of selected bulls and their offspring were generally lower when basing selection decisions for young bulls on GEBV compared with selection strategies based on pedigree indices.  相似文献   

12.
In order to optimize the use of genomic selection in breeding plans, it is essential to have reliable estimates of the genomic breeding values. This study investigated reliabilities of direct genomic values (DGVs) in the Jersey population estimated by three different methods. The validation methods were (i) fivefold cross-validation and (ii) validation on the most recent 3 years of bulls. The reliability of DGV was assessed using squared correlations between DGV and deregressed proofs (DRPs). In the recent 3-year validation model, estimated reliabilities were also used to assess the reliabilities of DGV. The data set consisted of 1003 Danish Jersey bulls with conventional estimated breeding values (EBVs) for 14 different traits included in the Nordic selection index. The bulls were genotyped for Single-nucleotide polymorphism (SNP) markers using the Illumina 54 K chip. A Bayesian method was used to estimate the SNP marker effects. The corrected squared correlations between DGV and DRP were on average across all traits 0.04 higher than the squared correlation between DRP and the pedigree index. This shows that there is a gain in accuracy due to incorporation of marker information compared with parent index pre-selection only. Averaged across traits, the estimates of reliability of DGVs ranged from 0.20 for validation on the most recent 3 years of bulls and up to 0.42 for expected reliabilities. Reliabilities from the cross-validation were on average 0.24. For the individual traits, the reliability varied from 0.12 (direct birth) to 0.39 (milk). Bulls whose sires were included in the reference group had an average reliability of 0.25, whereas the bulls whose sires were not included in the reference group had an average reliability that was 0.05 lower.  相似文献   

13.

Background

Genomic BLUP (GBLUP) can predict breeding values for non-phenotyped individuals based on the identity-by-state genomic relationship matrix (G). The G matrix can be constructed from thousands of markers spread across the genome. The strongest assumption of G and consequently of GBLUP is that all markers contribute equally to the genetic variance of a trait. This assumption is violated for traits that are controlled by a small number of quantitative trait loci (QTL) or individual QTL with large effects. In this paper, we investigate the performance of using a weighted genomic relationship matrix (wG) that takes into consideration the genetic architecture of the trait in order to improve predictive ability for a wide range of traits. Multiple methods were used to calculate weights for several economically relevant traits in US Holstein dairy cattle. Predictive performance was tested by k-means cross-validation.

Results

Relaxing the GBLUP assumption of equal marker contribution by increasing the weight that is given to a specific marker in the construction of the trait-specific G resulted in increased predictive performance. The increase was strongest for traits that are controlled by a small number of QTL (e.g. fat and protein percentage). Furthermore, bias in prediction estimates was reduced compared to that resulting from the use of regular G. Even for traits with low heritability and lower general predictive performance (e.g. calving ease traits), weighted G still yielded a gain in accuracy.

Conclusions

Genomic relationship matrices weighted by marker realized variance yielded more accurate and less biased predictions for traits regulated by few QTL. Genome-wide association analyses were used to derive marker weights for creating weighted genomic relationship matrices. However, this can be cumbersome and prone to low stability over generations because of erosion of linkage disequilibrium between markers and QTL. Future studies may include other sources of information, such as functional annotation and gene networks, to better exploit the genetic architecture of traits and produce more stable predictions.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-015-0100-1) contains supplementary material, which is available to authorized users.  相似文献   

14.
The uptake of genomic selection (GS) by the swine industry is still limited by the costs of genotyping. A feasible alternative to overcome this challenge is to genotype animals using an affordable low-density (LD) single nucleotide polymorphism (SNP) chip panel followed by accurate imputation to a high-density panel. Therefore, the main objective of this study was to screen incremental densities of LD panels in order to systematically identify one that balances the tradeoffs among imputation accuracy, prediction accuracy of genomic estimated breeding values (GEBVs), and genotype density (directly associated with genotyping costs). Genotypes using the Illumina Porcine60K BeadChip were available for 1378 Duroc (DU), 2361 Landrace (LA) and 3192 Yorkshire (YO) pigs. In addition, pseudo-phenotypes (de-regressed estimated breeding values) for five economically important traits were provided for the analysis. The reference population for genotyping imputation consisted of 931 DU, 1631 LA and 2103 YO animals and the remainder individuals were included in the validation population of each breed. A LD panel of 3000 evenly spaced SNPs (LD3K) yielded high imputation accuracy rates: 93.78% (DU), 97.07% (LA) and 97.00% (YO) and high correlations (>0.97) between the predicted GEBVs using the actual 60 K SNP genotypes and the imputed 60 K SNP genotypes for all traits and breeds. The imputation accuracy was influenced by the reference population size as well as the amount of parental genotype information available in the reference population. However, parental genotype information became less important when the LD panel had at least 3000 SNPs. The correlation of the GEBVs directly increased with an increase in imputation accuracy. When genotype information for both parents was available, a panel of 300 SNPs (imputed to 60 K) yielded GEBV predictions highly correlated (⩾0.90) with genomic predictions obtained based on the true 60 K panel, for all traits and breeds. For a small reference population size with no parents on reference population, it is recommended the use of a panel at least as dense as the LD3K and, when there are two parents in the reference population, a panel as small as the LD300 might be a feasible option. These findings are of great importance for the development of LD panels for swine in order to reduce genotyping costs, increase the uptake of GS and, therefore, optimize the profitability of the swine industry.  相似文献   

15.

Background

Long-term benefits in animal breeding programs require that increases in genetic merit be balanced with the need to maintain diversity (lost due to inbreeding). This can be achieved by using optimal contribution selection. The availability of high-density DNA marker information enables the incorporation of genomic data into optimal contribution selection but this raises the question about how this information affects the balance between genetic merit and diversity.

Methods

The effect of using genomic information in optimal contribution selection was examined based on simulated and real data on dairy bulls. We compared the genetic merit of selected animals at various levels of co-ancestry restrictions when using estimated breeding values based on parent average, genomic or progeny test information. Furthermore, we estimated the proportion of variation in estimated breeding values that is due to within-family differences.

Results

Optimal selection on genomic estimated breeding values increased genetic gain. Genetic merit was further increased using genomic rather than pedigree-based measures of co-ancestry under an inbreeding restriction policy. Using genomic instead of pedigree relationships to restrict inbreeding had a significant effect only when the population consisted of many large full-sib families; with a half-sib family structure, no difference was observed. In real data from dairy bulls, optimal contribution selection based on genomic estimated breeding values allowed for additional improvements in genetic merit at low to moderate inbreeding levels. Genomic estimated breeding values were more accurate and showed more within-family variation than parent average breeding values; for genomic estimated breeding values, 30 to 40% of the variation was due to within-family differences. Finally, there was no difference between constraining inbreeding via pedigree or genomic relationships in the real data.

Conclusions

The use of genomic estimated breeding values increased genetic gain in optimal contribution selection. Genomic estimated breeding values were more accurate and showed more within-family variation, which led to higher genetic gains for the same restriction on inbreeding. Using genomic relationships to restrict inbreeding provided no additional gain, except in the case of very large full-sib families.  相似文献   

16.

Background

The theory of genomic selection is based on the prediction of the effects of genetic markers in linkage disequilibrium with quantitative trait loci. However, genomic selection also relies on relationships between individuals to accurately predict genetic value. This study aimed to examine the importance of information on relatives versus that of unrelated or more distantly related individuals on the estimation of genomic breeding values.

Methods

Simulated and real data were used to examine the effects of various degrees of relationship on the accuracy of genomic selection. Genomic Best Linear Unbiased Prediction (gBLUP) was compared to two pedigree based BLUP methods, one with a shallow one generation pedigree and the other with a deep ten generation pedigree. The accuracy of estimated breeding values for different groups of selection candidates that had varying degrees of relationships to a reference data set of 1750 animals was investigated.

Results

The gBLUP method predicted breeding values more accurately than BLUP. The most accurate breeding values were estimated using gBLUP for closely related animals. Similarly, the pedigree based BLUP methods were also accurate for closely related animals, however when the pedigree based BLUP methods were used to predict unrelated animals, the accuracy was close to zero. In contrast, gBLUP breeding values, for animals that had no pedigree relationship with animals in the reference data set, allowed substantial accuracy.

Conclusions

An animal''s relationship to the reference data set is an important factor for the accuracy of genomic predictions. Animals that share a close relationship to the reference data set had the highest accuracy from genomic predictions. However a baseline accuracy that is driven by the reference data set size and the overall population effective population size enables gBLUP to estimate a breeding value for unrelated animals within a population (breed), using information previously ignored by pedigree based BLUP methods.  相似文献   

17.
Records on groups of individuals could be valuable for predicting breeding values when a trait is difficult or costly to measure on single individuals, such as feed intake and egg production. Adding genomic information has shown improvement in the accuracy of genetic evaluation of quantitative traits with individual records. Here, we investigated the value of genomic information for traits with group records. Besides, we investigated the improvement in accuracy of genetic evaluation for group-recorded traits when including information on a correlated trait with individual records. The study was based on a simulated pig population, including three scenarios of group structure and size. The results showed that both the genomic information and a correlated trait increased the accuracy of estimated breeding values (EBVs) for traits with group records. The accuracies of EBV obtained from group records with a size 24 were much lower than those with a size 12. Random assignment of animals to pens led to lower accuracy due to the weaker relationship between individuals within each group. It suggests that group records are valuable for genetic evaluation of a trait that is difficult to record on individuals, and the accuracy of genetic evaluation can be considerably increased using genomic information. Moreover, the genetic evaluation for a trait with group records can be greatly improved using a bivariate model, including correlated traits that are recorded individually. For efficient use of group records in genetic evaluation, relatively small group size and close relationships between individuals within one group are recommended.Subject terms: Genetic markers, Animal breeding  相似文献   

18.

Background

Since both the number of SNPs (single nucleotide polymorphisms) used in genomic prediction and the number of individuals used in training datasets are rapidly increasing, there is an increasing need to improve the efficiency of genomic prediction models in terms of computing time and memory (RAM) required.

Methods

In this paper, two alternative algorithms for genomic prediction are presented that replace the originally suggested residual updating algorithm, without affecting the estimates. The first alternative algorithm continues to use residual updating, but takes advantage of the characteristic that the predictor variables in the model (i.e. the SNP genotypes) take only three different values, and is therefore termed “improved residual updating”. The second alternative algorithm, here termed “right-hand-side updating” (RHS-updating), extends the idea of improved residual updating across multiple SNPs. The alternative algorithms can be implemented for a range of different genomic predictions models, including random regression BLUP (best linear unbiased prediction) and most Bayesian genomic prediction models. To test the required computing time and RAM, both alternative algorithms were implemented in a Bayesian stochastic search variable selection model.

Results

Compared to the original algorithm, the improved residual updating algorithm reduced CPU time by 35.3 to 43.3%, without changing memory requirements. The RHS-updating algorithm reduced CPU time by 74.5 to 93.0% and memory requirements by 13.1 to 66.4% compared to the original algorithm.

Conclusions

The presented RHS-updating algorithm provides an interesting alternative to reduce both computing time and memory requirements for a range of genomic prediction models.  相似文献   

19.
畜禽育种中传统上利用系谱信息评估群体近交程度?近年来随着高通量单核苷酸多态(single nucleotide polymorphism, SNP)检测成本降低,使利用基因组信息分析真实的基因组近交程度成为可能?本研究利用牛54 K SNP 芯片数据统计了北京地区2107头荷斯坦牛基因组上的长纯合片段(runs of homozygosity, ROH)的频率和分布,计算了2种基因组近交系数,即染色体上ROH的长度占基因组总长度的比例(Froh)及个体所有标记基因型中纯合子所占比例,即基因组纯合度(Fhom),进而分析了两种基因组近交系数之间的相关性以及基因组近交与系谱近交系数之间的相关性?结果表明,共检测到44 676个ROH片段,其长度主要分布在1~10 Mb之间?不同长度的ROH散布于个体基因组内,短ROH较长ROH更为常见?ROH在染色体上并非均匀分布,ROH频率最高的区域为10号染色体中部?两种基因组近交系数之间相关性很高(91%以上),但基因组近交与系谱近交之间的相关性较低(低于50%)?系谱完整性是影响基因组近交与系谱近交结果一致的重要因素,基因组近交系数能够反映个体真实的近交,本研究为评估群体近交水平提供了有力工具?  相似文献   

20.

Background

Genomic selection can increase genetic gain within aquaculture breeding programs, but the high costs related to high-density genotyping of a large number of individuals would make the breeding program expensive. In this study, a low-cost method using low-density genotyping of pre-selected candidates and their sibs was evaluated by stochastic simulation.

Methods

A breeding scheme with selection for two traits, one measured on candidates and one on sibs was simulated. Genomic breeding values were estimated within families and combined with conventional family breeding values for candidates that were pre-selected based on conventional BLUP breeding values. This strategy was compared with a conventional breeding scheme and a full genomic selection program for which genomic breeding values were estimated across the whole population. The effects of marker density, level of pre-selection and number of sibs tested and genotyped for the sib-trait were studied.

Results

Within-family genomic breeding values increased genetic gain by 15% and reduced rate of inbreeding by 15%. Genetic gain was robust to a reduction in marker density, with only moderate reductions, even for very low densities. Pre-selection of candidates down to approximately 10% of the candidates before genotyping also had minor effects on genetic gain, but depended somewhat on marker density. The number of test-individuals, i.e. individuals tested for the sib-trait, affected genetic gain, but the fraction of the test-individuals genotyped only affected the relative contribution of each trait to genetic gain.

Conclusions

A combination of genomic within-family breeding values, based on low-density genotyping, and conventional BLUP family breeding values was shown to be a possible low marker density implementation of genomic selection for species with large full-sib families for which the costs of genotyping must be kept low without compromising the effect of genomic selection on genetic gain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号