首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
IS256 is the founding member of the IS256 family of insertion sequence (IS) elements. These elements encode a poorly characterized transposase, which features a conserved DDE catalytic motif and produces circular IS intermediates. Here, we characterized the IS256 transposase as a DNA-binding protein and obtained insight into the subdomain organization and functional properties of this prototype enzyme of IS256 family transposases. Recombinant forms of the transposase were shown to bind specifically to inverted repeats present in the IS256 noncoding regions. A DNA-binding domain was identified in the N-terminal part of the transposase, and a mutagenesis study targeting conserved amino acid residues in this region revealed a putative helix-turn-helix structure as a key element involved in DNA binding. Furthermore, we obtained evidence to suggest that the terminal nucleotides of IS256 are critically involved in IS circularization. Although small deletions at both ends reduced the formation of IS circles, changes at the left-hand IS256 terminus proved to be significantly more detrimental to circle production. Taken together, the data lead us to suggest that the IS256 transposase-mediated circularization reaction preferentially starts with a sequence-specific first-strand cleavage at the left-hand IS terminus.IS256 is an insertion sequence widespread in the genomes of multiresistant enterococci and staphylococci (3). The element, which is 1,324 bp in size, consists of a single open reading frame encoding a transposase protein flanked by noncoding regions (NCRs) harboring imperfect inverted repeats (IRs) (see Fig. Fig.1A).1A). IS256 occurs in multiple free copies in its host genomes but is also known to form the ends of composite transposon Tn4001 conferring aminoglycoside resistance (29). In Staphylococcus epidermidis, IS256 has been identified as a typical marker of hospital-acquired multiresistant and biofilm-forming clones causing opportunistic infections in immunocompromised patients (11, 20-22, 26, 34). The element has been shown to trigger heterogeneous biofilm expression by reversible transposition into biofilm-associated genes and regulators (4, 5, 19, 49, 56). Also, IS256 has the capacity to influence antibiotic resistance, either by insertion into regulatory genes or by modulating antibiotic resistance gene expression through formation of strong hybrid promoters resulting from transposition into the neighborhood of antibiotic resistance genes (6, 18, 31, 32). Finally, multiple genomic IS256 copies may serve as crossover points for homologous recombination events and thereby play an important role in genome flexibility, adaptation, and evolution of staphylococcal and enterococcal genomes (29, 42, 55).Open in a separate windowFIG. 1.IS256 transposase binding to IS termini. (A) Genetic organization of IS256. The transposase gene (tnp) is flanked by NCRs that harbor imperfect IRs (IRL and IRR) at the ends of the element. The nucleotide sequence of the IRs is indicated by uppercase boldface letters, with nucleotide numbering referring to GenBank accession no. M18086. Insertion of IS256 into the S. epidermidis icaC gene on plasmid pIL2 (27) is shown, and black boxes mark the 8-bp target site duplications (TSDs) generated upon transposition of the element. Black bars at the top indicate localizations of DNA fragments used in the EMSAs presented in panels B to D. (B to D) EMSAs of purified IS256 transposase protein (CBP-Tnp) with various IS256-specific DNA fragments. A 15.5 nM concentration of an IS terminus (left)-carrying DNA fragment (B) or an IS terminus (right)-carrying DNA-fragment (C), as well as an interal IS256 fragment (D), were used with increasing amounts of protein. All experiments were performed in the presence of unspecific competitor [50 μg of poly(dI-dC) ml−1]. Molar ratios between DNA and protein comprised a range of 1:3 (50 nM CBP-Tnp) to 1:52 (800 nM CBP-Tnp).Given its important biological role, it is surprising that very little is known about the molecular function of IS256 and its lifestyle. Empirical analyses of IS256 insertion sites in various bacterial genomes and loci did not reveal nucleotide sequence specificity for target site selection (3, 29, 56). Typically, IS256 generates 8- or 9-bp target site duplications (TSDs) upon transposition that are caused by staggered nicks of the target DNA and refill of the resulting gaps by the host repair system (43). In the course of phase variation events, IS256 TSDs can be completely removed, with the original host sequence being restored (56). Such precise IS256 excisions are caused by an illegitimate recombination event that requires fully intact TSDs but no functional IS256 transposase (14). IS256 transposition itself was found to involve the formation of double-stranded circular IS256 molecules in which the insertion sequence (IS) ends abut, bridged by a few base pairs of host DNA originating from the original insertion site (27, 39). IS256 circle formation is a strictly transposase-dependent process and IS circles are regarded as transposition intermediates which are likely to be relinearized during transposition. However, details of the transposition reaction, including circle formation, putative relinearization, target site selection, and insertion of the element are far from being understood at the molecular level. We experimentally addressed here, for the first time for a bacterial transposase of the IS256 family, the DNA-binding properties of this protein. We identified a DNA-binding domain in the N-terminal region of the protein. The domain contains a putative classical helix-turn-helix (HTH) motif that is demonstrated to be involved in sequence-specific interactions of the IS256 transposase with the IRs present in the NCRs of the element. Moreover, we suggest a role for the terminal nucleotides of the IS256 nucleotide sequence in first-strand cleavage and subsequent circularization of the element.  相似文献   

3.
4.
5.
The genome of an Escherichia coli MC4100 strain with a λ placMu50 fusion revealed numerous regulatory differences from MG1655, including one that arose during laboratory storage. The 194 mutational differences between MC4100(MuLac) and other K-12 sequences were mostly allocated to specific lineages, indicating the considerable mutational divergence between K-12 strains.Strains of Escherichia coli K-12 commonly used in various laboratories were derived from a common ancestor, but different lineages have been exposed to various forms of mutagenesis, as well as recombinational crosses involving conjugation and transduction (1). Some K-12 strains were also recipients in crosses involving E. coli B donors, as happened with the common araD139 mutation from an E. coli B/r strain (7). Laboratories in earlier eras also used different culture and storage conditions, also potentially impacting genomic integrity, especially in the movement of insertion sequences and in polymorphisms arising during storage (20, 22). Here, we used genomics to analyze the chromosomal characteristics of a commonly used K-12 lineage with a history different from that of reference K-12 strains MG1655 and W3110 (13) and pieced together its derivation by using the origins of single-nucleotide polymorphisms (SNPs) and indels as markers.Strain MC4100 [genotype according to the E. coli Genetic Stock Center: F (araD139) Δ(argF-lac)169 λ e14 flhD5301 Δ(fruK-yeiR)725(fruA25) relA1 rpsL150(Strr) rbsR22 Δ(fimB-fimE)632(::IS1) deoC1] was obtained in a series of strain constructions (4) from an HfrC-derived MO strain of S. Brenner (genotype according to the E. coli Genetic Stock Center: F λ e14 relA1 rspL150 spoT1) (J. Beckwith, personal communication; 1, 6). Strain MC4100 has been widely adopted following studies involving lacZ reporter gene fusions in the Beckwith laboratory (4, 30, 31). MC4100 is an E. coli K-12 strain frequently used in fundamental studies of gene regulation and protein export (30) and bacterial growth and physiology, including cell division (33), DNA replication (16), metabolism (26), and stationary-phase regulation (18). MC4100 is also being used in systems biology approaches to defining E. coli (15) and as a starting strain in laboratory evolution experiments (21).The genome of strain MC4100 has been previously compared to that of reference strain MG1655 by restriction mapping (14) and using microarrays based on the MG1655 sequence (25). There are substantial band differences between MG1655 and MC4100 as determined by pulsed-field electrophoresis (14), and several deletions have been defined by microarray analysis, followed by PCR analysis of the flanking regions (25). The microarrays did not reveal differences other than deletions, but there remain differences between MC4100 and MG1655 that are unexplained by the known genotypes. Differences in the positions of insertion sequences in MG1655 and MC4100 influence anaerobic gene regulation (29), and another far-reaching difference is the level of sigma factor σS in the two widely used strains (17). There also appear to be differences in central metabolism between the K-12 strains (26), and a recent unexpected finding was the presence of a spoT1 mutation in MC4100 not previously defined in its widely cited genotype (32). Clearly, a full genome sequence of MC4100 would greatly benefit the interpretation of a wide range of fundamental studies.The strain of MC4100 sequenced here contains an additional element, a λ placMu50 operon fusion (3) in the malEFG operon (24). According to citations, this transposable reporter construct has been used in more than 100 studies of gene regulation but has not been fully sequenced. λ placMu50 was introduced into MC4100 to generate MC4100(MuLac) strain BW2952, the ancestor strain in experimental evolution experiments, because mal expression is a useful marker for detecting an assortment of regulatory mutations in evolving cultures (9, 23).  相似文献   

6.
Spores of Bacillus subtilis contain a number of small, acid-soluble spore proteins (SASP) which comprise up to 20% of total spore core protein. The multiple α/β-type SASP have been shown to confer resistance to UV radiation, heat, peroxides, and other sporicidal treatments. In this study, SASP-defective mutants of B. subtilis and spores deficient in dacB, a mutation leading to an increased core water content, were used to study the relative contributions of SASP and increased core water content to spore resistance to germicidal 254-nm and simulated environmental UV exposure (280 to 400 nm, 290 to 400 nm, and 320 to 400 nm). Spores of strains carrying mutations in sspA, sspB, and both sspA and sspB (lacking the major SASP-α and/or SASP-β) were significantly more sensitive to 254-nm and all polychromatic UV exposures, whereas the UV resistance of spores of the sspE strain (lacking SASP-γ) was essentially identical to that of the wild type. Spores of the dacB-defective strain were as resistant to 254-nm UV-C radiation as wild-type spores. However, spores of the dacB strain were significantly more sensitive than wild-type spores to environmental UV treatments of >280 nm. Air-dried spores of the dacB mutant strain had a significantly higher water content than air-dried wild-type spores. Our results indicate that α/β-type SASP and decreased spore core water content play an essential role in spore resistance to environmentally relevant UV wavelengths whereas SASP-γ does not.Spores of Bacillus spp. are highly resistant to inactivation by different physical stresses, such as toxic chemicals and biocidal agents, desiccation, pressure and temperature extremes, and high fluences of UV or ionizing radiation (reviewed in references 33, 34, and 48). Under stressful environmental conditions, cells of Bacillus spp. produce endospores that can stay dormant for extended periods. The reason for the high resistance of bacterial spores to environmental extremes lies in the structure of the spore. Spores possess thick layers of highly cross-linked coat proteins, a modified peptidoglycan spore cortex, a low core water content, and abundant intracellular constituents, such as the calcium chelate of dipicolinic acid and α/β-type small, acid-soluble spore proteins (α/β-type SASP), the last two of which protect spore DNA (6, 42, 46, 48, 52). DNA damage accumulated during spore dormancy is also efficiently repaired during spore germination (33, 47, 48). UV-induced DNA photoproducts are repaired by spore photoproduct lyase and nucleotide excision repair, DNA double-strand breaks (DSB) by nonhomologous end joining, and oxidative stress-induced apurinic/apyrimidinic (AP) sites by AP endonucleases and base excision repair (15, 26-29, 34, 43, 53, 57).Monochromatic 254-nm UV radiation has been used as an efficient and cost-effective means of disinfecting surfaces, building air, and drinking water supplies (31). Commonly used test organisms for inactivation studies are bacterial spores, usually spores of Bacillus subtilis, due to their high degree of resistance to various sporicidal treatments, reproducible inactivation response, and safety (1, 8, 19, 31, 48). Depending on the Bacillus species analyzed, spores are 10 to 50 times more resistant than growing cells to 254-nm UV radiation. In addition, most of the laboratory studies of spore inactivation and radiation biology have been performed using monochromatic 254-nm UV radiation (33, 34). Although 254-nm UV-C radiation is a convenient germicidal treatment and relevant to disinfection procedures, results obtained by using 254-nm UV-C are not truly representative of results obtained using UV wavelengths that endospores encounter in their natural environments (34, 42, 50, 51, 59). However, sunlight reaching the Earth''s surface is not monochromatic 254-nm radiation but a mixture of UV, visible, and infrared radiation, with the UV portion spanning approximately 290 to 400 nm (33, 34, 36). Thus, our knowledge of spore UV resistance has been constructed largely using a wavelength of UV radiation not normally reaching the Earth''s surface, even though ample evidence exists that both DNA photochemistry and microbial responses to UV are strongly wavelength dependent (2, 30, 33, 36).Of recent interest in our laboratories has been the exploration of factors that confer on B. subtilis spores resistance to environmentally relevant extreme conditions, particularly solar UV radiation and extreme desiccation (23, 28, 30, 34 36, 48, 52). It has been reported that α/β-type SASP but not SASP-γ play a major role in spore resistance to 254-nm UV-C radiation (20, 21) and to wet heat, dry heat, and oxidizing agents (48). In contrast, increased spore water content was reported to affect B. subtilis spore resistance to moist heat and hydrogen peroxide but not to 254-nm UV-C (12, 40, 48). However, the possible roles of SASP-α, -β, and -γ and core water content in spore resistance to environmentally relevant solar UV wavelengths have not been explored. Therefore, in this study, we have used B. subtilis strains carrying mutations in the sspA, sspB, sspE, sspA and sspB, or dacB gene to investigate the contributions of SASP and increased core water content to the resistance of B. subtilis spores to 254-nm UV-C and environmentally relevant polychromatic UV radiation encountered on Earth''s surface.  相似文献   

7.
8.
9.
10.
Cronobacter spp. are opportunistic food-borne pathogens that are responsible for rare but highly fatal cases of meningitis and necrotizing enterocolitis in neonates. While the operon responsible for yellow pigmentation in Cronobacter sakazakii strain ES5 was described recently, the involvement of additional genes in pigment expression and the influence of pigmentation on the fitness of Cronobacter spp. have not been investigated. Thus, the aim of this study was to identify further genes involved in pigment expression in Cronobacter sakazakii ES5 and to assess the influence of pigmentation on growth and persistence under conditions of environmental stress. A knockout library was created using random transposon mutagenesis. The screening of 9,500 mutants for decreased pigment production identified 30 colorless mutants. The mapping of transposon insertion sites revealed insertions in not only the carotenoid operon but also in various other genes involved in signal transduction, inorganic ions, and energy metabolism. To determine the effect of pigmentation on fitness, colorless mutants (ΔcrtE, ΔcrtX, and ΔcrtY) were compared to the yellow wild type using growth and inactivation experiments, a macrophage assay, and a phenotype array. Among other findings, the colorless mutants grew at significantly increased rates under osmotic stress compared to that of the yellow wild type while showing increased susceptibility to desiccation. Moreover, ΔcrtE and ΔcrtY exhibited increased sensitivity to UVB irradiation.Cronobacter spp. (formerly Enterobacter sakazakii) are opportunistic food-borne pathogens that cause rare but life-threatening cases of meningitis, necrotizing enterocolitis, and septicemia in neonates (7, 30, 39, 40). While the pathogen appears to be ubiquitous, powdered infant formula (PIF) has been implicated as the main source of Cronobacter infection, necessitating effective means of both detecting this organism and preventing contamination in the PIF production environment (14, 26, 40).Although white strains have been observed occasionally, the production of yellow pigment on tryptic soy agar (TSA) is still one of the key discriminative criteria in the identification of presumptive Cronobacter spp. isolates via the ISO/TS 22964 standard protocol (3, 6, 11, 25). Studies of which colorless or cream-white strains of Cronobacter spp. (formerly Enterobacter sakazakii) were identified have reported prevalence rates of 8, 13, and 21.4% (6, 11, 24).The pigment''s carotenogenic nature recently was identified in Cronobacter strain ES5 on a molecular and chemical level (31). Carotenoids are known to stabilize cellular membranes and influence membrane fluidity (13, 22, 48). Functioning as antioxidants, carotenoids scavenge reactive oxygen species (37, 54, 55). Moreover, pigments play a role in the survival of bacteria in harmful environments and have been found to increase the virulence of pathogens such as Staphylococcus aureus and Erwinia chrysanthemi (32, 33, 44, 55). In Cronobacter strain ES5, a gene cluster comprised of seven genes (crtE-idi- crtXYIBZ) was found to be responsible for carotenoid biosynthesis (31). While the study mentioned above identified the operon responsible for carotenoid production, the involvement of other genes in pigment expression has not been investigated.Because no research exists on the influence of pigmentation on the fitness and persistence of Cronobacter spp., the potential implications of failing to detect colorless strains of this organism in the PIF production environment are difficult to assess. Thus, the aim of this study was to further describe the genetic basis of the pigmented phenotype of Cronobacter strain ES5 by isolating and characterizing isogenic white mutants via random transposon mutagenesis and subsequent sequencing, and to identify the impact of pigmentation on persistence and growth under conditions of environmental stress by comparing white mutants to the yellow wild type in a variety of growth and inactivation experiments, a macrophage assay, and a phenotype array.  相似文献   

11.
12.
Recently, methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant Staphylococcus pseudintermedius (MRSP) have been increasingly isolated from veterinarians and companion animals. With a view to preventing the spread of MRSA and MRSP, we evaluated the occurrence and molecular characteristics of each in a veterinary college. MRSA and MRSP were isolated from nasal samples from veterinarians, staff members, and veterinary students affiliated with a veterinary hospital. Using stepwise logistic regression, we identified two factors associated with MRSA carriage: (i) contact with an identified animal MRSA case (odds ratio [OR], 6.9; 95% confidence interval [95% CI], 2.2 to 21.6) and (ii) being an employee (OR, 6.2; 95% CI, 2.0 to 19.4). The majority of MRSA isolates obtained from individuals affiliated with the veterinary hospital and dog patients harbored spa type t002 and a type II staphylococcal cassette chromosome mec (SCCmec), similar to the hospital-acquired MRSA isolates in Japan. MRSA isolates harboring spa type t008 and a type IV SCCmec were obtained from one veterinarian on three different sampling occasions and also from dog patients. MRSA carriers can also be a source of MRSA infection in animals. The majority of MRSP isolates (85.2%) carried hybrid SCCmec type II-III, and almost all the remaining MRSP isolates (11.1%) carried SCCmec type V. MRSA and MRSP were also isolated from environmental samples collected from the veterinary hospital (5.1% and 6.4%, respectively). The application of certain disinfection procedures is important for the prevention of nosocomial infection, and MRSA and MRSP infection control strategies should be adopted in veterinary medical practice.Methicillin-resistant Staphylococcus aureus (MRSA) is an important cause of nosocomial infections in human hospitals. The prevalence of hospital-acquired MRSA (HA-MRSA) infection among inpatients in intensive care units (ICUs) continues to increase steadily in Japan. Recently, cases of community-acquired MRSA (CA-MRSA) have been documented in persons without an established risk factor for HA-MRSA infection (14, 32, 36, 49).There has also been an increase in the number of reports of the isolation of MRSA from veterinarians and companion animals (5, 21, 23-26, 28, 31, 34, 38, 44, 50, 51, 53). Values reported for the prevalence of MRSA among veterinary staff include 17.9% in the United Kingdom (21), 10% in Japan (38), 3.9% in Scotland (13), and 3.0% in Denmark (28). Loeffler et al. reported that the prevalence of MRSA among dog patients and healthy dogs owned by veterinary staff members was 8.9% (21). In Japan, an MRSA isolate was detected in only one inpatient dog (3.8%) and could not be detected in any of 31 outpatient dogs (38). In the United States, MRSA isolates were detected in both dog (0.1%) and cat (0.1%) patients (31). The prevalence of MRSA among healthy dogs has been reported to be 0.7% (5). Hanselman et al. suggested that MRSA colonization may be an occupational risk for large-animal veterinarians (12). Recently, Burstiner et al. reported that the frequency of MRSA colonization among companion-animal veterinary personnel was equal to the frequency among large-animal veterinary personnel (6).In addition, other methicillin-resistant coagulase-positive staphylococci (MRCPS), such as methicillin-resistant Staphylococcus pseudintermedius (MRSP) and methicillin-resistant Staphylococcus schleiferi (MRSS), isolated from dogs, cats, and a veterinarian have been reported (11, 31, 38, 40, 52). MRSP isolates have also been detected among inpatient dogs (46.2%) and outpatient dogs (19.4%) in a Japanese veterinary teaching hospital (38). In Canada, however, MRSP and MRSS isolates were detected in only 2.1% and 0.5% of dog patients, respectively (11).Methicillin-resistant staphylococci produce penicillin-binding protein 2′, which reduces their affinity for β-lactam antibiotics. This protein is encoded by the mecA gene (48), which is carried on the staphylococcal cassette chromosome mec (SCCmec). SCCmec is a mobile genetic element characterized by the combination of the mec and ccr complexes (16), and it is classified into subtypes according to differences in the junkyard regions (43). SCCmec typing can be used as a molecular tool (22, 27, 30, 33, 36, 55) for examining the molecular epidemiology of methicillin-resistant staphylococci.In this study, we investigated the occurrence and characteristics of MRCPS isolates in a veterinary hospital in order to establish the transmission route of MRCPS in a veterinary hospital and with a view to preventing the spread of MRCPS infection. In addition, we evaluated the factors associated with MRCPS. Further, as Heller et al. have reported the distribution of MRSA within veterinary hospital environments and suggested the necessity to review cleaning protocols of hospital environments (13), we also attempted to isolate MRCPS from environmental samples collected in a veterinary hospital for an evaluation of MRSA transmission cycle though environmental surfaces in the veterinary hospital.  相似文献   

13.
14.
Soil substrate membrane systems allow for microcultivation of fastidious soil bacteria as mixed microbial communities. We isolated established microcolonies from these membranes by using fluorescence viability staining and micromanipulation. This approach facilitated the recovery of diverse, novel isolates, including the recalcitrant bacterium Leifsonia xyli, a plant pathogen that has never been isolated outside the host.The majority of bacterial species have never been recovered in the laboratory (1, 14, 19, 24). In the last decade, novel cultivation approaches have successfully been used to recover “unculturables” from a diverse range of divisions (23, 25, 29). Most strategies have targeted marine environments (4, 23, 25, 32), but soil offers the potential for the investigation of vast numbers of undescribed species (20, 29). Rapid advances have been made toward culturing soil bacteria by reformulating and diluting traditional media, extending incubation times, and using alternative gelling agents (8, 21, 29).The soil substrate membrane system (SSMS) is a diffusion chamber approach that uses extracts from the soil of interest as the growth substrate, thereby mimicking the environment under investigation (12). The SSMS enriches for slow-growing oligophiles, a proportion of which are subsequently capable of growing on complex media (23, 25, 27, 30, 32). However, the SSMS results in mixed microbial communities, with the consequent difficulty in isolation of individual microcolonies for further characterization (10).Micromanipulation has been widely used for the isolation of specific cell morphotypes for downstream applications in molecular diagnostics or proteomics (5, 15). This simple technology offers the opportunity to select established microcolonies of a specific morphotype from the SSMS when combined with fluorescence visualization (3, 11). Here, we have combined the SSMS, fluorescence viability staining, and advanced micromanipulation for targeted isolation of viable, microcolony-forming soil bacteria.  相似文献   

15.
Phenoxyalkanoic acid (PAA) herbicides are widely used in agriculture. Biotic degradation of such herbicides occurs in soils and is initiated by α-ketoglutarate- and Fe2+-dependent dioxygenases encoded by tfdA-like genes (i.e., tfdA and tfdAα). Novel primers and quantitative kinetic PCR (qPCR) assays were developed to analyze the diversity and abundance of tfdA-like genes in soil. Five primer sets targeting tfdA-like genes were designed and evaluated. Primer sets 3 to 5 specifically amplified tfdA-like genes from soil, and a total of 437 sequences were retrieved. Coverages of gene libraries were 62 to 100%, up to 122 genotypes were detected, and up to 389 genotypes were predicted to occur in the gene libraries as indicated by the richness estimator Chao1. Phylogenetic analysis of in silico-translated tfdA-like genes indicated that soil tfdA-like genes were related to those of group 2 and 3 Bradyrhizobium spp., Sphingomonas spp., and uncultured soil bacteria. Soil-derived tfdA-like genes were assigned to 11 clusters, 4 of which were composed of novel sequences from this study, indicating that soil harbors novel and diverse tfdA-like genes. Correlation analysis of 16S rRNA and tfdA-like gene similarity indicated that any two bacteria with D > 20% of group 2 tfdA-like gene-derived protein sequences belong to different species. Thus, data indicate that the soil analyzed harbors at least 48 novel bacterial species containing group 2 tfdA-like genes. Novel qPCR assays were established to quantify such new tfdA-like genes. Copy numbers of tfdA-like genes were 1.0 × 106 to 65 × 106 per gram (dry weight) soil in four different soils, indicating that hitherto-unknown, diverse tfdA-like genes are abundant in soils.Phenoxyalkanoic acid (PAA) herbicides such as MCPA (4-chloro-2-methyl-phenoxyacetic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid) are widely used to control broad-leaf weeds in agricultural as well as nonagricultural areas (19, 77). Degradation occurs primarily under oxic conditions in soil, and microorganisms play a key role in the degradation of such herbicides in soil (62, 64). Although relatively rapidly degraded in soil (32, 45), both MCPA and 2,4-D are potential groundwater contaminants (10, 56, 70), accentuating the importance of bacterial PAA herbicide-degrading bacteria in soils (e.g., references 3, 5, 6, 20, 41, 59, and 78).Degradation can occur cometabolically or be associated with energy conservation (15, 54). The first step in the degradation of 2,4-D and MCPA is initiated by the product of cadAB or tfdA-like genes (29, 30, 35, 67), which constitutes an α-ketoglutarate (α-KG)- and Fe2+-dependent dioxygenase. TfdA removes the acetate side chain of 2,4-D and MCPA to produce 2,4-dichlorophenol and 4-chloro-2-methylphenol, respectively, and glyoxylate while oxidizing α-ketoglutarate to CO2 and succinate (16, 17).Organisms capable of PAA herbicide degradation are phylogenetically diverse and belong to the Alpha-, Beta-, and Gammproteobacteria and the Bacteroidetes/Chlorobi group (e.g., references 2, 14, 29-34, 39, 60, 68, and 71). These bacteria harbor tfdA-like genes (i.e., tfdA or tfdAα) and are categorized into three groups on an evolutionary and physiological basis (34). The first group consists of beta- and gammaproteobacteria and can be further divided into three distinct classes based on their tfdA genes (30, 46). Class I tfdA genes are closely related to those of Cupriavidus necator JMP134 (formerly Ralstonia eutropha). Class II tfdA genes consist of those of Burkholderia sp. strain RASC and a few strains that are 76% identical to class I tfdA genes. Class III tfdA genes are 77% identical to class I and 80% identical to class II tfdA genes and linked to MCPA degradation in soil (3). The second group consists of alphaproteobacteria, which are closely related to Bradyrhizobium spp. with tfdAα genes having 60% identity to tfdA of group 1 (18, 29, 34). The third group also harbors the tfdAα genes and consists of Sphingomonas spp. within the alphaproteobacteria (30).Diverse PAA herbicide degraders of all three groups were identified in soil by cultivation-dependent studies (32, 34, 41, 78). Besides CadAB, TfdA and certain TfdAα proteins catalyze the conversion of PAA herbicides (29, 30, 35). All groups of tfdA-like genes are potentially linked to the degradation of PAA herbicides, although alternative primary functions of group 2 and 3 TfdAs have been proposed (30, 35). However, recent cultivation-independent studies focused on 16S rRNA genes or solely on group 1 tfdA sequences in soil (e.g., references 3-5, 13, and 41). Whether group 2 and 3 tfdA-like genes are also quantitatively linked to the degradation of PAA herbicides in soils is unknown. Thus, tools to target a broad range of tfdA-like genes are needed to resolve such an issue. Primers used to assess the diversity of tfdA-like sequences used in previous studies were based on the alignment of approximately 50% or less of available sequences to date (3, 20, 29, 32, 39, 47, 58, 73). Primers specifically targeting all major groups of tfdA-like genes to assess and quantify a broad diversity of potential PAA degraders in soil are unavailable. Thus, the objectives of this study were (i) to develop primers specific for all three groups of tfdA-like genes, (ii) to establish quantitative kinetic PCR (qPCR) assays based on such primers for different soil samples, and (iii) to assess the diversity and abundance of tfdA-like genes in soil.  相似文献   

16.
Several mycoplasma species feature a membrane protrusion at a cell pole, and unknown mechanisms provide gliding motility in the direction of the pole defined by the protrusion. Mycoplasma gallisepticum, an avian pathogen, is known to form a membrane protrusion composed of bleb and infrableb and to glide. Here, we analyzed the gliding motility of M. gallisepticum cells in detail. They glided in the direction of the bleb at an average speed of 0.4 μm/s and remained attached around the bleb to a glass surface, suggesting that the gliding mechanism is similar to that of a related species, Mycoplasma pneumoniae. Next, to elucidate the cytoskeletal structure of M. gallisepticum, we stripped the envelopes by treatment with Triton X-100 under various conditions and observed the remaining structure by negative-staining transmission electron microscopy. A unique cytoskeletal structure, about 300 nm long and 100 nm wide, was found in the bleb and infrableb. The structure, resembling an asymmetrical dumbbell, is composed of five major parts from the distal end: a cap, a small oval, a rod, a large oval, and a bowl. Sonication likely divided the asymmetrical dumbbell into a core and other structures. The cytoskeletal structures of M. gallisepticum were compared with those of M. pneumoniae in detail, and the possible protein components of these structures were considered.Mycoplasmas are commensal and occasionally pathogenic bacteria that lack a peptidoglycan layer (50). Several species feature a membrane protrusion at a pole; for Mycoplasma mobile, this protrusion is called the head, and for Mycoplasma pneumoniae, it is called the attachment organelle (25, 34-37, 52, 54, 58). These species bind to solid surfaces, such as glass and animal cell surfaces, and exhibit gliding motility in the direction of the protrusion (34-37). This motility is believed to be essential for the mycoplasmas'' pathogenicity (4, 22, 27, 36). Recently, the proteins directly involved in the gliding mechanisms of mycoplasmas were identified and were found to have no similarities to those of known motility systems, including bacterial flagellum, pilus, and slime motility systems (25, 34-37).Mycoplasma gallisepticum is an avian pathogen that causes serious damage to the production of eggs for human consumption (50). The cells are pear-shaped and have a membrane protrusion, consisting of the so-called bleb and infrableb (29), and gliding motility (8, 14, 22). Their putative cytoskeletal structures may maintain this characteristic morphology because M. gallisepticum, like other mycoplasma species, does not have a cell wall (50). In sectioning electron microscopy (EM) studies of M. gallisepticum, an intracellular electron-dense structure in the bleb and infrableb was observed, suggesting the existence of a cytoskeletal structure (7, 24, 29, 37, 58). Recently, the existence of such a structure has been confirmed by scanning EM of the structure remaining after Triton X-100 extraction (13), although the details are still unclear.A human pathogen, M. pneumoniae, has a rod-shaped cytoskeletal structure in the attachment organelle (9, 15, 16, 31, 37, 57). M. gallisepticum is related to M. pneumoniae (63, 64), as represented by 90.3% identity between the 16S rRNA sequences, and it has some open reading frames (ORFs) homologous to the component proteins of the cytoskeletal structures of M. pneumoniae (6, 17, 48). Therefore, the cytoskeletal structures of M. gallisepticum are expected to be similar to those of M. pneumoniae, as scanning EM images also suggest (13).The fastest-gliding species, M. mobile, is more distantly related to M. gallisepticum; it has novel cytoskeletal structures that have been analyzed through negative-staining transmission EM after extraction by Triton X-100 with image averaging (45). This method of transmission EM following Triton X-100 extraction clearly showed a cytoskeletal “jellyfish” structure. In this structure, a solid oval “bell,” about 235 nm wide and 155 nm long, is filled with a 12-nm hexagonal lattice. Connected to this bell structure are dozens of flexible “tentacles” that are covered with particles 20 nm in diameter at intervals of about 30 nm. The particles appear to have 180° rotational symmetry and a dimple at the center. The involvement of this cytoskeletal structure in the gliding mechanism was suggested by its cellular localization and by analyses of mutants lacking proteins essential for gliding.In the present study, we applied this method to M. gallisepticum and analyzed its unique cytoskeletal structure, and we then compared it with that of M. pneumoniae.  相似文献   

17.
We report here the isolation and recombinational cloning of a large plasmid, pZL12, from endophytic Streptomyces sp. 9R-2. pZL12 comprises 90,435 bp, encoding 112 genes, 30 of which are organized in a large operon resembling bacteriophage genes. A replication locus (repA) and a conjugal transfer locus (traA-traC) were identified in pZL12. Surprisingly, the supernatant of a 9R-2 liquid culture containing partially purified phage particles infected 9R-2 cured of pZL12 (9R-2X) to form plaques, and a phage particle (φZL12) was observed by transmission electron microscopy. Major structural proteins (capsid, portal, and tail) of φZL12 virions were encoded by pZL12 genes. Like bacteriophage P1, linear φZL12 DNA contained ends from a largely random pZL12 sequence. There was also a hot end sequence in linear φZL12. φZL12 virions efficiently infected only one host, 9R-2X, but failed to infect and form plaques in 18 other Streptomyces strains. Some 9R-2X spores rescued from lysis by infection of φZL12 virions contained a circular pZL12 plasmid, completing a cycle comprising autonomous plasmid pZL12 and lytic phage φZL12. These results confirm pZL12 as the first example of a plasmid-phage in Streptomyces.Streptomyces species, a major source of antibiotics and pharmacologically active metabolites, are Gram-positive, mycelial bacteria with high G+C content in their DNA (15). They usually harbor conjugative circular and/or linear plasmids, propagating in autonomous and/or chromosomally integrated forms (14). Most Streptomyces circular plasmids reported are small (8 to 14 kb), including rolling-circle-replication (RCR) plasmids (pIJ101, pJV1, pSG5, pSN22, pSVH1, pSB24.2, pSY10, pSNA1, pSLG33, pEN2701, etc.) (12, 14) and chromosomally integrating/autonomous plasmids (SLP1 and pSAM2) (4, 27, 28). Some theta replication plasmids are of intermediate size (31 to 39 kb), such as SCP2, pFP1, and pFP11 (13, 40). These theta replication loci comprise a rep gene and an adjacent noncoding or iteron sequence, to which Rep protein binds specifically in vitro (10, 40). The occurrence of an ∼163-kb large plasmid, pSV1, in Streptomyces violaceoruber SANK95570 was confirmed (1, 37), but this plasmid could not be physically isolated by standard procedures for plasmid preparation (17). In contrast to more than 30 genes for conjugal transfer on the Escherichia coli F plasmid (20), Streptomyces plasmids usually need a single tra gene (encoding a DNA translocase containing a cell division FtsK/SpoIIIE domain) (15, 29). The transfer of Streptomyces circular plasmids involves binding of the nonnicked double-stranded DNA (dsDNA) by multimers of Tra proteins at a noncoding sequence and ATP hydrolysis-dependent translocation of this DNA through the hyphal tips of the Streptomyces mycelium (15, 32).Numerous Streptomyces phages have been described, including φC31 (22), SAt1 (26), TG1 (11), FP43 (24), φSPK1 (19), φSC623 (34), DAH2/DAH4/DAH5/DAH6 (6), and mu1/6 (9). They range in size from 36 kb (19) to 121 kb (6), with 50 to 71.2% GC content (9, 23, 35). Streptomyces phages often have a wide host range; for example, 16 of 27 Streptomyces strains are susceptible to infection by φSPK1 (19), and phage FP43 transduces species of Streptoverticillium, Chainia, and Sacchropolyspora (24). φC31 is the most-studied Streptomyces phage and cloning vector (8). The sequences of the φC31 head proteins (e.g., portal, capsid, and head protease) resemble those of other bacterial dsDNA phages, suggesting evolutionary relationships to other viruses (35).We report here the isolation and recombinational cloning of a 90,435-bp plasmid, pZL12, from endophytic Streptomyces sp. 9R-2 and the characterization of its replication and transfer. Surprisingly, the supernatant of 9R-2 liquid culture infected 9R-2 cured of pZL12 to form plaques. A cycle comprising autonomous plasmid pZL12 and lytic phage φZL12 is described.  相似文献   

18.
Adhesive pili on the surface of the serotype M1 Streptococcus pyogenes strain SF370 are composed of a major backbone subunit (Spy0128) and two minor subunits (Spy0125 and Spy0130), joined covalently by a pilin polymerase (Spy0129). Previous studies using recombinant proteins showed that both minor subunits bind to human pharyngeal (Detroit) cells (A. G. Manetti et al., Mol. Microbiol. 64:968-983, 2007), suggesting both may act as pilus-presented adhesins. While confirming these binding properties, studies described here indicate that Spy0125 is the pilus-presented adhesin and that Spy0130 has a distinct role as a wall linker. Pili were localized predominantly to cell wall fractions of the wild-type S. pyogenes parent strain and a spy0125 deletion mutant. In contrast, they were found almost exclusively in culture supernatants in both spy0130 and srtA deletion mutants, indicating that the housekeeping sortase (SrtA) attaches pili to the cell wall by using Spy0130 as a linker protein. Adhesion assays with antisera specific for individual subunits showed that only anti-rSpy0125 serum inhibited adhesion of wild-type S. pyogenes to human keratinocytes and tonsil epithelium to a significant extent. Spy0125 was localized to the tip of pili, based on a combination of mutant analysis and liquid chromatography-tandem mass spectrometry analysis of purified pili. Assays comparing parent and mutant strains confirmed its role as the adhesin. Unexpectedly, apparent spontaneous cleavage of a labile, proline-rich (8 of 14 residues) sequence separating the N-terminal ∼1/3 and C-terminal ∼2/3 of Spy0125 leads to loss of the N-terminal region, but analysis of internal spy0125 deletion mutants confirmed that this has no significant effect on adhesion.The group A Streptococcus (S. pyogenes) is an exclusively human pathogen that commonly colonizes either the pharynx or skin, where local spread can give rise to various inflammatory conditions such as pharyngitis, tonsillitis, sinusitis, or erysipelas. Although often mild and self-limiting, GAS infections are occasionally very severe and sometimes lead to life-threatening diseases, such as necrotizing fasciitis or streptococcal toxic shock syndrome. A wide variety of cell surface components and extracellular products have been shown or suggested to play important roles in S. pyogenes virulence, including cell surface pili (1, 6, 32). Pili expressed by the serotype M1 S. pyogenes strain SF370 mediate specific adhesion to intact human tonsil epithelia and to primary human keratinocytes, as well as cultured keratinocyte-derived HaCaT cells, but not to Hep-2 or A549 cells (1). They also contribute to adhesion to a human pharyngeal cell line (Detroit cells) and to biofilm formation (29).Over the past 5 years, pili have been discovered on an increasing number of important Gram-positive bacterial pathogens, including Bacillus cereus (4), Bacillus anthracis (4, 5), Corynebacterium diphtheriae (13, 14, 19, 26, 27, 44, 46, 47), Streptococcus agalactiae (7, 23, 38), and Streptococcus pneumoniae (2, 3, 24, 25, 34), as well as S. pyogenes (1, 29, 32). All these species produce pili that are composed of a single major subunit plus either one or two minor subunits. During assembly, the individual subunits are covalently linked to each other via intermolecular isopeptide bonds, catalyzed by specialized membrane-associated transpeptidases that may be described as pilin polymerases (4, 7, 25, 41, 44, 46). These are related to the classical housekeeping sortase (usually, but not always, designated SrtA) that is responsible for anchoring many proteins to Gram-positive bacterial cell walls (30, 31, 33). The C-terminal ends of sortase target proteins include a cell wall sorting (CWS) motif consisting, in most cases, of Leu-Pro-X-Thr-Gly (LPXTG, where X can be any amino acid) (11, 40). Sortases cleave this substrate between the Thr and Gly residues and produce an intermolecular isopeptide bond linking the Thr to a free amino group provided by a specific target. In attaching proteins to the cell wall, the target amino group is provided by the lipid II peptidoglycan precursor (30, 36, 40). In joining pilus subunits, the target is the ɛ-amino group in the side chain of a specific Lys residue in the second subunit (14, 18, 19). Current models of pilus biogenesis envisage repeated transpeptidation reactions adding additional subunits to the base of the growing pilus, until the terminal subunit is eventually linked covalently via an intermolecular isopeptide bond to the cell wall (28, 41, 45).The major subunit (sometimes called the backbone or shaft subunit) extends along the length of the pilus and appears to play a structural role, while minor subunits have been detected either at the tip, the base, and/or at occasional intervals along the shaft, depending on the species (4, 23, 24, 32, 47). In S. pneumoniae and S. agalactiae one of the minor subunits acts as an adhesin, while the second appears to act as a linker between the base of the assembled pilus and the cell wall (7, 15, 22, 34, 35). It was originally suggested that both minor subunits of C. diphtheriae pili could act as adhesins (27). However, recent data showed one of these has a wall linker role (26, 44) and may therefore not function as an adhesin.S. pyogenes strain SF370 pili are composed of a major (backbone) subunit, termed Spy0128, plus two minor subunits, called Spy0125 and Spy0130 (1, 32). All three are required for efficient adhesion to target cells (1). Studies employing purified recombinant proteins have shown that both of the minor subunits, but not the major subunit, bind to Detroit cells (29), suggesting both might act as pilus-presented adhesins. Here we report studies employing a combination of recombinant proteins, specific antisera, and allelic replacement mutants which show that only Spy0125 is the pilus-presented adhesin and that Spy0130 has a distinct role in linking pili to the cell wall.  相似文献   

19.
20.
Here, we report a fluorescence in situ hybridization (FISH) method for rapid detection of Cronobacter strains in powdered infant formula (PIF) using a novel peptide nucleic acid (PNA) probe. Laboratory tests with several Enterobacteriaceae species showed that the specificity and sensitivity of the method were 100%. FISH using PNA could detect as few as 1 CFU per 10 g of Cronobacter in PIF after an 8-h enrichment step, even in a mixed population containing bacterial contaminants.Cronobacter strains were originally described as Enterobacter sakazakii (12), but they are now known to comprise a novel genus consisting of six separate genomospecies (20, 21). These opportunistic pathogens are ubiquitous in the environment and various types of food and are occasionally found in the normal human flora (11, 12, 16, 32, 47). Based on case reports, Cronobacter infections in adults are generally less severe than Cronobacter infections in newborn infants, with which a high fatality rate is associated (24).The ability to detect Cronobacter and trace possible sources of infection is essential as a means of limiting the impact of these organisms on neonatal health and maintaining consumer confidence in powdered infant formula (PIF). Conventional methods, involving isolation of individual colonies followed by biochemical identification, are more time-consuming than molecular methods, and the reliability of some currently proposed culture-based methods has been questioned (28). Recently, several PCR-based techniques have been described (23, 26, 28-31, 38). These techniques are reported to be efficient even when low levels of Cronobacter cells are found in a sample (0.36 to 66 CFU/100 g). However, PCR requires DNA extraction and does not allow direct, in situ visualization of the bacterium in a sample.Fluorescence in situ hybridization (FISH) is a method that is commonly used for bacterial identification and localization in samples. This method is based on specific binding of nucleic acid probes to particular DNA or RNA target regions (1, 2). rRNA has been regarded as the most suitable target for bacterial FISH, allowing differentiation of potentially viable cells. Traditionally, FISH methods are based on the use of conventional DNA oligonucleotide probes, and a commercial system, VIT-E sakazakii (Vermicon A.G., Munich, Germany), has been developed based on this technology (25). However, a recently developed synthetic DNA analogue, peptide nucleic acid (PNA), has been shown to provide improved hybridization performance compared to DNA probes, making FISH procedures easier and more efficient (41). Taking advantage of the PNA properties, FISH using PNA has been successfully used for detection of several clinically relevant microorganisms (5, 15, 17, 27, 34-36).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号