首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prion disorders are associated with the accumulation of a misfolded form (PrPSc) of the normal prion protein, PrPC. Here, we show that estrogen acts as a regulator of the processes of both prion infection and prion maintenance. Estrogen was found to be cell biased in its effect; it protected cells against prion infection in a prevention mode and enabled prion maintenance in a treatment mode. These processes were regulated by the estrogen receptor subtypes Erα and Erβ. By using specific receptor agonists, Erα was found to be the main receptor active in slowing prion infection, whereas in chronically infected cells, although Erα allowed partial maintenance of PrPSc levels, Erβ was the main receptor involved in maintaining PrPSc in a treatment paradigm. A cell-biased effect of estrogen has been reported for other neurodegenerative disorders, including Alzheimer''s disease. Estrogen''s effect is dependent on the cell''s health status, which impacts the use of estrogen. This work also identified that by targeting the estrogen receptors with the selective estrogen receptor modulators tamoxifen (Tam) and 4-hydroxy-tamoxifen (OHT), PrPSc could be cleared from prion-infected cell culture. Tam and OHT had half-maximal inhibitory concentrations for clearance of PrPSc of 0.47 μM and 0.14 nM, respectively. This work identifies further factors involved in the prion disease process, and through antagonism of the estrogen system, we demonstrate that the estrogen system is a target for controlling PrPSc levels.  相似文献   

2.
Conversion of prion protein (PrPC) into a pathological isoform (PrPSc) during prion infection occurs in lipid rafts and is dependent on cholesterol. Here, we show that prion infection increases the abundance of cholesterol transporter, ATP-binding cassette transporter type A1 (ATP-binding cassette transporter type A1), but reduces cholesterol efflux from neuronal cells leading to the accumulation of cellular cholesterol. Increased abundance of ABCA1 in prion disease was confirmed in prion-infected mice. Mechanistically, conversion of PrPC to the pathological isoform led to PrPSc accumulation in rafts, displacement of ABCA1 from rafts and the cell surface, and enhanced internalization of ABCA1. These effects were abolished with reversal of prion infection or by loading cells with cholesterol. Stimulation of ABCA1 expression with liver X receptor agonist or overexpression of heterologous ABCA1 reduced the conversion of prion protein into the pathological form upon infection. These findings demonstrate a reciprocal connection between prion infection and cellular cholesterol metabolism, which plays an important role in the pathogenesis of prion infection in neuronal cells.  相似文献   

3.
In most transmissible spongiform encephalopathies prions accumulate in the lymphoreticular system (LRS) long before they are detectable in the central nervous system. While a considerable body of evidence showed that B lymphocytes and follicular dendritic cells play a major role in prion colonization of lymphoid organs, the contribution of various other cell types, including antigen-presenting cells, to the accumulation and the spread of prions in the LRS are not well understood. A comprehensive study to compare prion titers of candidate cell types has not been performed to date, mainly due to limitations in the scope of animal bioassays where prohibitively large numbers of mice would be required to obtain sufficiently accurate data. By taking advantage of quantitative in vitro prion determination and magnetic-activated cell sorting, we studied the kinetics of prion accumulation in various splenic cell types at early stages of prion infection. Robust estimates for infectious titers were obtained by statistical modelling using a generalized linear model. Whilst prions were detectable in B and T lymphocytes and in antigen-presenting cells like dendritic cells and macrophages, highest infectious titers were determined in two cell types that have previously not been associated with prion pathogenesis, plasmacytoid dendritic (pDC) and natural killer (NK) cells. At 30 days after infection, NK cells were more than twice, and pDCs about seven-fold, as infectious as lymphocytes respectively. This result was unexpected since, in accordance to previous reports prion protein, an obligate requirement for prion replication, was undetectable in pDCs. This underscores the importance of prion sequestration and dissemination by antigen-presenting cells which are among the first cells of the immune system to encounter pathogens. We furthermore report the first evidence for a release of prions from lymphocytes and DCs of scrapie-infected mice ex vivo, a process that is associated with a release of exosome-like membrane vesicles.  相似文献   

4.
Mice overexpressing the prion protein (PrP) sequence from various host species are widely used for measuring infectious titers in prion disease. However, the impact that the transgene expression level might have on the susceptibility to infection raises some concerns about the final biological relevance of these models. Here we report that endpoint titration of a sheep scrapie isolate in sheep and in mice overexpressing the ovine PrP results in similar estimates of the infectious titer.  相似文献   

5.
The prion hypothesis postulates that the infectious agent in transmissible spongiform encephalopathies (TSEs) is an unorthodox protein conformation based agent. Recent successes in generating mammalian prions in vitro with bacterially expressed recombinant prion protein provide strong support for the hypothesis. However, whether the pathogenic properties of synthetically generated prion (rec-Prion) recapitulate those of naturally occurring prions remains unresolved. Using end-point titration assay, we showed that the in vitro prepared rec-Prions have infectious titers of around 104 LD50 / μg. In addition, intraperitoneal (i.p.) inoculation of wild-type mice with rec-Prion caused prion disease with an average survival time of 210 – 220 days post inoculation. Detailed pathological analyses revealed that the nature of rec-Prion induced lesions, including spongiform change, disease specific prion protein accumulation (PrP-d) and the PrP-d dissemination amongst lymphoid and peripheral nervous system tissues, the route and mechanisms of neuroinvasion were all typical of classical rodent prions. Our results revealed that, similar to naturally occurring prions, the rec-Prion has a titratable infectivity and is capable of causing prion disease via routes other than direct intra-cerebral challenge. More importantly, our results established that the rec-Prion caused disease is pathogenically and pathologically identical to naturally occurring contagious TSEs, supporting the concept that a conformationally altered protein agent is responsible for the infectivity in TSEs.  相似文献   

6.
7.
8.
In this study,a human-chair model was developed as the basis for a wearable-chair design.Aprototype chair,HUST-EC,based on the model was fabricated and evaluate...  相似文献   

9.
Eight sheep were inoculated with Icelandic maedi strain M 88; 2 sheep served as control sheep and were in close contact with the inoculated ones. Four of the sheep were inoculated via the respiratory tract with 7×106 TGID50 of strain M88 and the other 4 intracerebrally with 5×105 TGID50 of the same strain. Maedi M88 strain was isolated from peripheral blood leukocytes of all inoculated sheep. There was a striking difference between the 2 groups in the appearance of demonstrable viremia after inoculation. Viremia could be demonstrated in the intrapulmonarily inoculated sheep within 2–6 months but not until 8–11 months after inoculation in the intracerebrally inoculated ones. This finding is thought most probably to reflect a weak neurotropism of the strain used. After the first demonstration of viremia, maedi virus has been recovered quite reqularly in peripheral leukocytes of all intrapulmonarily inoculated sheep, but less regularly in the intracerebrally inoculated ones. Maedi virus was isolated from 1 of the uninoculated control sheep 15 months after inoculation. The first clinical case with a clinical appearance suggesting combined involvement of maedi and visna was found among the intrapulmonarily inoculated sheep, 8% months after inoculation. Histopathological examination and virus isolation confirmed maedi. The cause of paraplegia could not be confirmed. No histopathological changes were found and no virus isolation was made from the central nervous system of this animal. One of the intracerebrally inoculated sheep died suddenly without any observed clinical signs 11 months after inoculation. Histopathological examination revealed pulmonary lesions of maedi, but no visna lesions in the central nervous system, although maedi virus was isolated from various parts of brain. None of the other experimental sheep displayed clinical signs of maedi or visna during the observation period of 18 months.  相似文献   

10.
Atypical and classical scrapie-infected sheep brain tissue was monolaterally injected into the tonsils of lambs to investigate their role as a prion entry point. We first detected classical PrPSc within the inoculated tonsil and in the ipsilateral retropharyngeal lymph node at 3 months postinoculation (p.i.). At 7 months p.i., PrPSc colonized other lymphoid tissues bilaterally, including ileal Peyer''s patches. The earliest PrPSc deposition within the brain was ipsilaterally observed at 9 months p.i. in the substantia reticularis of the medulla oblongata. At 12 months p.i., PrPSc deposition was present bilaterally in the nucleus parasympathicus nervi vagi, as well as in the intermediolateral cell column of the thoracolumbar spinal cord. No PrPSc was detected in the lambs inoculated with atypical scrapie. These findings suggest that neuroinvasion may naturally occur from the tonsil after a widespread prion replication within the lymphoid tissues during classical scrapie only, thus mimicking the pathogenesis after oral ingestion.  相似文献   

11.
朊病毒病是一种由朊病毒侵染动物神经系统并引发神经退行性症状的传染性疾病。朊病毒是由正常朊蛋白PrP^C通过构象转化形成具蛋白酶抗性的异常朊蛋白PrP^Se的病原微生物。最新研究表明,朊蛋白通过构象转变形成新的功能分子的现象在生物界中普遍存在,并与正常生物功能密切相关。通过研究类朊蛋白现象可以有助于揭示朊病毒感染机制以及深化对生物遗传多样性的了解。  相似文献   

12.
13.
14.
Based on the configuration principles of biological skeletons and sandwich stems, a machine tool column with stiffening ribs inside was designed using structural bionic method. After the lightening effect was verified by finite element simulation, scale-down models of a conventional column and a bionic column were fabricated and tested. Results indicate that the bionic column can reduce the maximum static displacement by 45.9% with 6.13% mass reduction and its dynamic performances is also better with increases in the first two natural frequencies. The structural bionic design is effective in improving the static and dynamic structural performances of high speed machine tools.  相似文献   

15.
Prion diseases are a group of transmissible, invariably fatal neurodegenerative diseases that affect both humans and animals. According to the protein-only hypothesis, the infectious agent is a prion (proteinaceous infectious particle) that is composed primarily of PrPSc, the disease-associated isoform of the cellular prion protein, PrP. PrPSc arises from the conformational change of the normal, glycosylphosphatidylinositol (GPI)-anchored protein, PrPC. The mechanism by which this process occurs, however, remains enigmatic. Rabbits are one of a small number of mammalian species reported to be resistant to prion infection. Sequence analysis of rabbit PrP revealed that its C-terminal amino acids differ from those of PrP from other mammals and may affect the anchoring of rabbit PrP through its GPI anchor. Using a cell culture model, this study investigated the effect of the rabbit PrP-specific C-terminal amino acids on the addition of the GPI anchor to PrPC, PrPC localization, and PrPSc formation. The incorporation of rabbit-specific C-terminal PrP residues into mouse PrP did not affect the addition of a GPI anchor or the localization of PrP. However, these residues did inhibit PrPSc formation, suggesting that these rabbit-specific residues interfere with a C-terminal PrPSc interaction site.Prion diseases, traditionally known as transmissible spongiform encephalopathies (TSE), are a group of invariably fatal neurodegenerative diseases that affect both humans and animals. According to the protein-only hypothesis, an abnormal isoform of the host-encoded prion protein (PrPC), referred to as PrPSc, is the sole or major component of the infectious agent causing these diseases (33). These disorders affect a wide range of mammals and include diseases such as Creutzfeldt-Jakob disease (CJD), variant CJD, Gerstmann-Straüssler-Scheinker (GSS) syndrome, kuru, and fatal familial insomnia (FFI) in humans, scrapie in sheep and goats, chronic wasting disease (CWD) in cervids, and bovine spongiform encephalopathy (BSE) in cattle. The term “prion” was first used to describe the unique infectious agent and was derived from “proteinaceous infectious particle” to distinguish it from conventional pathogens such as bacteria and viruses (33).To date, rabbits are one of the few mammalian species reported to be resistant to prion infection. Rabbits do not develop clinical disease after inoculation with brain tissue from individuals affected by the human prion diseases CJD and kuru, or by a number of animal forms of the disease, including scrapie and transmissible mink encephalopathy (TME) (12). In addition, mouse neuroblastoma (MNB) cells overexpressing rabbit PrP are also resistant to prion infection (45). Evidence that rabbit cells per se have the correct cellular machinery to support prion propagation has come from studies using the rabbit kidney epithelial cell line RK13. Upon transfection with appropriate PrP-expressing transgenes, these cells are a highly efficient and robust model of prion infection (6, 25, 41, 43). RK13 cells do not have detectable levels of endogenous rabbit PrPC and are therefore ideal for studying exogenous PrPC and the propagation of prions from different species (6). Originally, it was shown that RK13 cells overexpressing ovine PrP became susceptible to infection with scrapie (43), and more recently, RK13 cells expressing rodent PrPC, from either the mouse or the bank vole, were readily infected by prions adapted to and propagated in these two species (6, 41). RK13 cells expressing human PrPC, however, were resistant to infection with human prions derived directly from a patient with sporadic CJD (25). Since RK13 cells overexpressing PrP are a well-established model of prion propagation, we can therefore conclude that while these cells apparently have the appropriate cellular machinery to support prion propagation, it may be a characteristic of the rabbit prion protein itself that results in the resistance of this species to prion infection. However, the loss of a cellular cofactor may also be a contributing factor.Analysis of the rabbit PrP amino acid sequence shows that it has all the features previously described for members of the PrP protein family, including an N-terminal signal peptide, an octapeptide repeat region, and a C-terminal signal sequence (26). While amino acid sequence comparison of both mouse and rabbit PrP species reveals 87% sequence homology, there are 22 amino acid differences between the two, and several of these reside in regions of PrP known to be important in PrPSc formation. In scrapie-infected MNB cells, the residues Gly99 and Met108 within the N terminus, Ser173 within the central region, and Ile214 within the C terminus of rabbit PrP were shown to inhibit PrPSc generation when incorporated into mouse PrP, suggesting that multiple amino acid residues in rabbit PrP inhibit PrPSc formation (45). Approximately one-third (9/33 residues in the immature sequence) of the amino acid difference between mouse and rabbit PrPs was shown to occur at the glycosylphosphatidylinositol (GPI) anchor attachment site (see Fig. S1 in the supplemental material). As yet, studies involving this region of rabbit PrP have not been performed. Therefore, this region of rabbit PrP may provide further insight into the resistance of rabbits to prion infection.GPI anchor addition occurs via a transamination reaction in the endoplasmic reticulum (ER) following cleavage of the C-terminal signal sequence (39). There is no consensus sequence with which to identify the C-terminal cleavage site, but there are three key C-terminal elements: (i) the cleavage site, or ω site, where the GPI anchor attaches to the COOH group of the ω amino acid; (ii) a hydrophilic spacer region of 8 to 12 amino acids (ω + 1 up to ω + 10); and (iii) a hydrophobic region of 10 to 20 amino acids (ω + 11 onwards) (9). Analysis of known GPI-anchored proteins has given rise to sequence motifs in the C-terminal signal peptide allowing the prediction of the ω site of proteins. Due to the complexity of experimentally determining the ω site of GPI-anchored proteins, relatively few of the many known GPI-anchored proteins have had their ω sites determined (36 of 340 proteins in 2008) (32) The ω site of hamster PrP was determined experimentally to be at amino acid 231 (34) and is predicted to be at the same site for PrPs from all mammals, based on amino acid sequence comparison. Amino acid substitutions near the ω site of mouse PrP revealed that mouse PrP has an ω site at residue 230 (17). It was also shown that single amino acid substitutions at and near the ω site of mouse PrP affect the anchoring and conversion efficiency of PrP (17). It is therefore possible that the amino acids at the C terminus and within the GPI anchor signal sequence of rabbit PrP lead to the resistance to prion infection.To date, no protein structures containing a GPI anchor have been determined by X-ray crystallography, and although the nuclear magnetic resonance (NMR) structures of mouse and rabbit PrP have been solved, they do not contain any structural information for the residues immediately preceding the GPI anchor. We therefore created a mutant mouse PrP model containing rabbit PrP-specific amino acids at the ω site to investigate whether these residues are involved in rabbit resistance to prion infection. Here we demonstrate that the GPI anchor attachment site is an important site that controls the ability of PrP to be converted into PrPSc and that residues ω and ω + 1 of PrP are important modulators of this pathogenic process.  相似文献   

16.
Prion diseases are associated with the misfolding of the endogenously expressed prion protein (designated PrPC) into an abnormal isoform (PrPSc) that has infectious properties. The hydrophobic domain of PrPC is highly conserved and contains a series of glycine residues that show perfect conservation among all species, strongly suggesting it has functional and evolutionary significance. These glycine residues appear to form repeats of the GXXXG protein-protein interaction motif (two glycines separated by any three residues); the retention of these residues is significant and presumably relates to the functionality of PrPC. Mutagenesis studies demonstrate that minor alterations to this highly conserved region of PrPC drastically affect the ability of cells to uptake and replicate prion infection in both cell and animal bioassay. The localization and processing of mutant PrPC are not affected, although in vitro and in vivo studies demonstrate that this region is not essential for interaction with PrPSc, suggesting these residues provide conformational flexibility. These data suggest that this region of PrPC is critical in the misfolding process and could serve as a novel, species-independent target for prion disease therapeutics.  相似文献   

17.
New World hantaviruses can cause hantavirus cardiopulmonary syndrome with high mortality in humans. Distinct virus species are hosted by specific rodent reservoirs, which also serve as the vectors. Although regional spillover has been documented, it is unknown whether rodent reservoirs are competent for infection by hantaviruses that are geographically separated, and known to have related, but distinct rodent reservoir hosts. We show that Andes virus (ANDV) of South America, carried by the long tailed pygmy rice rat (Oligoryzomys longicaudatus), infects and replicates in vitro and in vivo in the deer mouse (Peromyscus maniculatus), the reservoir host of Sin Nombre virus (SNV), found in North America. In experimentally infected deer mice, viral RNA was detected in the blood, lung, heart and spleen, but virus was cleared by 56 days post inoculation (dpi). All of the inoculated deer mice mounted a humoral immune response by 14 dpi, and produced measurable amounts of neutralizing antibodies by 21 dpi. An up-regulation of Ccl3, Ccl4, Ccl5, and Tgfb, a strong CD4+ T-cell response, and down-regulation of Il17, Il21 and Il23 occurred during infection. Infection was transient with an absence of clinical signs or histopathological changes. This is the first evidence that ANDV asymptomatically infects, and is immunogenic in deer mice, a non-natural host species of ANDV. Comparing the immune response in this model to that of the immune response in the natural hosts upon infection with their co-adapted hantaviruses may help clarify the mechanisms governing persistent infection in the natural hosts of hantaviruses.  相似文献   

18.
19.
Synaptic abnormalities are prominent in prion disease pathogenesis and are responsible for functional deficits. The microtubule associated protein, Tau, binds to and stabilizes microtubules in axons ensuring axonal transport of synaptic components. Tau phosphorylation reduces its affinity for microtubules leading to their instability and resulting in disrupted axonal transport and synaptic dysfunction. We report on the levels of total Tau (T-Tau) and phosphorylated Tau (P-Tau), measured by highly sensitive laser-based immunoassays, in the central nervous system and biofluids from experimentally transmitted prion disease in mice and natural cases of sporadic Creutzfeldt-Jakob Disease (sCJD) in humans. We found that, in contrast to sCJD where only the levels of T-Tau in brain are increased, both T-Tau and P-Tau are increased in the brains of symptomatic mice experimentally infected with the ME7, 139A and 22L mouse-adapted scrapie strains. The increased levels of T-Tau in sCJD brain, compared to control samples, were also observed in patient plasma. In contrast, there was no detectable increase in T-Tau and P-Tau in plasma from symptomatic experimentally infected mice. Furthermore, our data suggests that in mice showing clinical signs of prion disease the levels and/or ratios of T-Tau and P-Tau are only a useful parameter for differentiating the mouse-adapted scrapie strains that differ in the extent of disease. We conclude that the neuropathogenesis associated with P-Tau and synaptic dysfunction is similar for at least two of the mouse-adapted scrapie strains tested but may differ between sporadic and experimentally transmitted prion diseases.  相似文献   

20.
Prions are proteinaceous infectious agents responsible for fatal neurodegenerative diseases in animals and humans. They are essentially composed of PrPSc, an aggregated, misfolded conformer of the ubiquitously expressed host-encoded prion protein (PrPC). Stable variations in PrPSc conformation are assumed to encode the phenotypically tangible prion strains diversity. However the direct contribution of PrPSc quaternary structure to the strain biological information remains mostly unknown. Applying a sedimentation velocity fractionation technique to a panel of ovine prion strains, classified as fast and slow according to their incubation time in ovine PrP transgenic mice, has previously led to the observation that the relationship between prion infectivity and PrPSc quaternary structure was not univocal. For the fast strains specifically, infectivity sedimented slowly and segregated from the bulk of proteinase-K resistant PrPSc. To carefully separate the respective contributions of size and density to this hydrodynamic behavior, we performed sedimentation at the equilibrium and varied the solubilization conditions. The density profile of prion infectivity and proteinase-K resistant PrPSc tended to overlap whatever the strain, fast or slow, leaving only size as the main responsible factor for the specific velocity properties of the fast strain most infectious component. We further show that this velocity-isolable population of discrete assemblies perfectly resists limited proteolysis and that its templating activity, as assessed by protein misfolding cyclic amplification outcompetes by several orders of magnitude that of the bulk of larger size PrPSc aggregates. Together, the tight correlation between small size, conversion efficiency and duration of disease establishes PrPSc quaternary structure as a determining factor of prion replication dynamics. For certain strains, a subset of PrP assemblies appears to be the best template for prion replication. This has important implications for fundamental studies on prions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号