首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The brain is able to change the synaptic strength in response to stimuli that leave a memory trace. Long-term potentiation (LTP) and long-term depression (LTD) are forms of activity-dependent synaptic plasticity proposed to underlie memory. The induction of LTP appears mediated by glutamate acting on AMPA and then on NMDA receptors. Cholinergic muscarinic agonists facilitate learning and memory. Acetylcholine depolarizes pyramidal neurons, reduces inhibition, upregulates NMDA channels and activates the phosphoinositide cascade. Postsynaptic Ca2+ rises and stimulates Ca-dependent PK, promoting synaptic changes. Electroencephalographic desynchronization and hippocampal theta rhythm are related to learning and memory, are inducible by Cholinergic agonists and elicited by hippocampal Cholinergic terminals. Their loss results in memory deficits. Hence, Cholinergic pathways may act synergically with glutamatergic transmission, regulating and leading to synaptic plasticity. The stimulation that induces plasticity in vivo has not been established. The patterns for LTP/LTD induction in vitro may be due to the loss of ascending Cholinergic inputs. As a rat explores pyramidal cells fire bursts that could be relevant to plasticity.  相似文献   

3.
There has been re-emerging interest and significant work dedicated to investigating the metabolic effects of high intensity interval training (HIIT) in recent years. HIIT is considered to be a time efficient alternative to classic endurance training (ET) that elicits similar metabolic responses in skeletal muscle. However, there is a lack of information on the impact of HIIT on cardiac muscle in disease. Therefore, we determined the efficacy of ET and HIIT to alter cardiac muscle characteristics involved in the development of diastolic dysfunction, such as ventricular hypertrophy, fibrosis and angiogenesis, in a well-established rodent model of hypertension-induced heart failure before the development of overt heart failure. ET decreased left ventricle fibrosis by ~40% (P < 0.05), and promoted a 20% (P<0.05) increase in the left ventricular capillary/fibre ratio, an increase in endothelial nitric oxide synthase protein (P<0.05), and a decrease in hypoxia inducible factor 1 alpha protein content (P<0.05). In contrast, HIIT did not decrease existing fibrosis, and HIIT animals displayed a 20% increase in left ventricular mass (P<0.05) and a 20% decrease in cross sectional area (P<0.05). HIIT also increased brain natriuretic peptide by 50% (P<0.05), in the absence of concomitant angiogenesis, strongly suggesting pathological cardiac remodeling. The current data support the longstanding belief in the effectiveness of ET in hypertension. However, HIIT promoted a pathological adaptation in the left ventricle in the presence of hypertension, highlighting the need for further research on the widespread effects of HIIT in the presence of disease.  相似文献   

4.
Pre-eclampsia is a hypertensive disorder of pregnancy that is associated with elevated maternal risk for cardiovascular disease. The aims of this study were to determine the effect of normal pregnancy on postpartum parameters of the electrocardiogram, and furthermore to determine how a history of pre-eclampsia may affect these parameters. Ten-minute high-resolution (1000 Hz) orthogonal Holter electrocardiogram (ECG) recordings were used to measure heart rate variability (HRV). Signal-averaged P-wave and QRS complex durations were determined. Participants included non-pregnant controls, normotensive parous controls and women with a recent history of PE. While reductions in HRV induced by uncomplicated pregnancy returned to non-pregnant levels by 6–8 months postpartum HRV remained reduced in women with a history of PE compared to control groups. In addition, P-Wave and QRS complex durations were prolonged in PE subjects at 6–8 months postpartum compared to control groups. Only QRS duration was independent of differences in blood pressure. These results suggest increased sympathetic cardiac activity, and delayed myocardial conduction in women after PE; alterations consistent with cardiac remodeling and increased risk for arrhythmia. In examining the association between PE and cardiovascular disease, identification of ECG abnormalities soon after pregnancy in women with a history of PE highlights a unique opportunity for early identification and screening in this population before other risk factors become apparent.  相似文献   

5.
Adverse cardiac remodeling may lead to the development and progression of heart failure, which is lack of effective clinical treatment. Ginsenoside Rg1 (GRg1), a primary ingredient of Panax ginseng, protects against diverse cardiovascular disease, but its effects on cardiac remodeling remain unclear. Thus, we investigated the protective effect and mechanism of GRg1 on cardiac remodeling after myocardial infarction. GRg1 significantly ameliorated cardiac remodeling in mice with left anterior descending coronary artery ligation, reflected by reduced left ventricular dilation and decreased cardiac fibrosis, accompanied by improved cardiac function. Mechanistically, GRg1 considerably increased mitophagosomes formation, ameliorated cardiac mitochondria damage, and enhanced SIRT1/PINK1/Parkin-mediated mitophagy during cardiac remodeling. Consistently, GRg1 increased cell viability and attenuated apoptosis and fibrotic responses in H2O2-treated H9c2 cells by promoting the SIRT1/PINK1/Parkin axis. Furthermore, SIRT1-specific inhibitor (EX527) or the use of small interfering RNA against Parkin abolished the protective effect of GRg1 in vitro. These findings reveal a novel mechanism of GRg1 alleviating cardiac remodeling via enhancing SIRT1/PINK1/Parkin-mediated mitophagy.  相似文献   

6.
目的:探讨诺欣妥联合心脏运动康复对射血分数降低(HFr EF)的心力衰竭(HF)的临床疗效。方法:将我院心内科于2018年1月~2019年4月收治的70例HFr EF患者随机分为两组,各35例。对照组均给予诺欣妥规范治疗,实验组在此基础上根据心肺运动测试(CPET)测得代谢当量制定个性化心脏运动康复,包括院内、院外心脏康复干预及定期随访,为期6个月。采用彩色心脏超声诊断仪、心肺运动测试(CPET)分析两组治疗前后心肺功能变化,同时观察住院及随访期间的预后情况。结果:治疗6个月后,两组左心室舒张末期内径(LVEDD)、左室收缩末期内径(LVESD)、左心室射血分数(LVEF)均明显改善,且实验组显著优于对照组(P0.05)。治疗6个月后,实验组AT明显升高,峰值VO2/kg、峰值VO2水平均有一定程度上升,且明显优于对照组(P0.05)。与对照组比较,实验组90d内HF再住院率(8.6%vs.28.6%)、随访期间MACEs发生率(17.1%vs.40.0%)均显著降低(P0.05)。结论:诺欣妥联合心脏运动康复治疗可使HFr EF患者显著获益,在改善心肺功能、运动能力及近期预后方面疗效显著,可作为HFr EF患者的一线治疗方案。  相似文献   

7.
Fibroblasts are activated in heart failure (HF) and produce fibrosis, which plays a role in maintaining atrial fibrillation (AF). The effect of HF on fibroblast ion currents and its potential role in AF are unknown. Here, we used a patch-clamp technique to investigate the effects of HF on atrial fibroblast ion currents, and mathematical computation to assess the potential impact of this remodeling on atrial electrophysiology and arrhythmogenesis. Atrial fibroblasts were isolated from control and tachypacing-induced HF dogs. Tetraethylammonium-sensitive voltage-gated fibroblast current (IKv,fb) was significantly downregulated (by ∼44%), whereas the Ba2+-sensitive inward rectifier current (IKir,fb) was upregulated by 79%, in HF animals versus controls. The fibroblast resting membrane potential was hyperpolarized (−53 ± 2 mV vs. −42 ± 2 mV in controls) and the capacitance was increased (29.7 ± 2.2 pF vs. 17.8 ± 1.4 pF in controls) in HF. These experimental findings were implemented in a mathematical model that included cardiomyocyte-fibroblast electrical coupling. IKir,fb upregulation had a profibrillatory effect through shortening of the action potential duration and hyperpolarization of the cardiomyocyte resting membrane potential. IKv,fb downregulation had the opposite electrophysiological effects and was antifibrillatory. Simulated pharmacological blockade of IKv,fb successfully terminated reentry under otherwise profibrillatory conditions. We conclude that HF induces fibroblast ion-current remodeling with IKv,fb downregulation and IKir,fb upregulation, and that, assuming cardiomyocyte-fibroblast electrical coupling, this remodeling has a potentially important effect on atrial electrophysiology and arrhythmogenesis, with the overall response depending on the balance of pro- and antifibrillatory contributions. These findings suggest that fibroblast K+-current remodeling is a novel component of AF-related remodeling that might contribute to arrhythmia dynamics.  相似文献   

8.
心力衰竭是各种心血管疾病发展的终末阶段,而心室重构贯穿于心衰发生、发展的全过程,阻断心室重构是防治心衰不容忽视的一个重要环节。结缔组织生长因子是一种新发现的具有多种生物学功能的成纤维细胞生长因子,在病理情况下,能抑制心肌细胞外基质的降解,促进心肌细胞的凋亡,与动脉粥样硬化、器官纤维化、创伤后修复及组织瘢痕形成等密切相关。作为参与心力衰竭后心室重构的细胞因子,不仅能够成为评价心衰患者临床预后的指标,还有望成为抗纤维化治疗的新靶点。  相似文献   

9.
10.
11.
12.
基质金属蛋白酶与心肌重塑   总被引:1,自引:0,他引:1  
细胞外基质参与和促进了心肌重塑的过程,基质金属蛋白酶是调节细胞外基质重要的酶,基质金属蛋白酶在心肌重塑过程表达变化可分为三个时相,其活性受到信号传导途径、炎症因子和活性氧/活性氮的调节,基质金属蛋白酶可能作为心肌梗塞等疾病治疗的靶标  相似文献   

13.
Aldose reductase (AR), an enzyme mediating the first step in the polyol pathway of glucose metabolism, is associated with complications of diabetes mellitus and increased cardiac ischemic injury. We investigated whether deleterious effects of AR are due to its actions specifically in cardiomyocytes. We created mice with cardiac specific expression of human AR (hAR) using the α–myosin heavy chain (MHC) promoter and studied these animals during aging and with reduced fatty acid (FA) oxidation. hAR transgenic expression did not alter cardiac function or glucose and FA oxidation gene expression in young mice. However, cardiac overexpression of hAR caused cardiac dysfunction in older mice. We then assessed whether hAR altered heart function during ischemia reperfusion. hAR transgenic mice had greater infarct area and reduced functional recovery than non-transgenic littermates. When the hAR transgene was crossed onto the PPAR alpha knockout background, another example of greater heart glucose oxidation, hAR expressing mice had increased heart fructose content, cardiac fibrosis, ROS, and apoptosis. In conclusion, overexpression of hAR in cardiomyocytes leads to cardiac dysfunction with aging and in the setting of reduced FA and increased glucose metabolism. These results suggest that pharmacological inhibition of AR will be beneficial during ischemia and in some forms of heart failure.  相似文献   

14.
15.
BackgroundHeart failure is operationally defined as the inability of the heart to maintain blood flow to meet the needs of the body and it is the final common pathway of various cardiac pathologies. Electrophysiological remodeling, intercellular uncoupling and a pro-fibrotic response have been identified as major arrhythmogenic factors in heart failure.ObjectiveIn this study we investigate vulnerability to reentry under heart failure conditions by incorporating established electrophysiological and anatomical remodeling using computer simulations.MethodsThe electrical activity of human transmural ventricular tissue (5 cm×5 cm) was simulated using the human ventricular action potential model Grandi et al. under control and heart failure conditions. The MacCannell et al. model was used to model fibroblast electrical activity, and their electrotonic interactions with myocytes. Selected degrees of diffuse fibrosis and variations in intercellular coupling were considered and the vulnerable window (VW) for reentry was evaluated following cross-field stimulation.ResultsNo reentry was observed in normal conditions or in the presence of HF ionic remodeling. However, defined amount of fibrosis and/or cellular uncoupling were sufficient to elicit reentrant activity. Under conditions where reentry was generated, HF electrophysiological remodeling did not alter the width of the VW. However, intermediate fibrosis and cellular uncoupling significantly widened the VW. In addition, biphasic behavior was observed, as very high fibrotic content or very low tissue conductivity hampered the development of reentry. Detailed phase analysis of reentry dynamics revealed an increase of phase singularities with progressive fibrotic components.ConclusionStructural remodeling is a key factor in the genesis of vulnerability to reentry. A range of intermediate levels of fibrosis and intercellular uncoupling can combine to favor reentrant activity.  相似文献   

16.
17.
Exercise training is a well-known coadjuvant in heart failure treatment; however, the molecular mechanisms underlying its beneficial effects remain elusive. Despite the primary cause, heart failure is often preceded by two distinct phenomena: mitochondria dysfunction and cytosolic protein quality control disruption. The objective of the study was to determine the contribution of exercise training in regulating cardiac mitochondria metabolism and cytosolic protein quality control in a post-myocardial infarction-induced heart failure (MI-HF) animal model. Our data demonstrated that isolated cardiac mitochondria from MI-HF rats displayed decreased oxygen consumption, reduced maximum calcium uptake and elevated H2O2 release. These changes were accompanied by exacerbated cardiac oxidative stress and proteasomal insufficiency. Declined proteasomal activity contributes to cardiac protein quality control disruption in our MI-HF model. Using cultured neonatal cardiomyocytes, we showed that either antimycin A or H2O2 resulted in inactivation of proteasomal peptidase activity, accumulation of oxidized proteins and cell death, recapitulating our in vivo model. Of interest, eight weeks of exercise training improved cardiac function, peak oxygen uptake and exercise tolerance in MI-HF rats. Moreover, exercise training restored mitochondrial oxygen consumption, increased Ca2+-induced permeability transition and reduced H2O2 release in MI-HF rats. These changes were followed by reduced oxidative stress and better cardiac protein quality control. Taken together, our findings uncover the potential contribution of mitochondrial dysfunction and cytosolic protein quality control disruption to heart failure and highlight the positive effects of exercise training in re-establishing cardiac mitochondrial physiology and protein quality control, reinforcing the importance of this intervention as a non-pharmacological tool for heart failure therapy.  相似文献   

18.
19.
Atrial fibrillation (AF) and heart failure (HF) are two of the most common cardiovascular diseases. They often coexist and account for significant morbidity and mortality. Alterations in cellular Ca2+ homeostasis play a critical role in AF initiation and maintenance. This study was designed to specifically elucidate AF-associated remodeling of atrial Ca2+ cycling in the presence of mild HF. AF was induced in domestic pigs by atrial burst pacing. The animals underwent electrophysiologic and echocardiographic examinations. Ca2+ handling proteins were analyzed in right atrial tissue obtained from pigs with AF (day 7; n = 5) and compared to sinus rhythm (SR) controls (n = 5). During AF, animals exhibited reduction of left ventricular ejection fraction (from 73% to 58%) and prolonged atrial refractory periods. AF and HF were associated with suppression of protein kinase A (PKA)RII (-62%) and Ca2+-calmodulin-dependent kinase II (CaMKII) δ by 37%, without changes in CaMKIIδ autophosphorylation. We further detected downregulation of L-type calcium channel (LTCC) subunit α2 (-75%), sarcoplasmic reticulum Ca2+-ATPase (Serca) 2a (-29%), phosphorylated phospholamban (Ser16, -92%; Thr17, -70%), and phospho-ryanodine receptor 2 (RyR2) (Ser2808, -62%). Na+-Ca2+ exchanger (NCX) levels were upregulated (+473%), whereas expression of Ser2814-phosphorylated RyR2 and LTCCα1c subunits was not significantly altered. In conclusion, AF produced distinct arrhythmogenic remodeling of Ca2+ handling in the presence of tachycardia-induced mild HF that is different from AF without structural alterations. The changes may provide a starting point for personalized approaches to AF treatment.  相似文献   

20.

Introduction

Autonomic nervous system balance can be significantly deteriorated during heart failure exacerbation. However, it is still unknown whether these changes are only the consequence of heart failure decompensation or can also predict development thereof. Objectives were to verify if simple, non-invasive autonomic parameters, such as baroreflex sensitivity and short-term heart rate variability can provide independent of other well-known clinical parameters information on the risk of heart failure decompensation in patients with left ventricular systolic dysfunction.

Methods

In 142 stable patients with left ventricular ejection fraction ≤ 40%, baroreflex sensitivity and short-term heart rate variability, as well as other well-known clinical parameters, were analyzed. During 23 ± 9 months of follow-up 19 patients were hospitalized due to the heart failure decompensation (EVENT).

Results

Pre-specified cut-off values of baroreflex sensitivity (≤2.4 ms/mmHg) and low frequency power index of heart rate variability (≤19 ms2) were significantly associated with the EVENTs (hazard ratio 4.43, 95% confidence interval [CI] 1.35–14.54 and 5.41, 95% CI 1.87–15.65 respectively). EVENTs were also associated with other parameters, such as left ventricular ejection fraction, NYHA class, diuretic use, renal function, brain natriuretic peptide and hemoglobin level, left atrial size, left and right ventricular heart failure signs. After adjusting baroreflex sensitivity and low frequency power index for each of the abovementioned parameters, autonomic parameters were still significant predictors of hospitalization due to the heart failure decompensation.

Conclusion

Simple, noninvasive autonomic indices can be helpful in identifying individuals with increased risk of hospitalization due to the heart failure decompensation among clinically stable patients with left ventricular systolic dysfunction, even when adjusted for other well-known clinical parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号