首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In filamentous fungi, growth polarity (i.e. hyphal extension) and formation of septa require polarized deposition of new cell wall material. To explore this process, we analyzed a conditional Neurospora crassa mutant, mcb, which showed a complete loss of growth polarity when incubated at the restrictive temperature. Cloning and DNA sequence analysis of the mcb gene revealed that it encodes a regulatory subunit of cAMP-dependent protein kinase (PKA). Unexpectedly, the mcb mutant still formed septa when grown at the restrictive temperature, indicating that polarized deposition of wall material during septation is a process that is, at least in part, independent of polarized deposition during hyphal tip extension. However, septa formed in the mcb mutant growing at the restrictive temperature are mislocalized. Both polarized growth and septation are actin-dependent processes, and a concentration of actin patches is observed at growing hyphal tips and sites where septa are being formed. In the mcb mutant growing at the restrictive temperature, actin patches are uniformly distributed over the cell cortex; however, actin patches are still concentrated at sites of septation. Our results suggest that the PKA pathway regulates hyphal growth polarity, possibly through organizing actin patches at the cell cortex.  相似文献   

2.
In eukaryotic cells, the acyl species of the phospholipid cardiolipin (CL) are more highly unsaturated than those of the other membrane phospholipids. Defective acylation of CL with unsaturated fatty acids and decreased total CL are associated with Barth syndrome, an X-linked cardio- and skeletal myopathy attributed to a defect in the gene G4.5 (also known as tafazzin). We constructed a yeast mutant (taz1) containing a null mutation in the homologue of the human G4.5 gene. The yeast taz1Delta mutant was temperature sensitive for growth in ethanol as sole carbon source, but grew normally on glucose or glycerol plus ethanol. Total CL content was reduced in the taz1Delta mutant, and monolyso-CL accumulated. The predominant CL acyl species found in wild-type cells, C18:1 and C16:1, were markedly reduced in the mutant, whereas CL molecules containing saturated fatty acids were present. Interestingly, CL synthesis increased in the mutant, whereas expression of the CL structural genes CRD1 and PGS1 did not, suggesting that de novo biosynthetic enzyme activities are regulated by CL acylation. These results indicate that the taz1Delta mutant is an excellent genetic tool for the study of CL remodelling and may serve as a model system for the study of Barth syndrome.  相似文献   

3.
The NPHS2 gene encoding the podocin protein was causally linked to the autosomal recessive type of steroid-resistant nephrotic syndrome. In this study, we investigated the consequence of the R138Q mutation of podocin, one of the most common missense mutations in the NPHS2 gene, by examining the expression of the wild-type and R138Q mutant podocins in mammalian cells. Either myc- or FLAG-tagged wild-type podocin was strongly stained in plasma membrane, particularly in the fine processes wherein the protein was colocalized with actin stress fibers. On the other hand, the R138Q mutant podocin was completely retained intracellularly and colocalized with the endoplasmic reticulum (ER) marker, calnexin. These results suggest that the R138Q mutation affected podocin protein folding, thereby interfering with the mutant protein's departure from the ER. To determine if the ER retention of R138Q mutant is correctable, cells were incubated with the chemical chaperones glycerol, trimethylamine-N-oxide, and DMSO. Using these two methods, namely, cell surface labeling with sulfo-NHS-S-S-biotin and Alexa 488-streptavidin, and immunostaining to detect the podocin protein close to the plasma membrane, we confirmed that these chemical chaperone treatments elicit a cellular redistribution of R138Q podocin. Our results reveal defective cellular processing of the mutant podocin, and provide evidence for pharmacological correction of the processing defect.  相似文献   

4.
The hemagglutinin-neuraminidase (HN) integral membrane protein of paramyxoviruses is expressed at the cell surface as a tetramer consisting of a pair of disulfide-linked dimers. HN has a large C-terminal ectodomain, a 19-residue uncleaved signal-anchor domain, and a 17-residue N-terminal cytoplasmic tail. Various mutant HN genes were constructed to examine the role of residues flanking the signal-anchor domain, including the cytoplasmic tail, on assembly and intracellular transport of the HN glycoprotein. Expression of the altered genes showed that by 90 min after synthesis the majority of the mutant HN proteins were in a conformationally mature form as assayed by their reactivity with conformation-specific monoclonal antibodies. However, the mutant proteins showed varied endoplasmic reticulum-to-Golgi apparatus transport rates, ranging from that of wild-type HN (t1/2 approximately 90 min) to slowly transported molecules (t1/2 approximately 5 h) and to molecules in which transport was not detected. Pulse-chase experiments indicated that the altered HN molecules had a specific and transient interaction with the resident endoplasmic reticulum protein GRP78-BiP, and thus the altered HN molecules were not retained in the endoplasmic reticulum by a prolonged interaction with GRP78-BiP. Sucrose density gradient sedimentation analysis of the mutant HN molecules indicated that they all had an oligomeric form that differed from that of wild-type HN; most of the molecules were found as disulfide-linked dimers rather than as tetramers. These data suggest that the HN cytoplasmic tail may function in the assembly of the final transport-competent oligomeric form of HN and that mutant HN molecules with seemingly properly folded ectodomains are retained in the endoplasmic reticulum by an as yet unidentified mechanism. The possible role of the HN cytoplasmic tail as a signal for intracellular transport is discussed.  相似文献   

5.
6.
Schlame M  Ren M 《FEBS letters》2006,580(23):5450-5455
Barth syndrome is an X-linked recessive disease caused by mutations in the tafazzin gene. Patients have reduced concentration and altered composition of cardiolipin, the specific mitochondrial phospholipid, and they have variable clinical findings, often including heart failure, myopathy, neutropenia, and growth retardation. This article provides an overview of the molecular basis of Barth syndrome. It is argued that tafazzin, a phospholipid acyltransferase, is involved in acyl-specific remodeling of cardiolipin, which promotes structural uniformity and molecular symmetry among the cardiolipin molecular species. Inhibition of this pathway leads to changes in mitochondrial architecture and function.  相似文献   

7.
Defective remodeling of cardiolipin and phosphatidylglycerol in Barth syndrome   总被引:12,自引:0,他引:12  
Cardiolipin (CL) and phosphatidylglycerol (PG) are the major polyglycerophospholipids observed in mammalian tissues. CL is exclusively found in the inner mitochondrial membrane and is required for optimal function of many of the respiratory and ATP-synthesizing enzymes. The role of CL in oxidative phosphorylation is, however, not fully understood and although reduced CL content leads to aberrant cell function, no human disorders with a primary defect in cardiolipin metabolism have been described. In this paper we present evidence that patients with the rare disorder X-linked cardioskeletal myopathy and neutropenia (Barth syndrome, MIM 302060) have a primary defect in CL and PG remodeling. We investigated phospholipid metabolism in cultured skin fibroblasts of patients and show that the biosynthesis rate of PG and CL is normal but that the CL pool size is 75% reduced, indicating accelerated degradation. Moreover, the incorporation of linoleic acid, which is the characteristic acyl side chain found in mammalian CL, into both PG and CL is significantly reduced, whereas the incorporation of other fatty acids into these phospholipids is normal. We show that this defect was only observed in Barth syndrome patients' cells and not in cells obtained from patients with primary defects in the respiratory chain, demonstrating that the observed defect is not secondary to respiratory chain dysfunction. These results imply that the G4.5 gene product, which is mutated in Barth syndrome patients, is specifically involved in the remodeling of PG and CL and for the first time identify an essential factor in this important cellular process.  相似文献   

8.
Barth syndrome is an X-linked genetic disorder caused by mutations in the tafazzin (taz) gene and characterized by dilated cardiomyopathy, exercise intolerance, chronic fatigue, delayed growth, and neutropenia. Tafazzin is a mitochondrial transacylase required for cardiolipin remodeling. Although tafazzin function has been studied in non-mammalian model organisms, mammalian genetic loss of function approaches have not been used. We examined the consequences of tafazzin knockdown on sarcomeric mitochondria and cardiac function in mice. Tafazzin knockdown resulted in a dramatic decrease of tetralinoleoyl cardiolipin in cardiac and skeletal muscles and accumulation of monolysocardiolipins and cardiolipin molecular species with aberrant acyl groups. Electron microscopy revealed pathological changes in mitochondria, myofibrils, and mitochondrion-associated membranes in skeletal and cardiac muscles. Echocardiography and magnetic resonance imaging revealed severe cardiac abnormalities, including left ventricular dilation, left ventricular mass reduction, and depression of fractional shortening and ejection fraction in tafazzin-deficient mice. Tafazzin knockdown mice provide the first mammalian model system for Barth syndrome in which the pathophysiological relationships between altered content of mitochondrial phospholipids, ultrastructural abnormalities, myocardial and mitochondrial dysfunction, and clinical outcome can be completely investigated.  相似文献   

9.
Mitochondria play a prominent role in cardiac energy metabolism, and their function is critically dependent on the integrity of mitochondrial membranes. Disorders characterized by mitochondrial dysfunction are commonly associated with cardiac disease. The mitochondrial phospholipid cardiolipin directly interacts with a number of essential protein complexes in the mitochondrial membranes including the respiratory chain, mitochondrial metabolite carriers, and proteins critical for mitochondrial morphology. Barth syndrome is an X-linked disorder caused by an inherited defect in the biogenesis of the mitochondrial phospholipid cardiolipin. How cardiolipin deficiency impacts on mitochondrial function and how mitochondrial dysfunction causes cardiomyopathy has been intensively studied in cellular and animal models of Barth syndrome. These findings may also have implications for the molecular mechanisms underlying other inherited disorders associated with defects in cardiolipin, such as Sengers syndrome and dilated cardiomyopathy with ataxia (DCMA).  相似文献   

10.
Barth syndrome is an X-linked cardiomyopathy with neutropenia and 3-methylglutaconic aciduria. Recently, mutations in the G4.5 gene, located in Xq28, have been described in four probands with Barth syndrome. We have now evaluated 14 Barth syndrome pedigrees for mutations in G4.5 and have identified unique mutations in all, including four splice-site mutations, three deletions, one insertion, five missense mutations, and one nonsense mutation. Nine of the 14 mutations are predicted to significantly disrupt the protein products of G4.5. The occurrence of missense mutations in exons 3 and 8 suggests that these exons encode essential portions of the G4. 5 proteins, whose functions remain unknown. We found no correlation between the location or type of mutation and any of the clinical or laboratory abnormalities of Barth syndrome, which suggests that additional factors modify the expression of the Barth phenotype. The characterization of mutations of the G4.5 gene will be useful for carrier detection, genetic counseling, and the identification of patients with Barth syndrome who do not manifest all of the cardinal features of this disorder.  相似文献   

11.
A glycine-resistant mutant was isolated from a methylotrophic strain of Pseudomonas species possessing serine pathway. This mutant presents some improvements in regard to growth parameters, and is able to excrete a fluorescent pigment under certain culture conditions. This pigment is capable of accelerating the reduction rate of formaldehyde to formate coupled with NAD. The same cannot be said for the wild type.  相似文献   

12.
An altered cytochrome oxidase in a cytoplasmic mutant of Neurospora   总被引:6,自引:0,他引:6  
  相似文献   

13.
Localized P1 mutagenesis was used to screen for conditionally lethal mutations in ribosomal protein genes. One such mutation, 2859mis, has been mapped inside the ribosomal protein gene cluster at 72 minutes on the Escherichia coli chromosome and cotransduces at 98% with rpsE (S5). The 2869mis mutation leads to thermosensitivity and impaired assembly in vivo of 50 S ribosomal particles at 42 °C. The strain carrying the mutation has an altered L24 ribosomal protein which at 42 °C shows weaker affinity for 23 S RNA than the wild-type protein. The mutational alteration involves a replacement of glycine by aspartic acid in protein L24 from the mutant. We conclude therefore that the 2859mis mutation affects the structural gene for protein L24 (rplX).  相似文献   

14.
We have tried to isolate respiratory deficient mutants of the amylolytic yeast Schwanniomyces castellii CBS 2863 after mutagenesis with acriflavine. One of the mutants called DR 12 has been studied in more detail. Pasteur effect present in the wild-type is lost in the mutant, on the contrast an obvious Crabtree effect was observed: fermentation was almost as active in aerobiosis as in anaerobiosis. Moreover, the rate of anaerobic fermentation of the mutant was almost twice that of the wild type. This mutant was cytrochrome b-deficient while the amount of the other cytochromes was larger than in the wild-type. Moreover, the level of these remaining cytochromes in the mutant was higher on non-repressive medium than on glucose medium. However, the fact that the mutant DR 12 retained a cyanide-sensitive respiration and that it was able to grow on ethanol as a non-fermentable substrate is noteworthy.  相似文献   

15.
Barth syndrome is a genetic disorder that is caused by different mutations in the TAZ gene G4.5. The yeast gene TAZ1 is highly homologous to human TAZ, and the taz1Delta mutant has phospholipid defects similar to those observed in Barth syndrome cells, including aberrant cardiolipin species and decreased cardiolipin levels. Subcellular fractionation studies revealed that Taz1p is localized exclusively in mitochondria, which supports the theory that tafazzins are involved in cardiolipin remodeling. Because cardiolipin plays an important role in respiratory function, we measured the energy transformation and osmotic properties of isolated mitochondria from the taz1Delta mutant. Energy coupling in taz1Delta mitochondria was dependent on the rate of oxidative phosphorylation, as coupling was diminished when NADH was used as a respiratory substrate but was unaffected when ethanol was the substrate. Membrane stability was compromised in taz1Delta mitochondria exposed to increased temperature and hypotonic conditions. Mitochondria from taz1Delta also displayed decreased swelling in response to ATP, which induces the yeast mitochondrial unspecific channel, and to alamethicin, a membrane-disrupting agent. Coupling was measured in taz1Delta cells containing different splice variants of the human TAZ gene. Only the variant that restores wild type cardiolipin synthesis (lacking exon 5) restored coupling in hypotonic conditions and at elevated temperature. These findings may shed light on the mitochondrial deficiencies observed in Barth syndrome.  相似文献   

16.
17.
We have investigated the signal sequence for mitochondrial transport of mutants (I12T, 78insC, IVS2-2a-->c, 338G-->C, R152C, 470A-->C, and L401F) and the wild type protoporphyrinogen oxidase (PPOX), which is the penultimate enzyme in the heme biosynthesis. We constructed the corresponding green fluorescent protein fusion proteins and studied their intracellular localization in COS-1 cells. We showed that 28 amino acids in the amino terminus of PPOX contain an independently functioning signal for mitochondrial targeting. The experiments with amino-terminally truncated green fluorescent protein fusion proteins revealed that amino acids 25-477 of PPOX contained an additional mitochondrial targeting signal(s). We constructed a structural model for the interaction between the amino-terminal end of PPOX and the putative mitochondrial receptor protein Tom20. The model suggests that leucine and isoleucine residues Leu-8, Ile-12, and Leu-15 forming an alpha-helical hydrophobic motif, LXXXIXXL, were crucial for the recognition of the targeting signal. The validity of the model was tested using mutants L8Q, I12T, and L15Q disrupting the hydrophobic surface of the LXXXIXXL helix. The results from in vitro expression studies and molecular modeling were in accordance supporting the hypothesis that the recognition of the mitochondrial targeting signal is dependent on hydrophobic interactions between the targeting signal and the mitochondrial receptor.  相似文献   

18.
19.
X chromosome inactivation in carriers of Barth syndrome.   总被引:2,自引:0,他引:2       下载免费PDF全文
Barth syndrome (BTHS) is a rare X-linked recessive disorder characterized by cardiac and skeletal myopathy, neutropenia, and short stature. A gene for BTHS, G4.5, was recently cloned and encodes several novel proteins, named "tafazzins." Unique mutations have been found. No correlation between the location or type of mutation and the phenotype of BTHS has been found. Female carriers of BTHS seem to be healthy. This could be due to a selection against cells that have the mutant allele on the active X chromosome. We therefore analyzed X chromosome inactivation in 16 obligate carriers of BTHS, from six families, using PCR in the androgen-receptor locus. An extremely skewed X-inactivation pattern (>=95:5), not found in 148 female controls, was found in six carriers. The skewed pattern in two carriers from one family was confirmed in DNA from cultured fibroblasts. Five carriers from two families had a skewed pattern (80:20-<95:5), a pattern that was found in only 11 of 148 female controls. Of the 11 carriers with a skewed pattern, the parental origin of the inactive X chromosome was maternal in all seven cases for which this could be determined. In two families, carriers with an extremely skewed pattern and carriers with a random pattern were found. The skewed X inactivation in 11 of 16 carriers is probably the result of a selection against cells with the mutated gene on the active X chromosome. Since BTHS also shows great clinical variation within families, additional factors are likely to influence the expression of the phenotype. Such factors may also influence the selection mechanism in carriers.  相似文献   

20.
Iron-sulfur [Fe-S] clusters are ubiquitous ancient prosthetic groups that are required to sustain fundamental life processes. Formation of intracellular [Fe-S] clusters does not occur spontaneously but requires a complex biosynthetic machinery. Different types of [Fe-S] cluster assembly systems have been discovered. All of them have in common the requirement of a cysteine desulfurase and the participation of [Fe-S] scaffold proteins. The purpose of this review is to discuss various aspects of the molecular mechanisms of [Fe-S] cluster assembly in living organisms: (i) mechanism of sulfur donor enzymes, namely the cysteine desulfurases; (ii) mechanism by which clusters are preassembled on scaffold proteins and (iii) mechanism of [Fe-S] cluster transfer from scaffold to target proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号