首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
6,7 -Dideoxy-alpha-D-gluco-heptose 7-phosphonic acid, the isosteric phosphonate analogue of glucose 6-phosphate, was synthesized in six steps from the readily available precursor benzyl 4,6-O-benzylidene-alpha-D-glucopyranoside. The analogue is a substrate for yeast glucose 6-phosphate dehydrogenase, showing Michaelis-Menten kinetics at pH7.5 and 8.0. At both pH values the Km values of the analogue are 4-5 fold higher and the values approx. 50% lower than those of the natural substrate. The product of enzymic dehydrogenation of the phosphonate analogue at pH8.5 is itself a substrate for gluconate 6-phosphate dehydrogenase.  相似文献   

5.
6.
The activity of the enzymes hexokinase and glucose 6-phosphate dehydrogenase and the level of catecholamines were measured in isolated rat Red Blood Cells (RBC) during cellular aging. The results clearly showed a linear decline in the two enzyme profiles with corresponding increase in age of RBC. A decrease of 75-85% in the activities were found in the oldest cell fractions as compared to the youngest. The levels of glycosylated haemoglobin and catecholamines were found to increase with aging. A correlation can probably be established between the enzyme activities, the levels of glycosylated haemoglobulin and catecholamines during aging.  相似文献   

7.
8.
ATP is known to be easily determined fluorometrically after it is utilized to produce the corresponding amount of NADPH by combined reactions of hexokinase and glucose-6-phosphate dehydrogenase. We studied further whether nucleoside triphosphates other than ATP can be also determined in a similar manner if they were incubated for a longer period with an increased amount of hexokinase. It was shown that CTP, GTP, ITP, and UTP can be utilized to produce the corresponding amount of NADPH after an incubation of at least 60 min and that 0 to 50 nmols of these nucleotides were able to be determined fluorometrically.  相似文献   

9.
10.
Brain hexokinase (HKI) is inhibited potently by its product glucose 6-phosphate (G6P); however, the mechanism of inhibition is unsettled. Two hypotheses have been proposed to account for product inhibition of HKI. In one, G6P binds to the active site (the C-terminal half of HKI) and competes directly with ATP, whereas in the alternative suggestion the inhibitor binds to an allosteric site (the N-terminal half of HKI), which indirectly displaces ATP from the active site. Single mutations within G6P binding pockets, as defined by crystal structures, at either the N- or C-terminal half of HKI have no significant effect on G6P inhibition. On the other hand, the corresponding mutations eliminate product inhibition in a truncated form of HKI, consisting only of the C-terminal half of the enzyme. Only through combined mutations at the active and allosteric sites, using residues for which single mutations had little effect, was product inhibition eliminated in HKI. Evidently, potent inhibition of HKI by G6P can occur from both active and allosteric binding sites. Furthermore, kinetic data reported here, in conjunction with published equilibrium binding data, are consistent with inhibitory sites of comparable affinity linked by a mechanism of negative cooperativity.  相似文献   

11.
Erythrocyte glucose 6-phosphate dehydrogenase isozymes of domestic chickens, ring-necked pheasants, and their hybrids were studied, using the starch gel zone electrophoresis technique. In domestic chickens G6PD isozymes were represented by two fast-moving bands and an indistinct third band, whereas in ring-necked pheasants a slow-moving broad band which seemed to consist of two closely apposed G6PD isozymes was observed. The F1 hybrids showed three distinct bands combining the characteristic mobility pattern of the two parents, which seemed to indicate that both parental alleles are expressed in F1 hybrids. Since both male and female hybrids exhibited strikingly similar isozyme patterns representing both sire and dam, it was assumed that the genes controlling the production of G6PD in chicken and pheasant red blood cells are located on the autosomes.This study was supported in part by a research grant from the National Research Council of Canada.  相似文献   

12.
Mammary glucose 6-phosphate dehydrogenase. Molecular weight studies   总被引:1,自引:0,他引:1  
Glucose 6-phosphate dehydrogenase was isolated from lactating rat mammary glands by a procedure extended and modified from one previously described. The sedimentation coefficient, S20,W, was 10.3 in 0.01 m potassium phosphate, pH 6.9, containing 0.1 m NaCl at three protein concentrations between 0.51 and 1.45 mg/ml. The partial specific volume, v?, was 0.735 ml/g as determined by equilibrium sedimentation centrifugation in H2O and D2O containing buffers at pH(D) 6.5 containing 0.01 m potassium phosphate and 0.1 m NaCl. In the same buffer, but with 2.0 m NaCl, the apparent partial specific volume, φ′, was 0.756 ml/g. Equilibrium sedimentation of the enzyme at an initial concentration of 0.8 mg/ml was performed in 0.01 m potassium phosphate, pH 6.5, containing 1.0 mm EDTA, 7.0 mm mercaptoethanol, and various concentrations of NaCl between 0 and 2.0 m and with or without 0.1 mm NADP+. Weight-average and Z-average molecular weights were calculated and, from these values, the molecular weights of the monomer and dimer were derived. Under these conditions, the enzyme existed principally as a dimer, of molecular weight approximately 235,000, at low salt concentration, and as a monomer, of molecular weight approximately 120,000 in 1.0 m and 2.0 m NaCl. The subunit molecular weight was found to be 64,000 by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. Equilibrium sedimentation in 6 m guanidine hydrochloride gave a subunit molecular weight of 62,000 (assuming v? was unaltered) or 58,000 or 54,000 (assuming v? is decreased by 0.01 or 0.02, respectively, in 6 m guanidine). We conclude that rat mammary glucose 6-phosphate dehydrogenase has a molecular weight similar to that of glucose 6-phosphate dehydrogenases isolated from various other mammalian sources with the notable exception of human erythrocyte glucose 6-phosphate dehydrogenase which, like the microbial glucose 6-phosphate dehydrogenases thus far examined, has a significantly lower molecular weight.  相似文献   

13.
14.
15.
16.
A study of the reverse reaction of rat brain hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) has been performed using a photometric method based on a mutarotase-glucose oxidase-peroxidase-chromogen system to trap and visualize glucose, plus a glycerol kinase-glycerol system to trap ATP. Glucose 6-phosphate or 2-deoxyglucose 6-phosphate were used as phosphoryl donors at different concentrations of ADP. Variation of glucose 6-phosphate concentrations resulted in a biphasic curve from which apparent Km and Ki values of ca. 0.2 mM were calculated. In contrast, variation of 2-deoxyglucose 6-phosphate concentrations resulted in Michaelian kinetics with an apparent Km of 2 mM. The Km value for MgADP was 16 mM irrespective of the nature and concentration of the hexose 6-phosphate substrate. These results are fully consistent with an allosteric site for glucose 6-phosphate as an explanation for the inhibition of animal hexokinases by glucose 6-P and further indicate that the maximal rate is the parameter affected. From these observations and previous knowledge, the possible occurrence in animal hexokinases of a regulatory site for ATP to account for the competition between glucose 6-phosphate and ATP in the forward reaction is postulated.  相似文献   

17.
S J Soldin  D Balinsky 《Biochemistry》1968,7(3):1077-1081
  相似文献   

18.
S E Broedel  R E Wolf 《Gene》1991,109(1):71-79
In most cyanobacteria, the only known pathway for oxidation of stored carbohydrate in the dark or under energy-limiting conditions is the hexose monophosphate shunt. To determine whether the increased use of the shunt under these conditions derives from an increase in the activity level of the respective enzymes, we measured the effect of growth phase during the growth of batch cultures of Synechococcus sp. strain PCC7942 on the specific activity of 6-phosphogluconate dehydrogenase (6PGD) and glucose 6-phosphate dehydrogenase. The specific activities were constant during the exponential growth phase of the culture, but they increased about fivefold during the transition into stationary phase. As an approach to determining the level of expression at which the growth-phase-dependent regulation of 6PGD level is exerted, we constructed operon and gene fusions between the gnd gene, which encodes 6PGD, and the Escherichia coli lacZ gene, which encodes beta-galactosidase (beta Gal). Strains harboring the fusions integrated into the cyanobacterial chromosome were prepared, and the growth-phase dependence of beta Gal level was determined. The specific activity of beta Gal in cultures of both types of fusion strains increased during the transition into stationary phase, indicating that the growth-phase-dependent regulation is on the gnd mRNA level. Characterization of the growth-phase-dependent induction of 6PGD in strains carrying differing amounts of DNA upstream from the gnd structural gene led to the localization of the promoter and the regulatory site on the restriction map of the gene, whose sequence has previously been determined.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Glucose-6-phosphate dehydrogenase (E. C.: 1.1.1.49) phenotypes and 6-phosphogluconate dehydrogenase (E. C.: 1.1.1.44) phenotypes were determined by starch-gel electrophoresis of red cell hemolysates of Galago crassicaudatus subspp., Propithecus verreauxi, Lemur spp., Hapalemur griseus, and Macaca mulatta. A single glucose-6-phosphate dehydrogenase (G6PD) phenotype was found in each species. A single 6-phosphogluconate dehydrogenase (6PGD) phenotype was found in Lemur spp., Hapalemur griseus, and Galago crassicaudatus argentatus. In a group of six Propithecus verreauxi, three 6PGD phenotypes, PGD A, PGD AB, and PGD B, were found. Three phenotypes, PGD A, PGD AB, and PGD B, were found in 38 G. c. crassicaudatus. The three phenotypes in each species are apparently the products of two codominant autosomal alleles, PGDA and PGDB. The frequency of PGDA in G. c. crassicaudatus is 0.263. A population of 260 free-ranging macaques displays a polymorphism at the 6PGD locus. Three phenotypes, PGD A, PGD AB, and PGD B, were found. These also appear to be controlled by two codominant autosomal alleles, PGDA and PGDB the frequency of PGDA = 0.913. Additional analysis of three well-defined troops within the macaque population indicated that there are no significant differences between the troops or within the population at the 6PGD locus.  相似文献   

20.
Regulation of glucose 6-phosphate dehydrogenase in blue-green algae   总被引:7,自引:4,他引:3       下载免费PDF全文
Glucose 6-phosphate dehydrogenase (EC 1.1.1.49) has been partially purified from Anacystis nidulans and Anabaena flos-aquae by means of ammonium sulfate fractionation and exclusion gel chromatography and the kinetic properties determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号