首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Swamy U  Wang M  Tripathy JN  Kim SK  Hirasawa M  Knaff DB  Allen JP 《Biochemistry》2005,44(49):16054-16063
The structure of nitrite reductase, a key enzyme in the process of nitrogen assimilation, has been determined using X-ray diffraction to a resolution limit of 2.8 A. The protein has a globular fold consisting of 3 alpha/beta domains with the siroheme-iron sulfur cofactor at the interface of the three domains. The Fe(4)S(4) cluster is coordinated by cysteines 441, 447, 482, and 486. The siroheme is located at a distance of 4.2 A from the cluster, and the central iron atom is coordinated to Cys 486. The siroheme is surrounded by several ionizable amino acid residues that facilitate the binding and subsequent reduction of nitrite. A model for the ferredoxin:nitrite reductase complex is proposed in which the binding of ferredoxin to a positively charged region of nitrite reductase results in elimination of exposure of the cofactors to the solvent. The structure of nitrite reductase shows a broad similarity to the hemoprotein subunit of sulfite reductase but has many significant differences in the backbone positions that could reflect sequence differences or could arise from alterations of the sulfite reductase structure that arise from the isolation of this subunit from the native complex. The implications of the nitrite reductase structure for understanding multi-electron processes are discussed in terms of differences in the protein environments of the cofactors.  相似文献   

2.
Sulfonucleotide reductases are a diverse family of enzymes that catalyze the first committed step of reductive sulfur assimilation. In this reaction, activated sulfate in the context of adenosine-5'-phosphosulfate (APS) or 3'-phosphoadenosine 5'-phosphosulfate (PAPS) is converted to sulfite with reducing equivalents from thioredoxin. The sulfite generated in this reaction is utilized in bacteria and plants for the eventual production of essential biomolecules such as cysteine and coenzyme A. Humans do not possess a homologous metabolic pathway, and thus, these enzymes represent attractive targets for therapeutic intervention. Here we studied the mechanism of sulfonucleotide reduction by APS reductase from the human pathogen Mycobacterium tuberculosis, using a combination of mass spectrometry and biochemical approaches. The results support the hypothesis of a two-step mechanism in which the sulfonucleotide first undergoes rapid nucleophilic attack to form an enzyme-thiosulfonate (E-Cys-S-SO(3-)) intermediate. Sulfite is then released in a thioredoxin-dependent manner. Other sulfonucleotide reductases from structurally divergent subclasses appear to use the same mechanism, suggesting that this family of enzymes has evolved from a common ancestor.  相似文献   

3.
Pentaheme cytochrome c nitrite reductase (ccNiR) catalyzes the six-electron reduction of nitrite to ammonia as the final step in the dissimilatory pathway of nitrate ammonification. It has also been shown to reduce sulfite to sulfide, thus forming the only known link between the biogeochemical cycles of nitrogen and of sulfur. We have found the sulfite reductase activity of ccNiR from Wolinella succinogenes to be significantly smaller than its nitrite reductase activity but still several times higher than the one described for dissimilatory, siroheme-containing sulfite reductases. To compare the sulfite reductase activity of ccNiR with our previous data on nitrite reduction, we determined the binding mode of sulfite to the catalytic heme center of ccNiR from W. succinogenes at a resolution of 1.7 A. Sulfite and nitrite both provide a pair of electrons to form the coordinative bond to the Fe(III) active site of the enzyme, and the oxygen atoms of sulfite are found to interact with the three active site protein residues conserved within the enzyme family. Furthermore, we have characterized the active site variant Y218F of ccNiR that exhibited an almost complete loss of nitrite reductase activity, while sulfite reduction remained unaffected. These data provide a first direct insight into the role of the first sphere of protein ligands at the active site in ccNiR catalysis.  相似文献   

4.
Coenzyme F(420)-dependent sulfite reductase (Fsr) of Methanocaldococcus jannaschii, a sulfite-tolerant methanogen, was expressed with activity in Methanococcus maripaludis, a sulfite-sensitive methanogen. The recombinant organism reduced sulfite to sulfide and grew with sulfite as the sole sulfur source, indicating that Fsr is a sulfite detoxification and assimilation enzyme for methanogens and that M. maripaludis synthesizes siroheme.  相似文献   

5.
Siroheme, the cofactor for sulfite and nitrite reductases, is formed by methylation, oxidation, and iron insertion into the tetrapyrrole uroporphyrinogen III (Uro-III). The CysG protein performs all three steps of siroheme biosynthesis in the enteric bacteria Escherichia coli and Salmonella enterica. In either taxon, cysG mutants cannot reduce sulfite to sulfide and require a source of sulfide or cysteine for growth. In addition, CysG-mediated methylation of Uro-III is required for de novo synthesis of cobalamin (coenzyme B(12)) in S. enterica. We have determined that cysG mutants of the related enteric bacterium Klebsiella aerogenes have no defect in the reduction of sulfite to sulfide. These data suggest that an alternative enzyme allows for siroheme biosynthesis in CysG-deficient strains of Klebsiella. However, Klebsiella cysG mutants fail to synthesize coenzyme B(12), suggesting that the alternative siroheme biosynthetic pathway proceeds by a different route. Gene cysF, encoding an alternative siroheme synthase homologous to CysG, has been identified by genetic analysis and lies within the cysFDNC operon; the cysF gene is absent from the E. coli and S. enterica genomes. While CysG is coregulated with the siroheme-dependent nitrite reductase, the cysF gene is regulated by sulfur starvation. Models for alternative regulation of the CysF and CysG siroheme synthases in Klebsiella and for the loss of the cysF gene from the ancestor of E. coli and S. enterica are presented.  相似文献   

6.
Mutants of Salmonella typhimurium that lack the biosynthetic sulfite reductase (cysI and cysJ mutants) retain the ability to reduce sulfite for growth under anaerobic conditions (E. L. Barrett and G. W. Chang, J. Gen. Microbiol., 115:513-516, 1979). Here we report studies of sulfite reduction by a cysI mutant of S. typhimurium and purification of the associated anaerobic sulfite reductase. Sulfite reduction for anaerobic growth did not require a reducing atmosphere but was prevented by an argon atmosphere contaminated with air (less than 0.33%). It was also prevented by the presence of 0.1 mM nitrate, which argues against a strictly biosynthetic role for anaerobic sulfite reduction. Anaerobic growth in liquid minimal medium, but not on agar, was found to require additions of trace amounts (10(-7)M) of cysteine. Spontaneous mutants that grew under the argon contaminated with air also lost the requirement for 10(-7)M cysteine for anaerobic growth in liquid. A role for sulfite reduction in anaerobic energy generation was contraindicated by the findings that sulfite reduction did not improve cell yields, and anaerobic sulfite reductase activity was greatest during the stationary phase of growth. Sulfite reductase was purified from the cytoplasmic fraction of the anaerobically grown cysI mutant and was purified 190-fold. The most effective donor in crude extracts was NADH. NADPH and methyl viologen were, respectively, 40 and 30% as effective as NADH. Oxygen reversibly inhibited the enzyme. Two high-molecular-weight proteins separated by gel filtration (Mr 360,000 and 490,000, respectively) were required for maximal activity with NADH. Indirect evidence, including in vitro complementation experiments with a cysG mutant extract, suggested that the 360,000-Mr component contains siroheme and is the terminal reductase. This component was further purified to near homogeneity and was found to consist of a single subunit of molecular weight 67,500. The anaerobic sulfite reductase showed some resemblance to the biosynthetic sulfite reductase, but apparently it has a unique, as yet unidentified function.  相似文献   

7.
Oxidation-reduction properties of maize ferredoxin: sulfite oxidoreductase   总被引:1,自引:0,他引:1  
Oxidation-reduction titrations have been carried out on the wild-type, ferredoxin-dependent sulfite reductase from maize and two site-specific variants of the enzyme. E(m) values have been determined for the siroheme and [4Fe-4S] cluster prosthetic groups of the enzyme, which titrate as independent, one-electron carriers. Visible-region difference spectra suggest that reduction of the [4Fe-4S] cluster significantly perturbs the spectrum of the reduced siroheme group of the enzyme. The effects of siroheme axial ligation, by either cyanide or phosphate ligands, on the redox properties of sulfite reductase have also been examined. For comparison, the effects of phosphate and cyanide on the redox properties of the ferredoxin-dependent nitrite reductase of spinach chloroplasts, an enzyme with the same prosthetic group arrangement as sulfite reductase, have been examined.  相似文献   

8.
Interactions of ferredoxin-linked nitrite reductase (NiR) from spinach with its substrate were studied by spectrophotometry and electron spin resonance (ESR) spectroscopy. Siroheme was extractable from NiR with 2.5% (W/V) trichloroacetic acid (TCA) and with acetone containing 0.01 N HCl. The addition of nitrite or sulfite to these extracts resulted in shifts of the absorption spectra of siroheme. The HCl-acetone extract showed ESR signals of symmetrical high spin heme, which disappeared on addition of nitrite. Spectral titration indicated a high affinity of extracted siroheme to nitrite and sulfite. The addition of nitrite or sulfite to protoheme dissolved in 0.01 N HCl-acetone did not cause a shift of the absorption spectrum. The extractability of siroheme with 0.01 N HCl-acetone was suppressed by the addition of nitrite to the NiR preparation. Moreover, a substrate-induced difference spectrum with peaks at about 295 and 287 nm was observed on addition of nitrite to NiR. These observations indicated an intrinsic strong affinity of siroheme to nitrite and sulfite, formation of rhombicity of siroheme by binding to the protein moiety, and also a probable conformational change of NiR on binding to the substrate. In agreement with previous reports, ESR signals of the heme-NO complex were observed with NiR in the presence of nitrite, methyl viologen (MV), and dithionite. In the present study, the same signals of similar intensity were also observed on omission of MV, under which conditions no catalytic reduction of nitrite occurred. Furthermore, the signal of the heme-NO complex was not observed when MV was replaced by spinach ferredoxin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The nirA gene of Mycobacterium tuberculosis is up-regulated in the persistent state of the bacteria, suggesting that it is a potential target for the development of antituberculosis agents particularly active against the pathogen in its dormant phase. This gene encodes a ferredoxin-dependent sulfite reductase, and the structure of the enzyme has been determined using x-ray crystallography. The enzyme is a monomer comprising 555 amino acids and contains a [Fe4-S4] cluster and a siroheme cofactor. The molecule is built up of three domains with an alpha/beta fold. The first domain consists of two ferredoxin-like subdomains, related by a pseudo-2-fold symmetry axis passing through the whole molecule. The other two domains, which provide much of the binding interactions with the cofactors, have a common fold that is unique to the sulfite/nitrite reductase family. The domains form a trilobal structure, with the cofactors and the active site located at the interface of all three domains in the center of the molecule. NirA contains an unusual covalent bond between the side chains of Tyr69 and Cys161 in the active site, in close proximity to the siroheme cofactor. Removal of this covalent bond by site-directed mutagenesis impairs catalytic activity, suggesting that it is important for the enzymatic reaction. These residues are part of a sequence fingerprint, able to distinguish between ferredoxin-dependent sulfite and nitrite reductases. Comparison of NirA with the structure of the truncated NADPH-dependent sulfite reductase from Escherichia coli suggests a binding site for the external electron donor ferredoxin close to the [Fe4-S4] cluster.  相似文献   

10.
Zeng J  Wang M  Zhang X  Wang Y  Ai C  Liu J  Qiu G 《Biotechnology letters》2008,30(7):1239-1244
Sulfite reductase (SiR) is a large and soluble enzyme which catalyzes the transfer of six electrons from NADPH to sulfite to produce sulfide. The sulfite reductase flavoprotein (SiR-FP) contains both FAD and FMN, and the sulfite reductase hemoprotein (SiR-HP) contains an iron-sulfur cluster coupled to a siroheme. The enzyme is arranged so that the redox cofactors in the FAD-FMN-Fe(4)S(4)-Heme sequence make an electron pathway between NADPH and sulfite. Here we report the cloning, expression, and characterization of the SiR-HP of the sulfite reductase from Acidithiobacillus ferrooxidans. The purified SiR-HP contained a [Fe(4)S(4)] cluster. Site-directed mutagenesis results revealed that Cys427, Cys433, Cys472 and Cys476 were in ligating with the [Fe(4)S(4)] cluster of the protein.  相似文献   

11.
Methanocaldococcus jannaschii is a hypertheromphilic, strictly hydrogenotrophic, methanogenic archaeon of ancient lineage isolated from a deep-sea hydrothermal vent. It requires sulfide for growth. Sulfite is inhibitory to the methanogens. Yet, we observed that M. jannaschii grows and produces methane with sulfite as the sole sulfur source. We found that in this organism sulfite induces a novel, highly active, coenzyme F(420)-dependent sulfite reductase (Fsr) with a cell extract specific activity of 0.57 mumol sulfite reduced min(-1) mg(-1) protein. The cellular level of Fsr protein is comparable to that of methyl-coenzyme M reductase, an enzyme essential for methanogenesis and a possible target for sulfite. Purified Fsr reduces sulfite to sulfide using reduced F(420) (H(2)F(420)) as the electron source (K(m): sulfite, 12 microm; H(2)F(420), 21 microm). Therefore, Fsr provides M. jannaschii an anabolic ability and protection from sulfite toxicity. The N-terminal half of the 70-kDa Fsr polypeptide represents a H(2)F(420) dehydrogenase and the C-terminal half a dissimilatory-type siroheme sulfite reductase, and Fsr catalyzes the corresponding partial reactions. Previously described sulfite reductases use nicotinamides and cytochromes as electron carriers. Therefore, this is the first report of a coenzyme F(420)-dependent sulfite reductase. Fsr homologs were found only in Methanopyrus kandleri and Methanothermobacter thermautotrophicus, two strictly hydrogenotrophic thermophilic methanogens. fsr is the likely ancestor of H(2)F(420) dehydrogenases, which serve as electron input units for membrane-based energy transduction systems of certain late evolving archaea, and dissimilatory sulfite reductases of bacteria and archaea. fsr could also have arisen from lateral gene transfer and gene fusion events.  相似文献   

12.
Sulfate reduction is one of the earliest types of energy metabolism used by ancestral organisms to sustain life. Despite extensive studies, many questions remain about the way respiratory sulfate reduction is associated with energy conservation. A crucial enzyme in this process is the dissimilatory sulfite reductase (dSiR), which contains a unique siroheme-[4Fe4S] coupled cofactor. Here, we report the structure of desulfoviridin from Desulfovibrio vulgaris, in which the dSiR DsrAB (sulfite reductase) subunits are bound to the DsrC protein. The alpha(2)beta(2)gamma(2) assembly contains two siroheme-[4Fe4S] cofactors bound by DsrB, two sirohydrochlorins and two [4Fe4S] centers bound by DsrA, and another four [4Fe4S] centers in the ferredoxin domains. A sulfite molecule, coordinating the siroheme, is found at the active site. The DsrC protein is bound in a cleft between DsrA and DsrB with its conserved C-terminal cysteine reaching the distal side of the siroheme. We propose a novel mechanism for the process of sulfite reduction involving DsrAB, DsrC, and the DsrMKJOP membrane complex (a membrane complex with putative disulfide/thiol reductase activity), in which two of the six electrons for reduction of sulfite derive from the membrane quinone pool. These results show that DsrC is involved in sulfite reduction, which changes the mechanism of sulfate respiration. This has important implications for models used to date ancient sulfur metabolism based on sulfur isotope fractionations.  相似文献   

13.
Neurospora crassa nitrite reductase (Mr = 290,000) catalyzes the NAD(P)H-dependent 6-electron reduction of nitrite to ammonia via flavin and siroheme prosthetic groups. Homogeneous N. crassa nitrite reductase has been prepared employing conventional purification methods followed by affinity chromatography on blue dextran-Sepharose 4B. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of homogeneous nitrite reductase reveals a single subunit band of Mr = 140,000. Isoelectric focusing of dissociated enzyme followed by sodium dodecyl sulfate-gel electrophoresis in the second dimension yields a single subunit spot with an isoelectric point at pH 6.8-6.9. Two-dimensional thin layer chromatography of acid-hydrolyzed nitrite reductase treated with 5-dimethylaminoaphthalene-1-sulfonyl chloride yields a single reactive NH2-terminal corresponding to glycine. An investigation of the prosthetic groups of nitrite reductase reveals little or no flavin associated with the purified protein, although exogenously added FAD is required for activity in vitro. An iron content of 9-10 Fe eq/mol suggests the presence of nonheme iron in addition to the siroheme moieties. Amino acid analysis yields 43 cysteinyl residues and sulfhydryl reagents react with 50 thiol eq/mol of nitrite reductase. The non-cysteinyl sulfur content, determined as 8.1 acid-labile sulfide eq/mol, is presumably associated with nonheme iron to form iron-sulfur centers. We conclude that N. crassa nitrite reductase is a homodimer of large molecular weight subunits housing an electron transfer complex of FAD, iron-sulfur centers, and siroheme to mediate the reduced pyridine nucleotide-dependent reduction of nitrite to ammonia.  相似文献   

14.
The multiple copies of the chloroplast genome (plastome) are condensed and organized into nucleoids by a set of proteins. One of these, the DNA-binding protein DCP68 from soybean, has previously been shown to compact DNA and to inhibit DNA synthesis in vitro. N-terminal amino acid analysis and the absorption spectrum of the purified protein suggest that DCP68 is the siroheme protein sulfite reductase, a ferredoxin-dependent enzyme that participates in sulfur assimilation for cysteine and methionine biosynthesis. The in vivoassociation of this protein with chloroplast nucleoids was confirmed by immuno-colocalization with antibodies against sulfite reductase from Arabidopsis thaliana. These results suggest that DCP68 is a bifunctional chloroplast protein that participates in reductive sulfur assimilation and plays a role in organellar nucleoid organization. The fact that dephosphorylation by alkaline phosphatase affects the binding of purified DCP68 to DNA in vitro might be indicative of the way the interaction of the protein with the nucleoid is regulated in vivo.  相似文献   

15.
Many essential life processes, such as photosynthesis, respiration, nitrogen fixation, depend on transition metal ions and their ability to catalyze multi-electron redox and hydrolytic transformations. Here we review some recent structural studies on three multi-site metal enzymes involved in respiratory processes which represent important branches within the global cycles of nitrogen and sulfur: (i) the multi-heme enzyme cytochrome c nitrite reductase, (ii) the FAD, FeS-enzyme adenosine-5'-phosphosulfate reductase, and (iii) the siroheme, FeS-enzyme sulfite reductase. Structural information comes from X-ray crystallography and spectroscopical techniques, in special cases catalytically competent intermediates could be trapped and characterized by X-ray crystallography.  相似文献   

16.
Plant sulfite reductase contains the siroheme and the [4Fe-4S] cluster as catalytically active redox centers and catalyzes the six-electron reductions of sulfite and nitrite using electrons donated from ferredoxin. A heterologous expression of a cDNA for maize sulfite reductase in E. coli has enabled us to produce the wild-type and mutant enzymes. Putative substrate-binding basic residues, located at the siroheme distal side, have been substituted for other residues with neutral or negatively charged side chains. Kinetic studies of the resulting mutant enzymes have demonstrated that substrate specificity for the two anions is remarkably changed by amino acid substitutions at a single site. We have also produced two classes of ferredoxin mutants with less ability to donate electrons to sulfite reductase: one with a defect in the recognition of the partner enzyme and the other with an unfavorable redox property. This article summarizes our knowledge about the structure function relationships of plant sulfite reductase.  相似文献   

17.
The relatively high specific sulfite reductase activity of 25 mU/mg protein was found in extracts from Thiobacillus dentrificans. The absorption spectrum of the partially pruified enzyme was similar to the siroheme containing sulfite reductases from other sources. It is suggested that the T. denitrificans sulfite reductase may function during the oxidation of reduced sulfur compounds.  相似文献   

18.
By its inability to grow on sulfate as the sole sulfur source, a mutant strain (CTNUX8) of Rhizobium etli carrying Tn5 was isolated and characterized. Sequence analysis showed that Tn5 is inserted into a cysG (siroheme synthetase)-homologous gene. By RNase protection assays, it was established that the cysG-like gene had a basal level of expression in thiosulfate- or cysteine-grown cells, which was induced when sulfate or methionine was used. Unlike its wild-type parent (strain CE3), the mutant strain, CTNUX8, was also unable to grow on nitrate as the sole nitrogen source and was unable to induce a high level of nitrite reductase. Despite its pleiotropic phenotype, strain CTNUX8 was able to induce pink, effective (N2-fixing) nodules on the roots of Phaseolus vulgaris plants. However, mixed inoculation experiments showed that strain CTNUX8 is significantly different from the wild type in its ability to nodulate. Our data support the notion that sulfate (or sulfite) is the sulfur source of R. etli in the rhizosphere, while cysteine, methionine, or glutathione is supplied by the root cells to bacteria growing inside the plant.  相似文献   

19.
The enzymatic pathways of elemental sulfur and thiosulfate disproportionation were investigated using cell-free extract of Desulfocapsa sulfoexigens. Sulfite was observed to be an intermediate in the metabolism of both compounds. Two distinct pathways for the oxidation of sulfite have been identified. One pathway involves APS reductase and ATP sulfurylase and can be described as the reversion of the initial steps of the dissimilatory sulfate reduction pathway. The second pathway is the direct oxidation of sulfite to sulfate by sulfite oxidoreductase. This enzyme has not been reported from sulfate reducers before. Thiosulfate reductase, which cleaves thiosulfate into sulfite and sulfide, was only present in cell-free extract from thiosulfate disproportionating cultures. We propose that this enzyme catalyzes the first step in thiosulfate disproportionation. The initial step in sulfur disproportionation was not identified. Dissimilatory sulfite reductase was present in sulfur and thiosulfate disproportionating cultures. The metabolic function of this enzyme in relation to elemental sulfur or thiosulfate disproportionation was not identified. The presence of the uncouplers HQNO and CCCP in growing cultures had negative effects on both thiosulfate and sulfur disproportionation. CCCP totally inhibited sulfur disproportionation and reduced thiosulfate disproportionation by 80% compared to an unamended control. HQNO reduced thiosulfate disproportionation by 80% and sulfur disproportionation by 90%.  相似文献   

20.
Bacillus subtilis can use either nitrate or nitrite as a sole source of nitrogen. The isolation of the nasABCDEF genes of B. subtilis, which are required for nitrate/nitrite assimilation, is reported. The probable gene products include subunits of nitrate/nitrite reductases and an enzyme involved in the synthesis of siroheme, a cofactor for nitrite reductase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号