首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The transient behaviour of ammonium limited continuous cultures of E. coli ML 30 led to the hypothesis that the bistability of pyruvate formation primarily is caused by a bistability of the ammonia metabolism. Therefore, a function of mu([NH+4]) should be expected different from that of Monod type. Measurements of the specific growth rate during washout of continuous cultures at different ammonium concentrations and at such low cell concentrations that the changes in the ammonium concentration of the medium could be neglected, showed a complex function with a relative minimum near 2 mg/1NH+4. This function allows bistability of the ammonium concentration in an ammonium limited continuous culture. The results are discussed on the basis of the two systems of ammonia assimilation found in prokaryotic cells.  相似文献   

2.
The pyruvate production of E. coli ML30 in continuous cultures was investigated. In a glucose mineralsalt medium with ammonium as the limiting substrate two stable stationary states (bistability) of pyruvate concentration were obtained. The bistability was limited to dilution rates lower than 0.3 h-1 and connected with a decrease of the yield coefficient (Y Glc) from approximately 0.45 to approximately 0.1.  相似文献   

3.
Nitrate reductase (NADH-NR) and glutamate dehydrogenase (NADPH-GDH)activities were measured in Skeletonema costatum (Grev.) Clevein ammonium and nitrate limited continuous cultures before andafter additions of nitrate and/or ammonium. Comparisons of enzymicactivity with nitrogen uptake and assimilation rates, externaland internal nitrate concentrations, and external ammonium concentrationswere made in order to assess the roles of NR and GDH in nitrogenassimilation and to determine their suitability as measuresof nitrogen assimilation rates. NR activity appeared to be inducedby internal rather than external nitrate concentrations. Ammoniumin the medium reduced NR activity under some environmental conditions,but not others. However, ammonium acted indirectly, perhapsby causing the accumulation of an internal pool of an intermediateof ammonium assimilation. NR activity was found to approximatenitrate assimilation rates during growth limited by the nitratesupply and undeT some conditions in the presence of high nitrateand ammonium concentrations in the medium. Under other environmentalconditions, NR activity did not agree with nitrate assimilationrates; a second nitrate reducing mechanism may operate whenthese conditions prevail. GDH activities were consistently low,representing less than 5% of the ammonium uptake and assimilationrates. Consequently, it is proposed that ODH is not the primaryammonium assimilating enzyme under most environmental conditionsand cannot be used as a measure of ammonium assimilation. 1 Contribution number 1095 from the Department of Oceanography,University of Washington  相似文献   

4.
In connection with the bistability of pyruvate formation in ammonium limited continuous cultures of E. coli ML 30 (Bergter u. Roth 1977) the transient behaviour of cell density and pyruvate concentration were studied. Immediately after a shift up in the dilution rate from D = 0.15 h-1 to D = 0.6 h-1 the bacteria excreted pyruvate into the medium, followed by a resumption of pyruvate. The specific pyruvate formation rate as well as the specific growth rate reached the new steady state with damped oscillations. Possibly the excretion of pyruvate after the shift is caused by the higher non limiting concentrations of ammonium during the first of the transition. This hypothesis is supported by the transient behaviour of an ammonium limited continuous culture after a pulse of ammonium to the culture. The relations between ammonium metabolism and pyruvate formation are discussed.  相似文献   

5.
Methylammonium/ammonium ion, glutamine, glutamate, arginine and proline uptake, and their assimilation as nitrogen sources, was studied in Nostoc muscorum and its glutamine synthetase-deficient mutant. Glutamine served as nitrogen source independent of glutamine synthetase activity. Glutamate was not metabolised as a nitrogen source but still inhibited nitrogenase activity and diazotrophic growth. Glutamine synthetase activity was essential for the assimilation of N2, ammonia, arginine and proline as nitrogen sources but not for the control of their transport, heterocyst formation, and production of ammonia or aminoacid dependent repressor signal for N2-fixing heterocysts. These results also suggest that glutamine synthetase serves as the sole route of ammonia assimilation and glutamine synthesis, and ammonia per se as the repressor signal for N2-fixing heterocysts and methylammonium (ammonium) transport.  相似文献   

6.
Nitrogen-limited continuous cultures of Cyanidium caldarium contained induced levels of glutamine synthetase and nitrate reductase when either nitrate or ammonia was the sole nitrogen source. Nitrate reductase occurred in a catalytically active form. In the presence of excess ammonia, glutamine synthetase and nitrate reductase were repressed, the latter enzyme completely. In the presence of excess nitrate, intermediate levels of glutamine synthetase activity occurred. Nitrate reductase was derepressed but occurred up to 60% in a catalytically inactive form.Cell suspensions of C. caldarium from nitrate- or ammonialimited cultures assimilated either ammonia or nitrate immediately when provided with these nutrients. In these types of cells, as well as in cells grown with excess nitrate, the rate of ammonia assimilation was 2.5-fold higher than the rate of nitrate assimilation. It is proposed that the reduced rate at which nitrate was assimilated as compared to ammonia might be due to regulatory mechanisms which operate at the level of nitrate reductase activity.  相似文献   

7.
Urease and glutamine synthetase activities in Selenomonas ruminantium strain D were highest in cells grown in ammonia-limited, linear-growth cultures or when certain compounds other than ammonia served as the nitrogen source and limited the growth rate in batch cultures. Glutamate dehydrogenase activity was highest during glucose (energy)-limited growth or when ammonia was not growth limiting. A positive correlation (R = 0.96) between glutamine synthetase and urease activities was observed for a variety of growth conditions, and both enzyme activities were simultaneously repressed when excess ammonia was added to ammonia-limited, linear-growth cultures. The glutamate analog methionine sulfoximine (MSX), inhibited glutamine synthetase activity in vitro, but glutamate dehydrogenase, glutamate synthase, and urease activities were not affected. The addition of MSX (0.1 to 100 mM) to cultures growing with 20 mM ammonia resulted in growth rate inhibition that was dependent upon the concentration of MSX and was overcome by glutamine addition. Urease activity in MSX-inhibited cultures was increased significantly, suggesting that ammonia was not the direct repressor of urease activity. In ammonia-limited, linear-growth cultures, MSX addition resulted in growth inhibition, a decrease in GS activity, and an increase in urease activity. These results are discussed with respect to the importance of glutamine synthetase and glutamate dehydrogenase for ammonia assimilation under different growth conditions and the relationship of these enzymes to urease.  相似文献   

8.
Activities and properties of the ammonium assimilation enzymes NADP+-dependent glutamate dehydrogenase (GDH), glutamate synthase (GOGAT) and glutamine synthetase (GS) were determined in batch and continuous cultures of Candida albicans. NADP+-dependent GDH activity showed allosteric kinetics, with an S0.5 for 2-oxoglutarate of 7.5 mM and an apparent Km for ammonium of 5.0 mM. GOGAT activity was affected by the buffer used for extraction and assay, but in phosphate buffer, kinetics were hyperbolic, yielding Km values for glutamine of 750 microM and for 2-oxoglutarate of 65 microM. The enzymes GOGAT and NADP+-dependent GDH were also assayed in batch cultures of Saccharomyces cerevisiae and three other pathogenic Candida spp.: Candida tropicalis, Candida pseudotropicalis and Candida parapsilosis. Evidence is presented that GS/GOGAT is a major pathway for ammonium assimilation in Candida albicans and that this pathway is also significant in other Candida species.  相似文献   

9.
Succinivibrio dextrinosolvens C18 was found to possess glutamine synthetase (GS), urease, glutamate dehydrogenase, and several other nitrogen assimilation enzymes. When grown in continuous culture under ammonia limitation, both GS and urease activities were high and glutamate dehydrogenase activity was low, but the opposite activity pattern was observed for growth in the presence of ample ammonia. The addition of high-level (15 mM) ammonium chloride to ammonia-limited cultures resulted in a rapid loss of GS activity as measured by either the gamma-glutamyl transferase or forward assay method with cells or extracts. No similar activity losses occurred for urease, glutamate dehydrogenase, or pyruvate kinase. The GS activity loss was not prevented by the addition of chloramphenicol and rifampin. The GS activity could be recovered by washing or incubating cells in buffer or by the addition of snake venom phosphodiesterase to cell extracts. Manganese inhibited the GS activity (forward assay) of untreated cells but stimulated the GS activity in ammonia-treated cells. Alanine, glycine, and possibly serine were inhibitory to GS activity. Optimal pH values for GS activity were 7.3 and 7.4 for the forward and gamma-glutamyl transferase assays, respectively. The glutamate dehydrogenase activity was NADPH linked and optimal in the presence of KCl. The data are consistent with an adenylylation-deadenylylation control mechanism for GS activity in S. dextrinosolvens, and the GS pathway is a major route for ammonia assimilation under low environmental ammonia levels. The rapid regulation of the ATP-requiring GS activity may be of ecological importance to this strictly anaerobic ruminal bacterium.  相似文献   

10.
Succinivibrio dextrinosolvens C18 was found to possess glutamine synthetase (GS), urease, glutamate dehydrogenase, and several other nitrogen assimilation enzymes. When grown in continuous culture under ammonia limitation, both GS and urease activities were high and glutamate dehydrogenase activity was low, but the opposite activity pattern was observed for growth in the presence of ample ammonia. The addition of high-level (15 mM) ammonium chloride to ammonia-limited cultures resulted in a rapid loss of GS activity as measured by either the gamma-glutamyl transferase or forward assay method with cells or extracts. No similar activity losses occurred for urease, glutamate dehydrogenase, or pyruvate kinase. The GS activity loss was not prevented by the addition of chloramphenicol and rifampin. The GS activity could be recovered by washing or incubating cells in buffer or by the addition of snake venom phosphodiesterase to cell extracts. Manganese inhibited the GS activity (forward assay) of untreated cells but stimulated the GS activity in ammonia-treated cells. Alanine, glycine, and possibly serine were inhibitory to GS activity. Optimal pH values for GS activity were 7.3 and 7.4 for the forward and gamma-glutamyl transferase assays, respectively. The glutamate dehydrogenase activity was NADPH linked and optimal in the presence of KCl. The data are consistent with an adenylylation-deadenylylation control mechanism for GS activity in S. dextrinosolvens, and the GS pathway is a major route for ammonia assimilation under low environmental ammonia levels. The rapid regulation of the ATP-requiring GS activity may be of ecological importance to this strictly anaerobic ruminal bacterium.  相似文献   

11.
Nitrate assimilation has been studied in four species of yeasts; Candida nitratophila, Candida utilis, Hansenula anomala and Rhodotorula glutinis. Ammonium-grown cultures of these organisms did not assimilate nitrate but acquired the capacity to do so after a 3 h period of nitrogenstarvation. Ammonium inhibited nitrate assimilation completely in nitrate-grown cultures of R. glutinis. With Candida spp. ammonium and nitrate were assimilated simultaneously but each was assimilated at a lower rate than when either was supplied alone. Nitrogen-starved cultures of C. nitratophila contained enough nitrate reductase activity to sustain high rates of nitrate assimilation. Results indicate that the high levels of nitrate reductase in nitrate-grown cultures of C. nitratophila do not limit nitrate assimilation. Nitrate assimilation appears to be limited by nitrate uptake and/or the supply of reducing equivalents for nitrate reduction in these cultures.  相似文献   

12.
Glutamate dehydrogenase (GDH) and glutamine synthetase (GS)-glutamine 2-oxoglutarate-aminotransferase (GOGAT) represent the two main pathways of ammonium assimilation in Corynebacterium glutamicum. In this study, the ammonium assimilating fluxes in vivo in the wild-type ATCC 13032 strain and its GDH mutant were quantitated in continuous cultures. To do this, the incorporation of 15N label from [15N]ammonium in glutamate and glutamine was monitored with a time resolution of about 10 min with in vivo 15N nuclear magnetic resonance (NMR) used in combination with a recently developed high-cell-density membrane-cyclone NMR bioreactor system. The data were used to tune a standard differential equation model of ammonium assimilation that comprised ammonia transmembrane diffusion, GDH, GS, GOGAT, and glutamine amidotransferases, as well as the anabolic incorporation of glutamate and glutamine into biomass. The results provided a detailed picture of the fluxes involved in ammonium assimilation in the two different C. glutamicum strains in vivo. In both strains, transmembrane equilibration of 100 mM [15N]ammonium took less than 2 min. In the wild type, an unexpectedly high fraction of 28% of the NH4+ was assimilated via the GS reaction in glutamine, while 72% were assimilated by the reversible GDH reaction via glutamate. GOGAT was inactive. The analysis identified glutamine as an important nitrogen donor in amidotransferase reactions. The experimentally determined amount of 28% of nitrogen assimilated via glutamine is close to a theoretical 21% calculated from the high peptidoglycan content of C. glutamicum. In the GDH mutant, glutamate was exclusively synthesized over the GS/GOGAT pathway. Its level was threefold reduced compared to the wild type.  相似文献   

13.
The levels of form I and form II ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) from Rhodobacter sphaeroides were found to depend on the concentration of ammonia supplied to photolithoautotrophically grown cultures. Under conditions in which the cells rapidly depleted the available ammonia, the level of in situ RubisCO activity decreased to less than 5% maximum activity; even at its maximum level under these conditions, the RubisCO activity was only 5% of the activity obtained from cultures supplied with saturating levels of ammonia. When cells were incubated with somewhat higher but not saturating amounts of ammonia, in situ RubisCO activity decreased immediately after the cells depleted the cultures of ammonia. The decrease in activity was not due to any detectable degradation of RubisCO protein, indicative of some mechanism to regulate the activity of the enzyme in response to the intracellular levels of assimilated ammonia. Furthermore, under conditions optimum for RubisCO inactivation, in situ RubisCO activity in permeabilized whole cells greatly exceeded the levels of enzymatic activity determined in vitro in cell extracts. Blockage of ammonia assimilation by inhibition of glutamine synthetase with methionine sulfoximine prevented the recovery of form I RubisCO from pyruvate-mediated inactivation, suggesting the presence of regulatory mechanisms common to both CO2 fixation and ammonia assimilation.  相似文献   

14.
Galveston Bay sediments exhibit substantial spatial and seasonal variability in rates of nitrification and aerobic methane oxidation. We examined the biogeochemical and microbiological controls on these processes using aerobic enrichment slurries. Potential aerobic methane and ammonia oxidation rates from unamended control slurries were compared to rates in slurries amended with methane, ammonium, or methane + ammonium. Bacterial community composition was monitored using denaturing gradient gel electrophoresis (DGGE) analysis of PCR amplified ribosomal and functional gene DNA. Potential methane and ammonia oxidation rates increased over time in sediments amended with methane and ammonium, respectively. The highest potential methane oxidation rates occurred in treatments receiving both ammonium and methane suggesting that methanotrophs in the enrichment cultures were nitrogen limited. The highest ammonia oxidation rates occurred in treatments amended with ammonium only. Treatments receiving both ammonium and methane exhibited ammonia oxidation rates and porewater ammonium concentrations similar to those measured in the unamended control suggesting that methanotrophs may have inhibited ammonia oxidation by sequestering available ammonia. Sequence analysis revealed a decrease in general bacterial community diversity over time and a shift in ammonia-oxidizing bacterial composition corresponding with methane availability. However, methanotroph community composition similarities between treatments with different relative methane oxidation rates suggest that changes in physiological activity, as well as shifts in community composition, contributed to the observed patterns in potential rates.  相似文献   

15.
Ammonia removal using hepatoma cells in mammalian cell cultures   总被引:1,自引:0,他引:1  
It was examined whether hepatocyte cell lines can be used for ammonia removal in mammalian cell cultures. It was found that there exists a critical ammonium concentration level for each hepatocyte cell to remove ammonia. Among the cells tested in this work, primary hepatocytes showed the strongest ammonia removal capability if ammonium concentration is higher than the critical level. However, primary hepatocytes lost the liver function gradually and finally died after 2-3 weeks. Because of this limitation, primary hepatocytes were not appropriate to be used for ammonia removal in long-term cultures. Hep G2 cells, which are immortal, also showed a strong ammonia removal activity. The ammonia removal activity of Hep G2 cells depended on the concentration of ammonium in the medium, as in the case of primary hepatocytes. However, urea could not be detected in the course of ammonia removal by Hep G2 cells. Instead of urea, Hep G2 cells secreted glutamine into the culture medium. The capacity for ammonia removal was higher in the absence than in the presence of glutamine. Thus we checked the activity of glutamine synthetase in the Hep G2 cells. The level of glutamine synthetase activity increased with the addition of ammonium chloride. This result accounts for the ammonium concentration dependency of Hep G2 cells in ammonia removal and glutamine synthesis. Furthermore Hep G2 cells could grow well in the absence of glutamine, which was necessarily required in mammalian cell cultures. These results prove that glutamine formation serves as the primary mechanism of detoxifying ammonia in hepatocyte cell lines as expected. In addition, it was demonstrated that ammonium level could be reduced 38% and that erythropoietin production increased 2-fold in the mixed culture of Hep G2 and recombinant CHO cells.  相似文献   

16.
Abstract The urea uptake system was studied with regard to its repression and derepression in the cyanobacterium, Anabaena doliolum . The uptake of urea was energy-dependent and was repressed in ammonia grown cells. Repression of the urea uptake by ammonium did not require ammonium assimilation or de novo protein synthesis, suggesting that ammonium itself was the repressor signal. The derepression of the urea uptake system, however, required de novo protein synthesis and glutamine synthetase activity.  相似文献   

17.
Abstract Among the glutamate-requiring strains of Schizosaccharomyces pombe previously described [1], glu2 and glu3 strains were both shown to lack NAD-specific isocitrate dehydrogenase. glu4 strains were shown to lack glutamine:2-oxoglutarate aminotransferase (GOGAT), and to be defective in ammonia assimilation. The regulation of GOGAT activity in wild-type cells was investigated and was consistent with GOGAT and glutamine synthetase being involved in ammonium assimilation, particularly under conditions of nitrogen limitation.  相似文献   

18.
Rhizobium trifolii was grown in a defined medium in chemostat cultures. Extracellular polysaccharide production was found in carbon-sufficient as well as in carbon-limited cultures. Extracellular polysaccharide production in limited cultures, asparagine was always totally depleted from the culture medium. Only when the asparagine supply was not sufficient to meet the nitrogen need of the culture, ammonia assimilation took place. Excess organic nitrogen was excreted as ammonia. Whether ammonia assimilation or ammonia excretion took place was also dependent on the growth rate. Respiration-coupled proton translocation measurements showed the presence of three energy conserving sites in an electron transport chain which is branched. Assuming a H+/P ratio of 4, a P/O ratio of 2.33 was found. Growth yield calculations indicated a P/O ratio of approximately 2. Sulphate limitation in the chemostat culture resulted in a decrease in the efficiency of oxidative phosphorylation and in a less stringent coupling between growth and energy yielding processes.The investigations were supported in part by the Foundation for Fundamental Biological Research (BION), which is subsidized by The Netherlands Organisation for the Advancement of Pure Research (ZWO).  相似文献   

19.
Under conditions of controlled pH, nitrate and ammonium are equally effective in supporting the growth of young soybean (Glycine max var. Bansei) and sunflower (Helianthus annuus L. var., Mammoth Russian) plans. Soybean contains an active nitrate reductase in roots and leaves, but the low specific activity of this enzyme in sunflower leaves indicates a dependency upon the roots for nitrate reduction. Suppression of nitrate reductase activity in sunflower leaves may be due to high concentrations of ammonia received from the roots. Nitrate reductase activity in leaves of nitrate-supplied soybean and sunflower follows closely the distribution of nitrate reductase. For the roots of both species, glutamic acid dehydrogenase activity was greater with ammonium than with nitrate. The glutamic acid dehydrogenase of ammonium roots is wholly NADH-dependent, whereas that of nitrate roots is active with NADH and NADPH. In leaves, an NADPH-dependent glutamic acid dehydrogenase appears to be responsible for the assimilation of translocated ammonia and ammonia formed by nitrate reduction.  相似文献   

20.
The effect of ammonia on glutamate accumulation and metabolism was examined in astrocyte cultures prepared from neonatal rat cortices. Intact astrocytes were incubated with 70 microM L-[14C(U)]glutamate and varying amounts of ammonium chloride. The media and cells were analyzed separately by HPLC for amino acids and labelled metabolites. Extracellular glutamate was reduced to 8 microM by 60 min. Removal of glutamate from the extracellular space was not altered by addition of ammonia. The rate of glutamine synthesis was increased from 3.6 to 9.3 nmol/mg of protein/min by addition of 100 microM ammonia, and intracellular glutamate was reduced from 262 to 86 nmol/mg of protein after 30 min. The metabolism of accumulated glutamate was matched nearly perfectly by the synthesis of glutamine, and both processes were proportional to the amount of added ammonia. The transamination and deamination products of glutamate were minor metabolites that either decreased or remained unchanged with increasing ammonia. Thus, ammonia addition stimulates the conversion of glutamate to glutamine in intact astrocyte cultures. At physiological concentrations of ammonia, glutamine synthesis appears to be limited by the rate of glutamate accumulation and the activity of competing reactions and not by the activity of glutamine synthetase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号