首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Conversion of leaves into petals in Arabidopsis   总被引:22,自引:0,他引:22  
More than 200 years ago, Goethe proposed that each of the distinct flower organs represents a modified leaf [1]. Support for this hypothesis has come from genetic studies, which have identified genes required for flower organ identity. These genes have been incorporated into the widely accepted ABC model of flower organ identity, a model that appears generally applicable to distantly related eudicots as well as monocot plants. Strikingly, triple mutants lacking the ABC activities produce leaves in place of flower organs, and this finding demonstrates that these genes are required for floral organ identity [2]. However, the ABC genes are not sufficient for floral organ identity since ectopic expression of these genes failed to convert vegetative leaves into flower organs. This finding suggests that one or more additional factors are required [3, 4]. We have recently shown that SEPALLATA (SEP) represents a new class of floral organ identity genes since the loss of SEP activity results in all flower organs developing as sepals [5]. Here we show that the combined action of the SEP genes, together with the A and B genes, is sufficient to convert leaves into petals.  相似文献   

3.
ABSTRACT

We investigated the senescence of flag leaves of durum wheat (Triticum durum) during grain-filling, and of petal-like ray flowers of Jerusalem artichoke (Helianthus tuberosus) at anthesis. In both systems, we observe cleavage of DNA to high molecular weight fragments, followed by further degradation to nucleosomal fragments (laddering), a classical hallmark of apoptosis. We show that DNA fragmentation in such specialised leaves is triggered early in organ development, before the appearance of visual symptoms of senescence. Our observations support the hypothesis that senescence and cell death are part of the plant developmental program, activated by developmental cues.  相似文献   

4.
The ABC model of floral organ identity is based on studies of Arabidopsis and Antirrhinum, both of which are highly derived eudicots. Most of the genes required for the ABC functions in Arabidopsis and Antirrhinum are members of the MADS-box gene family, and their orthologs are present in all major angiosperm lineages. Although the eudicots comprise 75% of all angiosperms, most of the diversity in arrangement and number of floral parts is actually found among basal angiosperm lineages, for which little is known about the genes that control floral development. To investigate the conservation and divergence of expression patterns of floral MADS-box genes in basal angiosperms relative to eudicot model systems, we isolated several floral MADS-box genes and examined their expression patterns in representative species, including Amborella (Amborellaceae), Nuphar (Nymphaeaceae) and Illicium (Austrobaileyales), the successive sister groups to all other extant angiosperms, plus Magnolia and Asimina, members of the large magnoliid clade. Our results from multiple methods (relative-quantitative RT-PCR, real-time PCR and RNA in situ hybridization) revealed that expression patterns of floral MADS-box genes in basal angiosperms are broader than those of their counterparts in eudicots and monocots. In particular, (i) AP1 homologs are generally expressed in all floral organs and leaves, (ii) AP3/PI homologs are generally expressed in all floral organs and (iii) AG homologs are expressed in stamens and carpels of most basal angiosperms, in agreement with the expectations of the ABC model; however, an AG homolog is also expressed in the tepals of Illicium. The broader range of strong expression of AP3/PI homologs is inferred to be the ancestral pattern for all angiosperms and is also consistent with the gradual morphological intergradations often observed between adjacent floral organs in basal angiosperms.  相似文献   

5.
6.
The ABC model and the diversification of floral organ identity   总被引:1,自引:0,他引:1  
Broad studies of the ABC program across angiosperms have found that interactions between gene duplication, biochemical evolution, shifts in gene expression and modification of existing identity programs have been critical to the evolution of floral morphology. Several themes can be recognized in this context. First, the original concept of “A” function applies only very narrowly to Arabidopsis and its close relatives. Second, while many types of petaloid organs are associated with the expression of AP3/PI homologs, there is growing evidence that there are other genetic mechanisms for producing petaloidy, especially in first whorl organs. Third, pre-existing organ identity programs can be modified to yield novel organ types, often in association with gene duplications. Lastly, there are many aspects of ABC gene function outside the major model systems that remain a mystery, perhaps none more so than the C-terminal amino acid motifs that distinguish specific ABC gene lineages.  相似文献   

7.
Development of floral organ identity: stories from the MADS house   总被引:49,自引:0,他引:49  
Recent studies on AGAMOUS-LIKE2-, DEFICIENS- and GLOBOSA-like MADS-box genes in diverse seed plant species have provided novel insights into the mechanisms by which the identity of the different floral organs is specified during flower development. These advances in understanding may lead to major refinements in the classical ABC model of floral organ identity.  相似文献   

8.
The architecture of a flower is tightly linked to the way a plant pollinates, making it one of the most physiologically and ecologically important traits of angiosperms. Floral organ development is proposed to be governed by the activity of three different classes of organ identity genes (the ABC model), and the expression of those genes are regulated by a number of meristem identity genes. Here we use a transgenetic strategy to elucidate the role of one floral meristem identify gene,LEAFY (LFY), in the evolution of floral organogenesis of a self pollinatorIdahoa scapigera and a obligatory out-crosserLeavenworthia crassa in the mustard family, Brassicaceae. By introducing theLFY genes from these two types of pollination habit into the genetic model speciesArabidopsis thaliana, we provide evidence that changes inLFY influenced flower architecture probably by controlling the downstream organ identity genes.  相似文献   

9.
In higher eudicotyledonous angiosperms the floral organs are typically arranged in four different whorls, containing sepals, petals, stamens and carpels. According to the ABC model, the identity of these organs is specified by floral homeotic genes of class A, A+B, B+C and C, respectively. In contrast to the sepal and petal whorls of eudicots, the perianths of many plants from the Liliaceae family have two outer whorls of almost identical petaloid organs, called tepals. To explain the Liliaceae flower morphology, van Tunen et al. (1993) proposed a modified ABC model, exemplified with tulip. According to this model, class B genes are not only expressed in whorls 2 and 3, but also in whorl 1. Thus the organs of both whorls 1 and 2 express class A plus class B genes and, therefore, get the same petaloid identity. To test this modified ABC model we have cloned and characterized putative class B genes from tulip. Two DEF- and one GLO-like gene were identified, named TGDEFA, TGDEFB and TGGLO. Northern hybridization analysis showed that all of these genes are expressed in whorls 1, 2 and 3 (outer and inner tepals and stamens), thus corroborating the modified ABC model. In addition, these experiments demonstrated that TGGLO is also weakly expressed in carpels, leaves, stems and bracts. Gel retardation assays revealed that TGGLO alone binds to DNA as a homodimer. In contrast, TGDEFA and TGDEFB cannot homodimerize, but make heterodimers with PI. Homodimerization of GLO-like protein has also been reported for lily, suggesting that this phenomenon is conserved within Liliaceae plants or even monocot species.these authors contributed equally to this work  相似文献   

10.
经典的ABC模型成功地解释了模式植物拟南芥和金鱼草因同源异型基因突变而引起的植物花器官的变异。随后,大量花器官特征基因和新突变体的研究不断完善和发展了ABC模型。该文综述了近年来花器官发育分子模型及花器官同源基因的调控机理等方面的最新研究成果,并对未来的研究方向进行了展望,以期为深入了解花发育的分子机理和遗传机制奠定基础。  相似文献   

11.
Understanding the regulation of calcium uptake, xylem transport and its impacts on growth and leaf gas exchange is a subject that has received insufficient recent attention. Calcium (Ca) is unique within the group of key elements required for plant growth in that it also has a role in cellular signalling via regulation of changes in its cytoplasmic concentration. Its mobility, within the plant, is however somewhat constricted by its chemistry and cellular signalling role, and its adsorptive capacity within the aopoplast and the xylem. Supply and demand for Ca is achieved by a homeostatic balance which if perturbed can cause a number of distinctive physiological conditions, often related to Ca deficiency. In this issue Rothwell and Dodd present experiments with bean (Phaseolus vulgaris) and pea (Pisum sativum) plants grown in a field soil exposed to the processes of soil liming (application of Ca carbonate (CaCO3). Given that there is evidence of free Ca in the xylem sap altering stomatal conductance it is reasonable to ask the question does liming elevate Ca in the transpiration stream which may explain the observed reduced growth which they hypothesise is due to Ca-induced stomatal closure. They show that liming doubled soil exchangeable Ca, reduced stomatal conductance and shoot biomass in both species compared with unlimed controls. However, xylem sap Ca concentration increased only in bean. Interestingly, the same was not true for the pea where the root xylem sap concentration remained unchanged despite an increase in soil available Ca. Given that stomatal conductance decreased in both species, but in response to a lime-induced increase in xylem sap Ca in only one; this questions the role of Ca in inducing stomatal closure. They propose that their data suggest that as yet unidentified antitranspirant causes stomatal closure in both species not the increase in xylem sap Ca per se.  相似文献   

12.
13.
98.9% of 5092 flowers from 1041 individuals of Circaeaster agrestis have five floral organs, the formula is P3A1G1 (73.13%), P2A2G1 (25.59%), and P2A1G2 (0.22%). Only 0.4% of the flowers have six floral organs and the formula is P3A1G2 (20 flowers) or P3A2G1 (one flower). All these flowers have one vascular bundle in the pedicel and were considered to be normal ones. There are 33 flowers (0.65%) with six or more floral organs and two vascular bundles in the pedicel and we found traces of fusion of different degree of two flowers into one. These flowers were considered as abnormal. Therefore the normal number of floral organs of C. agrestis is five and occasionally six, and the floral formulas are P3A1G1 or P2A2G1, sometimes P2A1G2, and occasionally P3A1G2 or P3A2G1. A tepal in P3A1G1 may be replaced by a stamen in P2A2G1 or by a carpel in P2A1G2 or in reverse. A carpel in P3A1G2 may be replaced by a stamen in P3A2G1 or in reverse. We hypothesize that there are two possibilities for the number of the floral organs to be five (six), the result of reduction from P3A2G2, or there exists homeosis among floral organs.  相似文献   

14.

Background and Aims

The study of variation in number, position and type of floral organs may serve as a key to understanding the mechanisms underlying their variation, and will make it possible to improve the analysis of gene function in model plant species by means of a more accurate characterization of mutant phenotypes. The present analysis was carried out in order to understand the correlation between number and position of floral organs in Arabidopsis thaliana.

Methods

An analysis of number and position of organs in flowers of wild type as well as in a series of mutations with floral organ position alterations was carried out, using light and electron microscopy. Variation common to different genotypes was analysed by means of individual diagrams, upon which generalized diagrams depicting variation in number and position of organs, were built by superimposition.

Key Results and Conclusions

It is shown that in the Arabidopsis flower a correlation exists between positions of petals and sepals, as well as between positions of stamens and carpels, whereas the position of carpels does not seem to depend on number and position of petals and stamens. This suggests that the position of organs in the basal (sepals) and apical (carpels) parts of the flower are determined before that in the intermediate zone. This assumption is consistent with the results of mathematical modelling and is supposed to be the consequence of stem-cell activity in the flower.  相似文献   

15.
ATP-binding cassette (ABC) proteins have two nucleotide-binding domains (NBDs) that work as dimers to bind and hydrolyze ATP, but the molecular mechanism of nucleotide hydrolysis is controversial. In particular, it is still unresolved whether hydrolysis leads to dissociation of the ATP-induced dimers or opening of the dimers, with the NBDs remaining in contact during the hydrolysis cycle. We studied a prototypical ABC NBD, the Methanococcus jannaschii MJ0796, using spectroscopic techniques. We show that fluorescence from a tryptophan positioned at the dimer interface and luminescence resonance energy transfer between probes reacted with single-cysteine mutants can be used to follow NBD association/dissociation in real time. The intermonomer distances calculated from luminescence resonance energy transfer data indicate that the NBDs separate completely following ATP hydrolysis, instead of opening. The results support ABC protein NBD association/dissociation, as opposed to constant-contact models.  相似文献   

16.
17.
18.
The ABC model of flower development, established through studies in eudicot model species, proposes that petal and stamen identity are under the control of B-class genes. Analysis of B- and C-class genes in the grass species rice and maize suggests that the C- and B-class functions are conserved between monocots and eudicots, with B-class genes controlling stamen and lodicule development. We have undertaken a further analysis of the maize B-class genes Silky1, the putative AP3 ortholog, and Zmm16, a putative PI ortholog, in order to compare their function with the Arabidopsis B-class genes. Our results show that maize B-class proteins interact in vitro to bind DNA as an obligate heterodimer, as do Arabidopsis B-class proteins. The maize proteins also interact with the appropriate Arabidopsis B-class partner proteins to bind DNA. Furthermore, we show that maize B-class genes are capable of rescuing the corresponding Arabidopsis B-class mutant phenotypes. This demonstrates B-class activity of the maize gene Zmm16, and provides compelling evidence that B-class gene function is conserved between monocots and eudicots.  相似文献   

19.
Webster MA  Gilmartin PA 《Planta》2003,216(6):903-917
Primula flowers are heteromorphic with individual plants producing either pin-form or thrum-form flowers. We have used scanning electron microscopy to observe early development of wild-type flowers of primrose (Primula vulgaris), cowslip (P. veris), and the polyanthus hybrid (P. x tommasinii x P. vulgaris). Floral ontogeny in Primula is different from that observed in the well-studied models Antirrhinum majus and Arabidopsis thaliana and our studies reveal morphological landmark events that define the sequence of early floral development in Primula into specific stages. Pin-form and thrum-form flowers are indistinguishable during early development with differentiation of the two floral morphs occurring beyond the differentiation of floral organs. Early ontogeny of flowers with homeotic mutant phenotypes was also studied to determine the timing of developmental reprogramming in these mutants. Phenotypes studied included Hose in Hose and Jack in the Green that develop petaloid sepals and leafy sepals, respectively, and Jackanapes plants that carry both these dominant mutations. Recessive double and semi- double flowers that produce additional whorls of petals and/or stamens in place of carpels were also studied. We describe a previously undocumented recessive Primula mutant phenotype, sepaloid, that produces sepals in place of petals and stamens, and a new non-homeotic, dominant mutant phenotype Split Perianth, in which sepals and petals fail to fuse to form the typical calyx and corolla structures. The molecular basis of these mutant phenotypes in relation to the ABC model is discussed.  相似文献   

20.
ATP-binding cassette (ABC) transporters move solutes across membranes and are associated with important diseases, including cystic fibrosis and multi-drug resistance. These molecular machines are energized by their charateristic ABC modules, molecular engines fuelled by ATP hydrolysis. A solution NMR study of a model ABC, Methanococcus jannaschii protein MJ1267, reveals that ADP-Mg binding alters the flexibilities of key ABC motifs and induces allosteric changes in conformational dynamics in the LivG insert, over 30A away from the ATPase active site. (15)N spin relaxation data support a "selected-fit" model for nucleotide binding. Transitions between rigidity and flexibility in key motifs during the ATP hydrolysis cycle may be crucial to mechanochemical energy transduction in ABC transporters. The restriction of correlated protein motions is likely a central mechanism for allosteric communications. Comparison between dynamics data from NMR and X-ray crystallography reveals their overall consistency and complementarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号