首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
Many of the biological functions attributed to cell surface heparan sulfate (HS) proteoglycans, including the Syndecan family, are elicited through the interaction of their HS chains with soluble extracellular molecules. Tightly controlled, cell-specific sulfation and epimerization of HS precursors endows these chains with highly sulfated, iduronate-rich regions, which are major determinants of cytokine and matrix-protein binding and which are interspersed by N-acetylated, poorly sulfated regions. Until this study, there have been no comprehensive structural comparisons made on HS chains decorating simultaneously expressed, but different, syndecan core proteins. In this paper we demonstrate that the HS chains on affinity-purified syndecan-1 and -4 from murine mammary gland cells are essentially identical by a number of parameters. Size determination, disaccharide analyses, enzymatic and chemical scission methods, and affinity co-electrophoresis all failed to reveal any significant differences in fine structure, domain organization, or ligand-binding properties of these HS species. These findings lead us to suggest that the imposition of the fine structure onto HS occurs independently of the core protein to which it is attached and that these core proteins, in addition to the HS chains, may play a pivotal role in the various biological functions ascribed to these macromolecules.  相似文献   

2.
Basic fibroblast growth factor (FGF-2) and its respective tyrosine kinase receptors, form an autocrine loop that affects human melanoma growth and metastasis. The aim of the present study was to examine the possible participation of various glycosaminoglycans, i.e. chondroitin sulfate, dermatan sulfate and heparin on basal and FGF-2-induced growth of WM9 and M5 human metastatic melanoma cells. Exogenous glycosaminoglycans mildly inhibited WM9 cell's proliferation, which was abolished by FGF-2. Treatment with the specific inhibitor of the glycosaminoglycan sulfation, sodium chlorate, demonstrated that endogenous glycosaminoglycan/proteoglycan production is required for both basal and stimulated by FGF-2 proliferation of these cells. Heparin capably restored their growth, and unexpectedly exogenous chondroitin sulfate to WM9 and both chondroitin sulfate and dermatan sulfate to M5 cells allowed FGF-2 mitogenic stimulation. Furthermore, in WM9 cells the degradation of membrane-bound chondroitin/dermatan sulfate stimulates basal growth and even enhances FGF-2 stimulation. The specific tyrosine kinase inhibitor, genistein completely blocked the effects of FGF-2 and glycosaminoglycans on melanoma proliferation whereas the use of the neutralizing antibody for FGF-2 showed that the mitogenic effect of chondroitin sulfate involves the interaction of FGF-2 with its receptors. Both the amounts of chondroitin/dermatan/heparan sulfate and their sulfation levels differed between the cell lines and were distinctly modulated by FGF-2. In this study, we show that chondroitin/dermatan sulfate-containing proteoglycans, likely in cooperation with heparan sulfate, participate in metastatic melanoma cell FGF-2-induced mitogenic response, which represents a novel finding and establishes the central role of sulfated glycosaminoglycans on melanoma growth.  相似文献   

3.
The role of cell density in modulating basic fibroblast growth factor binding and activity was investigated. A primary corneal stromal fibroblast cell culture system was used, since these cells do not constitutively express heparan sulfate proteoglycans in vivo except after injury. A 3-5-fold reduction in bFGF binding per cell was observed as cell density increased from 1000 to 35,000 cells/cm2. The cell density-dependent change in bFGF binding was not the result of altered FGFR expression as determined by equilibrium binding experiments and by immunoblot analysis. However, bFGF-cell surface receptor binding affinities were measured to be 10-20-fold higher at low cell densities than at intermediate and high cell density. bFGF-induced cell proliferation was also cell density-dependent, with maximal stimulation of proliferation 190-280% greater at intermediate densities (15,000 cells/cm2) than at other cell densities. This effect was specific to bFGF as serum, epidermal growth factor, and transforming growth factor-beta did not exhibit the same density-dependent profile. Further, heparan sulfate proteoglycans and, specifically, syndecan-4 were implicated as the modulator of bFGF binding and activity. Pretreatment of cell cultures with heparinase resulted in reduced bFGF binding to the cells and abrogated bFGF induced proliferation. These data suggest a mechanism by which cell density regulates heparan sulfate proteoglycan expression and modulates the cellular response to bFGF. Modulation of heparan sulfate proteoglycan expression might be an important aspect of the regulation of stromal cell migration and proliferation during wound healing.  相似文献   

4.
Syndecan-1, present on the surfaces of normal murine mammary gland epithelial cells, is a transmembrane hybrid proteoglycan, which bears glycosaminoglycan (GAG) side chains of heparan sulfate (HS) and chondroitin sulfate (CS). Purified syndecan-1 ectodomains were analyzed for disaccharide composition and the GAG-protein linkage region after digestion with bacterial lyases. The HS chains contained predominantly a nonsulfated unit with smaller proportions of two monosulfated, two disulfated, and a trisulfated unit, whereas CS chains were demonstrated for the first time to bear GlcUA-GalNAc(4-O-sulfate) as a major component as well as GlcUA-GalNAc, GlcUA-GalNAc(6-O-sulfate), and an E disaccharide unit GlcUA-GalNAc(4,6-O-disulfate) as minor yet appreciable components. Two kinds of linkage region tetrasaccharides, GlcUA-Gal-Gal-Xyl and GlcUA-Gal-Gal-Xyl(2-O-phosphate), were found for the HS chains in a molar ratio of 55:45. In marked contrast, an additional sulfated tetrasaccharide, GlcUA-Gal(4-O-sulfate)-Gal-Xyl, was demonstrated only for the CS chains, and the unmodified phosphorylated and sulfated components were present at a molar ratio of 55:26:19. The present study thus provided conclusive evidence for the hypothesis that 4-O-sulfation of Gal is peculiar to CS chains in contrast to the phosphorylation of Xyl, which is common to both HS and CS chains. These modifications may be required for biosynthetic maturation of the linkage region tetrasaccharide sequence, which is a prerequisite for creating the repeating disaccharide region of GAG chains and/or biosynthetic selective chain assembly of CS and HS chains.  相似文献   

5.
M A Nugent  E R Edelman 《Biochemistry》1992,31(37):8876-8883
Basic fibroblast growth factor (bFGF) binds to cell surface receptor (CSR) proteins and to heparan sulfate proteoglycans (HSPG). On the basis of equilibrium dissociation constants (Kd), the CSR has been considered a "high-affinity" binding site and HSPG a "low-affinity" site. We measured the apparent individual on and off rate constants (kon and koff) for bFGF binding to these two sites on intact cells and to each class of binding site in the absence of the other. While the kon's for CSR and HSPG on intact cells were not statistically different (konC = 2.27 x 10(8) M-1 min-1; konH = 0.90 x 10(8) M-1 min-1), the koff for the HSPG was 22.7-fold greater than that for the CSR (koffC = 0.003 min-1; koffH = 0.68 min-1). Thus, the difference in Kd's appears to result from the faster rate at which bFGF is released from the HSPG sites compared to the CSR. The kon's for isolated CSR and HSPG, and the koff for isolated HSPG, did not differ significantly from those for intact cells konC = 2.50 x 10(8) M-1 min-1; konH = 0.92 x 10(8) M-1 min-1; koffH = 0.095 min-1). However, the off rate for isolated CSR (koffC = 0.048 min-1) was statistically indistinguishable from the off rate for HSPG and 16-fold greater than the off rate for CSR on intact cells. The "high-affinity" binding of bFGF to intact cells probably refers only to a complex of bFGF with both CSR and HSPG, and not to the CSR alone.  相似文献   

6.
The binding of iodinated basic fibroblast growth factor (bFGF) to low-density heparan sulfate proteoglycan purified from the Engelbreth Holm Swarm (EHS) sarcoma was investigated using different techniques. The tumor clearly contained bFGF, the level being comparable to that found in other tissues such as human or bovine brain. 125I bFGF strongly bound to the basement membrane-like matrix of EHS frozen sections as revealed by autoradiography. Iodinated bFGF bound to purified heparan sulfate proteoglycan but not to laminin or collagen type IV, three components isolated from the same tumor. In contrast, acidic fibroblast growth factor (aFGF) displayed negligible binding to heparan sulfate proteoglycan. Binding of bFGF to frozen sections and to purified proteoglycan could be strongly inhibited by heparin and was displaced by an excess of unlabeled factor and completely suppressed after heparitinase and heparinase treatments. Binding was a function of the salt concentration and was abolished at 0.6 M NaCl. Scatchard analysis indicated the affinity site had a Kd of about 30 nM, a value 10-15 higher than that recently reported by Moscatelli (J. Cell. Physiol., 131:123-130, 1987) in the case of the low-affinity binding sites present on the surface of baby hamster kidney (BHK) cells.  相似文献   

7.
The interaction of basic fibroblast growth factor (bFGF) with heparan sulfate (HS)/heparin has been shown to strongly enhance the activity of the growth factor although the mechanism of activation is unclear. We have addressed the issue of the minimal stoichiometry of an active HS oligosaccharide.bFGF complex by chemically cross-linking the two components to form novel covalent conjugates. The cross-linking procedure produced both monomeric and dimeric bFGF. oligosaccharide complexes, which were purified to homogeneity. Dimer conjugates were shown to have been formed as a result of disulfide bridging of monomer conjugates. These monomer conjugates were subsequently found to be biologically active in a mitogenesis assay. We therefore conclude that a monomeric bFGF.oligosaccharide complex is the minimal functional unit required for mitogenic stimulation.  相似文献   

8.
Human fibroblast growth factor-2 (FGF2) regulates cellular processes including proliferation, adhesion, motility, and angiogenesis. FGF2 exerts its biological function by binding and dimerizing its receptor (FGFR), which activates signal transduction cascades. Effective binding of FGF2 to its receptor requires the presence of heparan sulfate (HS), a linear polysaccharide with N-sulfated domains (NS) localized at the cell surface and extracellular matrix. HS acts as a platform facilitating the formation of a functional FGF-FGFR-HS ternary complex. Crystal structures of the signaling ternary complex revealed two conflicting architectures. In the asymmetrical model, two FGFs and two FGFRs bind a single HS chain. In contrast, the symmetrical model postulates that one FGF and one FGFR bind to the free end of the HS chain and dimerization require these ends to join, bringing the two half-complexes together. In this study, we screened a hexasaccharide HS library for compositions that are able to bind FGF2. The library was composed primarily of NS domains internal to the HS chain with minor presence of non-reducing end (NRE) NS. The binders were categorized into low versus high affinity binders. The low affinity fraction contained primarily hexasaccharides with low degree of sulfation that were internal to the HS chains. In contrast, the high affinity bound fraction was enriched in NRE oligosaccharides that were considerably more sulfated and had the ability to promote FGFR-mediated cell proliferation. The results suggest a role of the NRE of HS in FGF2 signaling and favor the formation of the symmetrical architecture on short NS domains.  相似文献   

9.
Adrenocortical differentiated functions are under the control of both endocrine hormones such as ACTH and local factors such as transforming growth factor beta (TGF beta) or basic fibroblast growth factor (bFGF). Besides their regulatory actions on the synthesis of corticosteroids, these two classes of factors also exert some important effects on the cellular environment. We have examined here the regulation by ACTH and TGF beta of adrenocortical cell proteoglycan synthesis and secretion. Under basal conditions, adrenocortical cells synthesized and secreted several species of sulfated proteoglycans, 80% of them being recovered in solution in the culture medium. When analyzed by ion exchange chromatography, the cell extracts and the media from cells metabolically labeled with 35S-sulfate were found to contain two and three species of radioactive sulfated proteoglycans, respectively. All species were proteoheparan-sulfates. Treatment of adrenocortical cells with TGF beta 1 or ACTH resulted in a significant increase of the incorporation of 35S into both secreted and cell-associated proteoglycans. ACTH stimulated more than three times the amount of secreted proteoglycans eluting from DEAE-Trisacryl as peak B, whereas TGF beta preferentially increased the amount of peak C. No important modification of the size of the synthesized proteoglycans was observed. The subpopulation of heparan sulfate proteoglycans capable to bind bFGF was also largely increased after ACTH or TGF beta treatment and paralleled the variation in overall proteoheparan sulfate synthesis. Thus those effects of TGF beta and ACTH on proteoglycan synthesis may participate in an increased ability of adrenocortical cells to bind and respond to bFGF.  相似文献   

10.
11.
Heparan sulfate proteoglycans on the cell surface act as low affinity binding sites for acidic and basic fibroblast growth factor (FGF) [Moscatelli (1887): J Cell Physiol 131:123–130] and play an important role in the interaction of FGF with the FGF receptor (FGFR). In this study, several aspects of the interaction of FGFs with cell surface heparan sulfate proteoglycans were examined. Reciprocal cross blocking studies demonstrated that acidic FGF (aFGF) and basic FGF (bFGF) bind to identical or closely associated heparan sulfate motifs on BALB/c 3T3 cell surface heparan sulfate proteoglycans. However, the binding affinity of the two growth factros for these heparan sulfate proteoglycans differs considerably, competition binding data indicating that aFGF has a 4.7-fold lower affinity than bFGF for 3T3 heparan sulfate proteoglycan. Subsequent studies of dissociation kinetics demonstrated that bFGF dissociates form the FGFR at least 10-fold slower than aFGF, whereas, following removal of cell surface heparan sulfate proteoplycan. Subsequent studies of dissociation kinetic demonstrated that bFGF dissociates from the FGFR at least 10-fold slwer than aFGF, whereas, following removal of cell surface heparan sulfate proteoglycans by heparinase treatment, the dissociation rate of both FGFs is similar and rapid. These results support the concept that cell surface heparan sulfate proteoglycans stabilize the interactio fo FGF with FGFR, possibly by the formatin of a ternary complex. © Wiley-Liss, Inc.  相似文献   

12.
We have investigated elastase-mediated alterations in the expression of basic fibroblast growth factor (bFGF) receptors and proteoglycan co-receptors and characterized the subsequent effects on bFGF receptor binding profiles. For these studies, pulmonary fibroblast cultures were treated with porcine pancreatic elastase, and elastase-mediated changes in bFGF receptor expression and binding profiles were assessed. Quantitation of [(35)S]sulfate-labeled proteoglycan and total glycosaminoglycan release from fibroblast matrices indicated that elastase treatment released sulfated proteoglycan from the cell surface in a time- and dose-dependent fashion that correlated strongly with elastase-mediated bFGF release. Ligand binding studies indicated that elastase treatment decreased total binding of (125)I-bFGF to the cell surface and affected both fibroblast growth factor receptor and heparan sulfate proteoglycan (HSPG) binding sites. Western blot analyses indicated that elastase treatment did not release significant amounts of fibroblast growth factor receptor protein. These findings indicate that elastase-mediated HSPG release from fibroblast matrices reduces the effective affinity of bFGF for its receptor. Collectively, these studies suggest that HSPG co-receptors are important mediators of the pulmonary fibroblast response to elastase treatment and that bFGF, HSPG, and other elastase-released entities play an important role in the response of the lung to chronic injury.  相似文献   

13.
A Yayon  M Klagsbrun  J D Esko  P Leder  D M Ornitz 《Cell》1991,64(4):841-848
The role of low affinity, heparin-like binding sites for basic fibroblast growth factor (bFGF) was investigated in CHO cells mutant in their metabolism of glycosaminoglycans. Heparan sulfate-deficient mutants transfected to express a cloned mouse FGF receptor cDNA are not able to bind bFGF. It is demonstrated that free heparin and heparan sulfate can reconstitute a low affinity receptor that is, in turn, required for the high affinity binding of bFGF. These studies suggest that the low affinity receptor is an accessory molecule required for binding of bFGF to the high affinity site. Such an obligatory interaction of low and high affinity FGF receptors suggests a physiological role for heparin-like, low affinity receptors and constitutes a novel mechanism for the regulation of growth factor-receptor interactions.  相似文献   

14.
We have investigated the effect of basic fibroblast growth factor (bFGF) and the related int-2 gene on the growth, transformation, and differentiation of HC11 mouse mammary epithelial cells. We show that in HC11 cells infected with int-2 retroviral expression vectors, the int-2 protein can function as a bFGF-like growth factor in stimulating: (a) HC11 cell proliferation in monolayer, (b) anchorage-independent growth in soft agar, and (c) soft agar growth of the bFGF-responsive SW13 tumor cell line. These effects are observed irrespective of whether the int-2 protein is expressed in its wild-type form or is linked to a signal peptide. A candidate bFGF receptor, which is the product of the flg gene and which may recognize the int-2 protein, is expressed at high levels in HC11 cells. Following epidermal growth factor or bFGF priming and subsequent treatment with lactogenic hormones, all of the int-2 infected and the parental HC11 cells synthesize similar levels of beta-casein. However, the autocrine expression of int-2 in HC11 cells abrogates their requirement for either exogenous epidermal growth factor or bFGF priming. These data suggest that, in HC11 cells, the growth factor activity of the int-2 gene is indistinguishable from that of bFGF and does not interfere with the mammary cell differentiation program associated with lactogenesis.  相似文献   

15.
We have shown that over-sulfated chondroitin sulfate/dermatan sulfate (CS/DS) chains from various marine organisms exhibit growth factor binding activities and neurite outgrowth-promoting activities in embryonic mouse hippocampal neurons in vitro. In this study we demonstrated that CS/DS hybrid chains purified from embryonic pig brain displayed marked neuritogenic activity and growth factor binding activities toward fibroblast growth factor 2 (FGF2), FGF10, FGF18, pleiotrophin, and midkine, all of which exhibit neuroregulatory activities in the brain. In contrast, the CS/DS preparation from adult pig brain showed considerably less activity to bind these growth factors and no neuritogenic activity. Structural analysis indicated that the average size of the CS/DS chains was similar (40 kDa) between these two preparations, but the disaccharide compositions differed considerably, with a significant proportion of l-iduronic acid (IdoUA)-containing disaccharides (8 approximately 9%) in the CS/DS chains from embryos but not in those from adults (<1%). Interestingly, both neurite outgrowth-promoting activity and growth factor binding activities of the CS/DS chains from embryos were abolished by digestion not only with chondroitinase ABC but also with chondroitinase B, suggesting that the IdoUA-containing motifs are essential for these activities. These findings imply that the temporal expression of CS/DS hybrid structures containing both GlcUA and IdoUA and binding activities toward various growth factors play important roles in neurogenesis in the early stages of the development of the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号