首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Following traumatic injury, patients suffer from compromised immunity increasing their susceptibility to infection. Previous studies from this laboratory demonstrated that female BALB/c mice subjected to a 15% total body surface area (TBSA) scald injury exhibit a decrease in cell-mediated immunity 10 days post-burn. Studies described herein revealed that concanavalin A (Con A; 2 microg/ml)-stimulated splenocytes from sham treated animals produced 3557+/-853 pg/ml of IFN-gamma while splenocytes from burn injured animals released two-fold more cytokine (P<0.05). To determine whether leukocyte production of IFN-gamma was under the influence of macrophages, splenic macrophage supernatants generated from burned animals were incubated with splenic lymphocytes from sham and burn animals. The amount of IFN-gamma released by lymphocytes from sham animals increased when cultured with macrophages from burned mice (P<0.05). This suggests that the increase in IFN-gamma production by unfractionated splenocytes in burned mice relative to sham treated animals is macrophage-dependent. Macrophage supernatants from burned mice released twice as much IL-6 as supernatants from sham animals (P<0.05), and when IL-6 was blocked in vivo, the amount of IFN-gamma production in burned mice decreased to sham levels (P<0.05). Thus, IL-6 mediates IFN-gamma production following burn.  相似文献   

2.
3.
Clinical studies indicate that peripheral blood lymphocyte functions are depressed following trauma; however, it is unclear whether tissue-fixed lymphocyte functions are also altered under those conditions. Moreover, the impact of gender and age on peripheral T-cell responses following trauma-hemorrhage (TH) are unknown. To study this, immature (approximately 3 wk of age), mature (approximately 7 wk of age), and aged (approximately 23 mo of age) male and proestrus female C3H/HeN mice were sham operated or subjected to trauma (i.e., midline laparotomy) and hemorrhagic shock (30+/-5 mmHg for 90 min). Twenty-four hours after resuscitation, blood and splenocytes were harvested and T-cell functions assessed. In immature animals, TH induced an enhanced immune response in the splenic compartment and a suppressed response in the peripheral blood mononuclear cells (PBMC) that was independent of gender. Differential responses were observed in cells from mature mice. Splenic responses were enhanced following TH, independent of gender, whereas PBMC displayed gender dimorphism with suppressed proliferation and T-cell helper 1 responses in males but not in females. A similar pattern was observed in cells from aged mice. Splenic T cells from male mice displayed a suppressed CD4-to-CD8 ratio after TH, whereas no such change was observed in cells from proestrus females. In contrast, only PBMC from mature males displayed a suppressed CD4-to-CD8 ratio after TH. Thus gender differences exist in PBMC responses after TH that do not necessarily correlate with changes in the tissue-fixed compartment. Age is also an important factor in the immune responses after TH. In view of this, both gender and age should be taken into consideration in evaluating the immune status and in treatment of TH shock.  相似文献   

4.
Hosts after severe burn injury are known to have a defect in the Th1 immune response and are susceptible to bacterial infections. We herein show that liver NK cells are potent IFN-gamma producers early after burn injury. However, when mice were injected with LPS 24 h after burn injury, IFN-gamma production from liver mononuclear cells (MNC; which we previously showed to be NK cells) was suppressed, and the serum IFN-gamma concentration did not increase, while serum IL-10 conversely increased compared with control mice. Interestingly, a single injection of IL-18 simultaneously with LPS greatly restored the serum IFN-gamma concentration in mice with burn injury and also increased IFN-gamma production from liver MNC. Nevertheless, a single IL-18 injection into mice simultaneously with LPS was no longer effective in the restoration of serum IFN-gamma and IFN-gamma production from the liver MNC at 7 days after burn injury, when mice were considered to be the most immunocompromised. However, IL-18 injections into mice on alternate days beginning 1 day after burn injury strongly up-regulated LPS-induced serum IFN-gamma levels and IFN-gamma production from liver and spleen MNC of mice 7 days after burn injury and down-regulated serum IL-10. Furthermore, similar IL-18 therapy up-regulated serum IFN-gamma levels in mice with experimental bacterial peritonitis 7 days after burn injury and greatly decreased mouse mortality. Thus, IL-18 therapy restores the Th1 response and may decrease the susceptibility to bacterial infection in mice with burn injury.  相似文献   

5.
IL-10 inhibits human T cell proliferation and IL-2 production.   总被引:44,自引:0,他引:44  
Human IL-10 has been reported previously to inhibit the secretion of IFN-gamma in PBMC. In this study, we have found that human IL-10 inhibits T cell proliferation to either mitogen or anti-CD3 mAb in the presence of accessory cells. Inhibited T cell growth by IL-10 was associated with reduced production of IFN-gamma and IL-2. Studies of T cell subset inhibition by human IL-10 showed that CD4+, CD8+, CD45RA high, and CD45RA low cells are all growth inhibited to a similar degree. Dose response experiments demonstrated that IL-10 inhibits secretion of IFN-gamma more readily than T cell proliferation to mitogen. In addition, IL-2 and IL-4 added exogenously to IL-10 suppressed T cell cultures reversed completely the inhibition of T cell proliferation, but had little or no effect on inhibition of IFN-gamma production. Thus, in addition to its previously reported biologic properties, IL-10 inhibits human T cell proliferation and IL-2 production in response to mitogen. Inhibition of IFN-gamma production by IL-10 appears to be independent of the cytokine effect of IL-2 production.  相似文献   

6.
Major burn injury induces T-lymphocyte dysfunction. Previous studies suggest that prostaglandin (PG) E2, which is elevated post-burn, is the causative factor via a cyclic AMP-dependent process. The present study was conducted to elucidate the mechanism by which cAMP induces T-lymphocyte dysfunction following burn injury. Splenocytes were isolated from mice 7 days after receiving a scald burn covering 25% of their total body surface or sham procedure. ConA-induced proliferation by splenocytes from burned mice was significantly suppressed. Macrophage depletion of the splenocyte cultures abrogated the suppression. Concanavalin A-stimulated proliferation by macrophage-depleted splenocytes was suppressed by PGE2 and dibutyryl cAMP in both groups. The IC50 of these cAMP-elevating agents, however, was approximately 100-fold lower for cells from burned mice, indicating an increased sensitivity to cAMP. PGE2 did not suppress PMA/Ca2+ ionophore-induced T-lymphocyte activation. Addition of PMA to ConA-stimulated cultures prevented the suppression of proliferative responses by PGE2, whereas Ca2+ ionophore had no effect. Thus, the suppression of T-lymphocyte activation following burn injury is macrophage-dependent, related to an increased sensitivity to cAMP and due to an uncoupling of cell surface receptors from protein kinase C activation.  相似文献   

7.
Severe injury induces immune dysfunction resulting in increased susceptibility to opportunistic infections. Previous studies from our laboratory have demonstrated that post-burn immunosuppression is mediated by nitric oxide (NO) due to the increased expression of macrophage inducible nitric oxide synthase (iNOS). In contrast, others suggest that injury causes a phenotypic imbalance in the regulation of Th1- and Th2 immune responses. It is unclear whether or not these apparently divergent mediators of immunosuppression are interrelated. To study this, C57BL/6 mice were subjected to major burn injury and splenocytes were isolated 7 days later and stimulated with antiCD3. Burn injury induced NO-mediated suppression of proliferative responses that was reversed in the presence of the NOS inhibitor L-monomethyl-L-arginine and subsequently mimicked by the addition of the NO donor, S-nitroso-N-acetyl-penicillamine (SNAP). SNAP also dose-dependently suppressed IFN-gamma and IL-2 (Th1), but not IL-4 and IL-10 (Th2) production. Delaying the addition of SNAP to the cultures by 24 h prevented the suppression of IFN-gamma production. The Th2 shift in immune phenotype was independent of cGMP and apoptosis. The addition of SNAP to cell cultures also induced apoptosis, attenuated mitochondrial oxidative metabolism and induced mitochondrial membrane depolarization. However, these detrimental cellular effects of NO were observed only at supra-physiologic concentrations (>250 microM). In conclusion, these findings support the concept that NO induces suppression of cell-mediated immune responses by selective action on Th1 T cells, thereby promoting a Th2 response.  相似文献   

8.
Previously, we reported that IL-10-producing mononuclear phagocytes increase in lungs of aged mice, causing impaired innate cytokine expression. Since dendritic cells (DCs) contribute to innate NK cell and adaptive T cell immunity, we tested the hypothesis that age-related IL-10 might influence DC function with effects on NK and T cell activation. The results showed that DC recruitment to sites of lung inflammation was normal in aged mice (>20 mo). However, IFN-gamma-producing NK cells in LPS-challenged lungs were decreased in aged as compared with young mice, which was associated with increased IL-10(+)CD11b(+)Gr-1(low)CD11c(-) cells consistent with mononuclear phagocytes. In vivo or in vitro blockade of IL-10 signaling restored IFN-gamma-producing NK cells. This restoration was reversed by IL-12 neutralization, indicating that IL-10 suppressed sources of IL-12 in aged mice. To probe DC function in adaptive immunity, we transferred young naive OVA-specific TCR transgenic T cells to old mice. Following challenge with OVA plus LPS, Ag presentation in the context of MHC-I and MHC-II occurred with similar kinetics and intensity in draining lymph nodes of young and old recipients as measured by proliferation. Despite this, aged hosts displayed impaired induction of IFN-gamma(+)CD4(+), but not IFN-gamma(+)CD8(+), effector T cells. Blockade of IL-10 signaling reversed age-associated defects. These studies indicate that the innate IL-12/IFN-gamma axis is not intrinsically defective in lungs of aged mice, but is rather suppressed by enhanced production of mononuclear phagocyte-derived IL-10. Our data identify a novel mechanism of age-associated immune deficiency.  相似文献   

9.
The effect of mouse recombinant interferon-gamma (IFN-gamma) on murine lymphokine-activated killer (LAK) cell activity was investigated using a natural killer-resistant, LAK-sensitive, spontaneously developed, weakly immunogenic, syngeneic murine mammary adenocarcinoma, a tumor model mimicking that of human disease. When all of the splenocytes prepared from tumor-bearing mice were cultured with recombinant interleukin-2 (IL-2) and IFN-gamma, LAK cell activity was suppressed in an IFN-gamma dose-dependent manner. An increase in the prostaglandin E2 (PGE2) content in the corresponding culture media was detected, as was IFN-gamma dose dependent. The suppression of generation of LAK cell activity by IFN-gamma was abrogated, accompanied by the elimination of the increase in PGE2 content, when plastic dish and nylon wool-treated nonadherent macrophage-depleted splenocytes were used. These results indicated that IL-2-induced LAK cell activity generated from the splenocytes of tumor-bearing mice was suppressed by IFN-gamma, and that PGE2 secreted from the macrophages of the splenocyte cultures served as the mediator in this IFN-gamma dose-dependent suppression of IL-2-induced LAK cell activity.  相似文献   

10.
We have studied the effects of prostaglandin E2 (PGE2) on in vitro human T-cell activation induced by crosslinking of the CD3-Ti complex with the monoclonal anti-CD3 antibodies OKT3 and UCHT-1. PGE2 (greater than or equal to 3 X 10(-9) M) when added simultaneously with anti-CD3 to cultures of peripheral blood mononuclear cells (PBMC), significantly suppressed, in a dose-dependent way, T-cell proliferation (P less than 0.002). However, when T cells were first preactivated with OKT3 for 3 days, subsequent proliferation driven by recombinant interleukin 2 (IL-2) was not inhibited by addition of PGE2. This indicates that PGE2 affects the activation step resulting from crosslinking of CD3-Ti, but not the IL-2-driven proliferative phase. Other manifestations of T-cell activation were therefore examined. Both IL-2 production and the expression of receptors for IL-2 (as detected with the anti-Tac monoclonal antibody) were inhibited by PGE2. The addition of purified interleukin 1 (IL-1) or recombinant IL-2 to the cultures did not reverse the inhibiting effect of PGE2 on IL-2-receptor expression. PGE2, added at the time of culture initiation, also inhibited T-cell proliferation in cultures which were supplemented with exogenous IL-1 or IL-2. Proof for a direct effect of PGE2 on T cells was obtained in experiments in which monocyte-depleted T cells were stimulated, in the presence of IL-1, with solid-phase-bound anti-CD3 antibody. Proliferation of T cells in this system is accessory cell independent and still was strongly inhibited by PGE2. Finally, preincubation of PBMC with PGE2 (3 X 10(-6) M) for 48 hr did not result in the generation of suppressor cells for anti-CD3-induced T-cell proliferation or for IL-2 production. Our results demonstrate that PGE2 has a direct inhibitory effect on an early step of T-cell activation, resulting in decreased IL-2 production, decreased IL-2-receptor expression, decreased responsiveness to exogenous IL-2, and decreased proliferation. However, PGE2 does not affect IL-2-driven proliferation of activated T cells. The inhibitory effect on T-cell activation is not mediated through suppressor T cells, nor through inhibition of accessory cell function.  相似文献   

11.
Thermal injury increases the capacity of macrophages (Mphi) to produce various inflammatory mediators, (i.e., Mphi hyperactivity), which is believed to be involved in the development of subsequent immunosuppression, sepsis, and multiple organ failure. The signal transduction pathways involved in the expression of Mphi hyperactivity post-burn, however, remain to be clearly elucidated. To study this C57BL/6 female mice were subjected to a 25% TBSA burn and splenic Mphis were isolated 7 days later. LPS-stimulated inflammatory mediator production and MAPK expression (P38 ERK 1/2 and JNK) were determined. Burn injury increased LPS-induced P38 MAPK, suppressed JNK activation and ERK 1/2 activation was unaltered. These changes in MAPK activation were paralleled by the increased production of PGE(2), TNF-alpha, IL-1beta, IL-6, and IL-10. Differential sensitivity to the inhibition of the MAPK pathways was observed with regard to the mediator evaluated and the presence or absence of burn injury. In general cytokine production in the burn group was in part resistant to the inhibition of a single MAPK pathway as compared with shams. Thus, burn injury increases cross-talk between the MAPKs pathways, suggesting that alterations MAPK activation and signal transduction contribute to the development Mphi hyperactivity post-injury.  相似文献   

12.
PGE2 has been shown to play a prominent role in regulating Th1 and Th2 type responses. We studied the role of PGE2 in IFN-gamma production by Staphylococcus aureus Cowan I-stimulated spleen cells from several mouse strains such as BALB/c, C3H/HeN, and C57BL/6. When spleen cells were pretreated with indomethacin (cyclooxygenase (COX)-1 and COX-2 inhibitor) or NS-398 (COX-2-specific inhibitor), S. aureus Cowan I -induced IFN-gamma production was increased more markedly in spleen cells from BALB/c mice than from C3H/HeN and C57BL/6 mouse. However, PGE2 production was not significantly different among spleen cells from three mouse strains. When various concentrations of PGE2 were exogeneously added to spleen cells, PGE2 showed a stronger suppressive effect on IFN-gamma production in spleen cells from BALB/c mice than from other strains of mice. This suppressive effect of PGE2 in BALB/c mice mainly depended on IL-12p70 production by APCs. More PGE2 binding sites were found in BALB/c spleen cells than in C3H/HeN spleen cells, indicating that the sensitivity difference to the suppressive effect of PGE2 was due to the difference of the number of PGE2 receptors. The administration of NS-398 into BALB/c mice enhanced Ag-specific IFN-gamma production, but not IL-4 production. This effect is the same as IL-12 administration in vivo. From these results, we propose that the modulation of PGE2 is important for Th1 activation via IFN-gamma and IL-12p70 production in vitro and in vivo and that PGE2 is one of the pivotal factors in the Th2-dominant immune response in BALB/c mice.  相似文献   

13.
To study the causes of synovitis in rheumatoid arthritis (RA), we have analyzed the effect of several cytokines known to be secreted in RA joints, on synovial cell proliferation and prostaglandin E2 (PGE2) production. Recombinant interleukin-1-beta (IL-1-beta) and tumor necrosis factor-alpha (TNF-alpha) stimulated moderately the DNA synthesis and markedly the production of PGE2. Interferon-gamma (IFN-gamma) was often mitogenic but never induced PGE2 secretion. The association of IL-1-beta and TNF-alpha showed an additive effect on both parameters, whereas addition of IFN-gamma to either monokine reduced the proliferation and increased PGE2 release. Incubation with a crude T cell supernatant or a mixture of cytokines including IL-1-beta, TNF-alpha and IFN-gamma enhanced synovial cell growth and PGE2 production as compared to the effect elicited by each single cytokine. In contrast, interleukin-2 (IL-2) down regulated the synovial cell activation induced by the combined action of the three other cytokines. Taken together, our findings indicate that synovial cell proliferation is weakly stimulated, reaching a two-fold increase over background levels, whatever cytokines are used. Furthermore, proliferation can vary independently of PGE2 production. Nevertheless, the monokines IL-1-beta and TNF-alpha both exert agonistic effects on synovial cell activation, thus contributing to cartilage damage in RA, whereas IFN-gamma, IL-6 or IL-2 may rather play a regulatory role.  相似文献   

14.
Macrophages are known to possess suppressor activities in immune responses. To determine the effects of GM-CSF and M-CSF on the expression of macrophage suppressor activities, monocyte-derived macrophages cultured with GM-CSF (GM-Mphis) were compared with those cultured with M-CSF (M-Mphis) for antigen-specific proliferation and interferon-gamma (IFN-gamma) production by lymphocytes. Both GM-Mphis and M-Mphis equally suppressed lymphocyte proliferation, but only M-Mphis suppressed IFN-gamma production in response to purified protein derivative (PPD). M-Mphis, but not GM-Mphis, released IL-10 not only in the course of macrophage differentiation but also in response to PPD after maturation to macrophages. From the results that (i) exogenous IL-10 suppressed IFN-gamma production, but not proliferation of lymphocytes, and that (ii) neutralizing antibody to IL-10 reversed suppressor activities of M-Mphis on IFN-gamma production, but not lymphocyte proliferation, it appeared that IL-10 was the major factor responsible for suppression of IFN-gamma production. Thus, these results suggest that only M-CSF augments IL-10-dependent suppressor activity of macrophages on IFN-gamma production and that both GM-CSF and M-CSF induce IL-10-independent macrophage suppressor activity on lymphocyte proliferation.  相似文献   

15.
Benzodiazepines (BDZs) are known to act not only in the central nervous system, but on peripheral cells and tissues binding to the peripheral-type benzodiazepine receptors. In the present study, the influence of two different BDZs (diazepam (Dz) and tofizopam (Tof) on several immune functions has been examined in vitro. Some differences between Dz and Tof in their effects on human lymphocyte proliferative response, changes in glucocorticoid-induced suppression of cell proliferation and influence on cytokine production (tumor necrosis factor-alpha (TNF-alpha) and interleukin-2 (IL-2)) have been determined. Dz suppressed mitogen-induced peripheral blood mononuclear cell (PBMC) proliferation, enhanced dexamethasone-induced inhibition of PBMC proliferative response, and suppressed lymphocyte production of TNF-alpha and IL-2. Tof usually enhanced PBMC proliferation and IL-2 production in low and moderate doses, but in high doses it suppressed both. Tof in all investigated doses enhanced dexamethasone-induced suppression of lymphocyte proliferation and depressed TNF-alpha production. Thus, both Dz and Tof are shown to have immunomodulating effects in vitro. Tof, opposite to Dz even in the therapeutic doses, is able to enhance in vitro mitogen-induced lymphocyte proliferation and IL-2 production.  相似文献   

16.
Essential fatty acids, from which PG derive, can participate in development and regulation of immune responses and have been shown to suppress inflammation and tissue injury in animal models. In this report, we investigate the effects of the immediate (DGLA, precursor to PGE1), arachidonic acid (AA, PGE precursors, dihomogamma linolenic acid (DGLA, precursor to PGE1), arachidonic acid (AA, precursor to PGE2), and eicosapentaenoic acid (EPA, precursor to PGE3) on IL-2 production by PHA-stimulated human PBMC. DGLA and AA inhibited IL-2 production in a dose-dependent manner: half-maximal inhibition was obtained by using the fatty acids at the dose of 10 micrograms/ml without significant effects on cell viability. EPA inhibited IL-2 production by PBMC of only some donors. Incubation of cells in the presence of oleic, stearic, and palmitic acids, which are not PG precursors, did not affect mitogen-induced IL-2 production. A progressive increase in incorporation of DGLA into cellular lipids was observed over a 48-h incubation period. IL-2 production was reduced also when PBMC were pretreated overnight with DGLA or AA and washed before exposure to PHA. Whereas addition of the cyclo-oxygenase inhibitor, indomethacin, at the time of mitogenic stimulation led to increased IL-2 production and prevented mitogen- and fatty acid-induced increases in PGE release, it had no significant effect on the capacity of the fatty acids to suppress IL-2 production. Time course experiments showed that DGLA and AA inhibited IL-2 production even at times of minimal or no PGE release by the treated cultures. Moreover, DGLA and AA inhibited IL-2 production by the human leukemia T cell line Jurkat which, when appropriately induced, is able to release high levels of IL-2 in the absence of accessory cells and measurable PGE production. Taken together, these data indicate that essential fatty acids inhibit IL-2 production directly without conversion into their cyclo-oxygenase pathway products, and suggest that human lymphocyte function may be altered profoundly by small changes in their fatty acid profile.  相似文献   

17.
Alterations of interferon production in a mouse model of thermal injury   总被引:2,自引:0,他引:2  
The effect of thermal injury on the response of interferon (IFN) production in vivo and in vitro after stimulation with eight representative inducers was investigated in a mouse model. The response of mice to immune IFN (IFN-gamma) inducers, staphylococcal enterotoxin A, concanavalin A, and a specific antigen for BCG-sensitized lymphocytes (purified protein derivative) was impaired after a 30% total body surface area third-degree burn. Suppression of IFN-gamma production was observed at day 2 and persisted until day 7 after burn. Decreased IFN-gamma production correlated closely with the percentage of total body surface area burned. When virus type IFN (IFN-alpha/beta) inducers, Newcastle disease virus, polyriboinosinic-polyribocytidylic acid, 10-carboxymethyl-9-acridanone, and E. coli endotoxin, were administered to mice, no change in IFN response was observed after thermal injury. Similar results were obtained when spleen cells obtained from thermally injured mice were stimulated with IFN-gamma inducers in vitro. These studies suggest that although the capacity for IFN-alpha/beta production remains intact in thermally injured mice, IFN-gamma production may be selectively decreased in burned animals and in their spleen cells.  相似文献   

18.
19.
Celiac disease (CD) results from a permanent intolerance to dietary gluten and is due to a massive T cell-mediated immune response to gliadin, the main component of gluten. In this disease, the regulation of immune responses to dietary gliadin is altered. Herein, we investigated whether IL-10 could modulate anti-gliadin immune responses and whether gliadin-specific type 1 regulatory T (Tr1) cells could be isolated from the intestinal mucosa of CD patients in remission. Short-term T cell lines were generated from jejunal biopsies, either freshly processed or cultured ex vivo with gliadin in the presence or absence of IL-10. Ex vivo stimulation of CD biopsies with gliadin in the presence of IL-10 resulted in suppression of Ag-specific proliferation and cytokine production, indicating that pathogenic T cells are susceptible to IL-10-mediated immune regulation. T cell clones generated from intestinal T cell lines were tested for gliadin specificity by cytokine production and proliferative responses. The majority of gliadin-specific T cell clones had a Th0 cytokine production profile with secretion of IL-2, IL-4, IFN-gamma, and IL-10 and proliferated in response to gliadin. Tr1 cell clones were also isolated. These Tr1 cells were anergic, restricted by DQ2 (a CD-associated HLA), and produced IL-10 and IFN-gamma, but little or no IL-2 or IL-4 upon activation with gliadin or polyclonal stimuli. Importantly, gliadin-specific Tr1 cell clones suppressed proliferation of pathogenic Th0 cells. In conclusion, dietary Ag-specific Tr1 cells are present in the human intestinal mucosa, and strategies to boost their numbers and/or function may offer new therapeutic opportunities to restore gut homeostasis.  相似文献   

20.
Collagen-induced arthritis (CIA) and proteoglycan-induced arthritis (PGIA) are murine models for rheumatoid arthritis both in terms of their pathology and genetics. Using the F(2) hybrids of the CIA-susceptible, but PGIA-resistant DBA/1 mice, and the CIA-resistant, but PGIA-susceptible BALB/c mice, our goals were to 1) identify both model-specific and shared loci that confer disease susceptibility, 2) determine whether any pathophysiological parameters could be used as markers that distinguish between nonarthritic and arthritic mice, and 3) analyze whether any immune subtraits showed colocalization with arthritis-related loci. To identify chromosomal loci, we performed a genome scan on 939 F(2) hybrid mice. For pathophysiological analyses, we measured pro- and anti-inflammatory cytokines (IL-1, IL-6, TNF-alpha, IFN-gamma, IL-4, IL-10, IL-12), Ag-specific T cell proliferation and IL-2 production, serum IgG1 and IgG2 levels of both auto- and heteroantibodies, and soluble CD44. In addition to multiple CIA- and PGIA-related loci identified in previous studies, we have identified nine new CIA- and eight new PGIA-linked loci. Comprehensive statistical analysis demonstrated that IL-2 production, T cell proliferation, and IFN-gamma levels differed significantly between arthritic and nonarthritic animals in both CIA and PGIA populations. High levels of TNF-alpha, IFN-gamma, IL-2, and Ab production were detected in F(2) hybrids with CIA, whereas T cell proliferation, IL-2 and IFN-gamma production, and a shift to IgG2a isotype were more characteristic of PGIA. Quantitative trait loci analysis demonstrated colocalization of numerous immune subtraits with arthritis-related traits. Quantitative trait loci on chromosomes 5, 10, 17, 18, and X were found to control arthritis in both models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号