首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The DNA fragments coding for ribosomal RNA inCampylobacter jejuni have been cloned from a genomic library ofC. jejuni constructed inEscherichia coli. Clones carrying DNA Sequences for rRNA were identified by hybridization of 5-end-labeled rRNA fromC. jejuni to colony blots of transformants from this gene library. Cloned DNA sequences homologous to each of 5S, 16S, and 23S rRNA were idenfified by hybridization of labeled plasmid DNA to Northern blots of rRNA. The gene coding for 23S rRNA was found to be located on a 5.5kb HindIII fragment, while the 5S and 16S rRNA genes were on HindIII fragments of 1.65 and 1.7 kb, respecitively. The DNA fragment containing the 16S rRNA gene was characterized by restriction endonuclease mapping, and the location of the 16S rRNA gene on this fragment was determined by hybridization of 5-end-labeled rRNA to restriction fragments and also by DNA sequence determination. It appears that the major portion of the coding region for 16S rRNA is located on the 1.7-kb HindIII fragment, while a small portion is carried on an adjacent HindIII fragment of 7.5 kb. Cloned rRNA genes fromC. jejuni were used to study the organization of the rDNA inC. jejuni and other members of the genùsCampylobacter.  相似文献   

2.
The restriction endonuclease map of the 25 S and 18 S ribosomal RNA genes of a higher plant is presented. Soybean (Glycine max) rDNA was enriched by preparative buoyant density centrifugation in CsCl-actinomycin D gradients. The buoyant density of the rDNA was determined to be 1.6988 g cm–3 by analytical centrifugation in CsCl. Saturation hybridization showed that 0.1% of the total DNA contains 25 S and 18 S rRNA coding sequences. This is equivalent to 800 rRNA genes per haploid genome (DNA content: 1.29 pg) or 3200 for the tetraploid genome. Restriction endonuclease mapping was performed with Bam H I, Hind III, Eco R I, and BstI. The repeating unit of the soybean ribosomal DNA has a molecular weight of 5.9·106 or approximately 9,000 kb. The 25 S and 18 S rRNA coding sequences were localized within the restriction map of the repeating unit by specific hybridization with either [125I]25 S or [125I]18 S rRNA. It was demonstrated that there is no heterogeneity even in the spacer region of the soybean rDNA.  相似文献   

3.
Southern gel analysis of total DNA from Chironomus tentans showed that the rRNA genes (rDNA) are homogeneous in structure. After cloning in Escherichia coli plasmid pBR313, the rDNA organisation was further studied by restriction fragment analysis and R-loop mapping. No heterogeneity could be detected by heteroduplex analysis of six different cloned rRNA cistrons. R-loop sizes of 1.69 and 3.63 kilobases (kb) were measured for the 18S and 28S rRNA coding sequences. The two spacers are 0.75 and 1.77 kb long. Southern gel analysis showed also a homogeneous rDNA structure for a Canadian population of C. tentans and C. pallidivittatus. The same technique indicated, however, that the rDNA of two other closely related species of C. thummi and C. melanotus is heterogeneous in structure. A possible correlation between this heterogeneity and the presence of heterochromatin in these species is discussed.  相似文献   

4.
Summary Hybridization of cytoplasmic ribosomal RNA (rRNA) to restriction endonuclease digests of nuclear DNA of Chlamydomonas reinhardii reveals two BamHI ribosomal fragments of 2.95 and 2.35×106 d and two SalI ribosomal fragments of 3.8 and 1.5×106 d. The ribosomal DNA (rDNA) units, 5.3×106 d in size, appear to be homogeneous since no hybridization of rDNA to other nuclear DNA fragments can be detected. The two BamHI and SalI ribosomal fragments have been cloned and a restriction map of the ribosomal unit has been established. The location of the 25S, 18S and 5.8S rRNA genes has been determined by hibridizing the rRNAs to digests of the ribosomal fragments and by observing RNA/DNA duplexes in the electron microscope. The data also indicate that the rDNA units are arranged in tandem arrays. The 5S rRNA genes are not closely located to the 25S and 18S rRNA genes since they are not contained within the nuclear rDNA unit. In addition no sequence homology is detectable between the nuclear and chloroplast rDNA units of C. reinhardii.Abbreviations used rRNA ribosomal RNA - rDNA ribosomal DNA d, dalton  相似文献   

5.
The arrangement of the coding sequences for the 5 S, 5.8 S, 18 S and 25 S ribosomal RNA from Saccharomyces cerevisiae was analyzed in λ-yeast hybrids containing repeating units of the ribosomal DNA. After mapping of restriction sites, the positions of the coding sequences were determined by hybridization of purified rRNAs to restriction fragments, by R-loop analysis in the electron microscope, and by electrophoresis of S1 nuclease-treated rRNA/rDNA hybrids in alkaline agarose gels. The R-loop method was improved with respect to the length calibration of RNA/DNA duplexes and to the spreading conditions resulting in fully extended 18 S and 25 S rRNA R-loops. The qualitative results are: (1) the 5 S rRNA genes, unlike those in higher eukaryotes, alternate with the genes of the precursor for the 5.8 S, 18 S and 25 S rRNA; (2) the coding sequence for 5.8 S rRNA maps, as in higher eukaryotes, between the 18 S and 25 S rRNA coding sequences. The quantitative results are: (1) the tandemly repeating rDNA units have a constant length of 9060 ± 100 nucleotide pairs with one SstI, two HindIII and, dependent on the strain, six or seven EcoRI sites; (2) the 18 S and 25 S rRNA coding regions consist of 1710 ± 80 and 3360 ± 80 nucleotide pairs, respectively; (3) an 18 S rRNA coding region is separated by a 780 ± 70 nucleotide pairs transcribed spacer from a 25 S rRNA coding region. This is then followed by a 3210 ± 100 nucleotide pairs mainly non-transcribed spacer which contains a 5 S rRNA gene.  相似文献   

6.
Summary DNA sequence analysis has shown that the gene coding for the mitochondrial (mt) large subunit ribosomal RNA (rRNA) fromPodospora anserina is interrupted by two class I introns. The coding region for the large subunit rRNA itself is 3715 bp and the two introns are 1544 (r1) and 2404 (r2) bp in length. Secondary structure models for the large subunit rRNA were constructed and compared with the equivalent structure fromEscherichia coli 23S rRNA. The two structures were remarkably similar despite an 800-base difference in length. The additional bases in theP. anserina rRNA appear to be mostly in unstructured regions in the 3 part of the RNA. Secondary structure models for the two introns show striking similarities with each other as well as with the intron models from the equivalent introns inSaccharomyces cerevisiae, Neurospora crassa, andAspergillus nidulans. The long open reading frames in each intron are different from each other, however, and the nucleotide sequence similarity diverges as it proceeds away from the core structure. Each intron is located within regions of the large subunit rRNA gene that are highly conserved in both sequence and structure. Computer analysis showed that the open reading frame for intron r1 contained a common maturase-like polypeptide. The open reading frames of intron r2 apeared to be chimeric, displaying high sequence similarity with the open reading frames in the r1 and ATPase 6 introns ofN. crassa.  相似文献   

7.
8.
Amplification of the genes coding for rRNA occurs in the oocytes of a wide variety of organisms. The amplification process appears to be mediated through a rolling-circle mechanism. The approximate molecular weight of the smallest rDNA circles is equivalent to the estimated combined molecular weight of DNA which codes for a single ribosomal RNA precursor molecule and an associated non-transcribed spacer DNA sequence. RNA-DNA hybridization studies carried out on oocytes of the house cricket, Acheta domesticus, suggest that DNA coding for rRNA accounts for only a small fraction of the rDNA satellite, all of which is amplified in the oocyte. In order to test the possibility that the remainder of the amplified rDNA represents spacer and to determine whether a rolling-circle mechanism might also be involved in amplification in A. domesticus oocytes, rDNA was isolated from ovaries of A. domesticus and spread for electron microscopy. A large proportion of the rDNA isolated from ovaries is circular, while main-band DNA and rDNA prepared from other tissues demonstrates few if any circles. The mean size of the smallest rDNA circles is approximately 8 times longer than the length estimated for DNA which codes for 18 S and 28 S rRNA. Denaturation mapping shows the rDNA circles to contain two major readily denaturing regions located about equidistant from one another on the circle. Each readily denaturing region accounts for 4–6% of the total DNA in the circle. The fact that only 12% of the average molecule is required to code for A. domesticus 18 S and 28 S rRNA is consistent with the hybridization data. Considerable size heterogeneity exists in the length of the smallest class of rDNA molecules. In the rDNA of other species such heterogeneity has been shown to reside in the non-transcribed spacer.  相似文献   

9.
Summary The relative rates of divergence of 11 regions of the wheat rDNA cloned in pTA250 were estimated by measuring sequence change in 6 Triticum species. The Tm analysis of 32P probes synthesized from the pTA250 regions and hybridized to DNA from the Triticum species provided an estimate of sequence change relative to T. aestivum. The results revealed a region of 1.2 kb preceding the 18S rRNA gene which was more conserved than the rest of the spacer. In addition the transcribed spacer between the 18S and 26S rRNA genes was shown to be poorly-conserved; the genes, as expected, were highly conserved. A model which proposes RNA as a co-factor in gene conversion is suggested to account for the observations.  相似文献   

10.
Summary The nuclear 18 S, 5.8 S and 25 S ribosomal RNA genes (rDNA) of Cucumis sativus (cucumber) occur in at least four different repeat types of 10.2, 10.5, 11.5, and 12.5 kb in length. The intergenic spacer of these repeats has been cloned and characterized with respect to sequence organization. The spacer structure is very unusual compared to those of other eukaryotes. Duplicated regions of 197 bp and 311 bp containing part of the 3 end of the 25 S rRNA coding region and approximately 470 bp of 25 S rRNA flanking sequences occur in the intergenic spacer. The data from sequence analysis suggest that these duplications originate from recombination events in which DNA sequences of the original rDNA spacer were paired with sequences of the 25 S rRNA coding region. The duplicated 3ends of the 25 S rRNA are separated from each other mostly by a tandemly repeated 30 bp element showing a high GC-content of 87.5%. In addition, another tandemly repeated sequence of 90 bp was found downstream of the 3flanking sequences of the 25 S rRNA coding region. These results suggest that rRNA coding sequences can be involved in the generation of rDNA spacer sequences by unequal crossing over.  相似文献   

11.
We have isolated and sequenced one intergenic region and a small part of the flanking regions (18S and 26S rRNA coding regions) of the rRNA-encoding genes (rDNA) from the sea urchinParacentrotus lividus. This region is about 3.8 Kb long. Northern blot hybridizations and S1 mapping experiments demonstrated the presence of a partially processed 21S rRNA precursor which has the same 5 terminus as the 32S primary precursor, also in developmental stages characterized by a low rate of rRNA synthesis.Abbreviations bp base pair(s) - Kb Kilobase(s) or 1000 bp - nt nucleotide(s) - rDNA DNA encoding rRNA - rRNA ribosomal RNA - S sedimentation constant  相似文献   

12.
13.
14.
M A Wild  J G Gall 《Cell》1979,16(3):565-573
  相似文献   

15.
《Insect Biochemistry》1990,20(1):1-11
A family of nine recombinant bacteriophages containing rRNA genes from cultured cells of the mosquito, Aedes albopictus, has been characterized by restriction mapping, Southern-blotting and S1-nuclease analyses. The 18S rRNA coding region measured 1800 bp and contained a conserved Eco RI site near the 3′-end. The 28S rRNA coding region was divided into α and β sequences, comprising 1750 and 2000 bp, respectively, which were separated by a 350 bp sequence that is removed from the rRNA precursor during processing. The entire rDNA repeat unit had a minimum length of 15.6 kb, including a nontranscribed spacer region that contained a series of PvuI repeats upstream of the 18S rRNA coding sequence. During development of the mosquito, Aedes aegypti, the rRNA gene copy number per haploid genome increased from about 400 in larvae to about 1200 in adults.  相似文献   

16.
Summary The gene of a cytoplasmic 18 S ribosomal RNA (18 S rDNA) of the dicotyledonous plant tomato (ycopersicon esculentum) cv. Rentita has been cloned, and its complete primary structure has been determined. The tomato 18 S rDNA is 1805 by long with a G+C content of 49.6%. Its sequence exhibits 94%–96% positional identity when it is colinearly aligned with the previously reported sequences of the 17–18 S rDNAs of the dicot soybean and the monocots maize and rice. A model of the secondary structure of the 18 S rRNA of angiosperms is presented and its genera-specific structural features are compared with a current eukaryotic 18 S rRNA consensus model.  相似文献   

17.
Summary Two PstI fragments (5.3x106 and 4.3x106 daltons) coding for Anacystis nidulans rRNA genes were cloned. The cloned rDNAs were characterized by restriction endonuclease mapping, DNA-RNA hybridization analysis and the R-loop technique. The results indicated that both fragments contained 16S, 23S and 5S rRNA genes in this order. A tRNA gene(s) was detected in the spacer region between 16S and 23S rRNA genes. The organization of A. nidulans rRNA genes resembles those of E. coli and of Euglena chloroplasts rather than those of higher plant chloroplasts.  相似文献   

18.
Isolation and sequence organization of human ribosomal DNA.   总被引:6,自引:0,他引:6  
The genes coding for 28 S and 18 S ribosomal RNA have been purified from leukemic leukocytes of one human individual by density gradient centrifugation. The purified ribosomal DNA was analyzed by restriction endonuclease digestion and electron microscopy. The location of cleavage sites for the restriction endonuclease EcoRI was established by R-loop mapping of restriction fragments by electron microscopy. The results are in agreement with gel analysis and gel transfer hybridization. One type of ribosomal DNA repeating unit contains four cleavage sites for EcoRI. Two of these cuts are located in the genes coding for 28 S and 18 S rRNA, while the other two are in the non-transcribed spacer. Thus, one of the restriction fragments generated contains non-transcribed spacer sequences only and is not detected by gel transfer hybridization if labeled rRNA is used as the hybridization probe. A second type of repeating unit lacks one of the EcoRI cleavage sites within the non-transcribed spacer. This indicates that sequence heterogeneity exists in human rDNA spacers. R-loop mapping of high molecular weight rDNA in the electron microscope reveals that the majority of repeats are rather uniform in length. The average size of 22 repeats was 43.65(±1.27) kb. Two repeats were found with lengths of 28.6 and 53.9 kb, respectively. This, and additional evidence from gels, indicates that some length heterogeneity does exist in the non-transcribed spacer. The structure of the human rDNA repeat is summarized in Figure 10.  相似文献   

19.
Summary DNA was isolated from chloroplasts of Euglena gracilis var. bacillaris (ATCC No. 10616). The structure of the rDNA was studied using partial denaturation mapping and heteroduplex analysis. Seven GC-rich stretches representing the rDNA were apparent in the partial denaturation pattern. To analyse the structure of the rDNA in detail, heteroduplexes with the E. coli rrnD operon cloned in the plasmid pBK8 were prepared. Five complete rRNA operons were found. In addition one extra 16S rRNA gene was located between the second and third complete operons and another extra 16S rRNA gene was upstream of all five operons. Each one was associated with a small inverted repeat structure.  相似文献   

20.
Ribosomal DNA sequences for the ITS 1, 5.8S, ITS 2 and adjoining regions of the 18S and 25S were obtained from Mimulus glaucescens (Scrophulariaceae) via cloned PCR products. The spacer sequences were completely unrelated to other plant taxa, although spacer lengths were approximately the same. Interestingly, the Mimulus 5.8S sequence was much more divergent than other higher-plant rDNA sequences. Consideration of the secondary structure of the 5.8S rRNA shows that most of the changes in Mimulus are compensatory and preserve the basic secondary structure of the mature RNA molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号