共查询到7条相似文献,搜索用时 15 毫秒
1.
Vivian Y. H. Hook Nikolaos Tezapsidis Shin-Rong Hwang Catherine Sei Michael Byrne & Sukkid Yasothornsrikul 《Journal of neurochemistry》1999,73(1):59-69
Proteolytic processing of inactive proenkephalin and proneuropeptides is essential for the production of biologically active enkephalins and many neuropeptides. The incomplete processing of proenkephalin in adrenal medulla suggests that endogenous protease inhibitors may inhibit proenkephalin processing enzymes. This study demonstrates the isolation and characterization of two isoforms of adrenal medullary alpha1-antichymotrypsin (ACT), referred to as ACT-like proteins I and II, which are colocalized with enkephalin in chromaffin granules and which inhibit the proenkephalin processing enzyme known as prohormone thiol protease (PTP). Subcellular fractionation demonstrated enrichment of 56- and 60-kDa ACT-like proteins I and II, respectively, to enkephalin-containing chromaffin granules (secretory vesicles). Immunofluorescence cytochemistry of chromaffin cells indicated a discrete, punctate pattern of ACT immunostaining that resembles that of [Met]enkephalin that is stored in secretory vesicles. Chromatography of adrenal medullary extracts through DEAE-Sepharose and chromatofocusing resulted in the separation of ACT-like proteins I and II that possess different isoelectric points of 5.5 and 4.0, respectively. The 56-kDa ACT-like protein I was purified to apparent homogeneity by Sephacryl S200 chromatography; the 60-kDa ACT-like protein II was isolated by butyl-Sepharose, Sephacryl S200, and concanavalin A-Sepharose columns. The proenkephalin processing enzyme PTP was potently inhibited by ACT-like protein I, with a K(i,app) of 35 nM, but ACT-like protein II was less effective. ACT-like proteins I and II had little effect on chymotrypsin. These results demonstrate the biochemical identification of two secretory vesicle ACT-like proteins that differentially inhibit PTP. The colocalization of the ACT-like proteins and PTP within chromaffin granules indicates that they could interact in vivo. Results from this study suggest that these ACT-like proteins may be considered as candidate inhibitors of PTP, which could provide a mechanism for limited proenkephalin processing in adrenal medulla. 相似文献
2.
Arginine and Lysine Aminopeptidase Activities in Chromaffin Granules of Bovine Adrenal Medulla: Relevance to Prohormone Processing 总被引:3,自引:2,他引:1
Sukkid Yasothornsrikul Thomas Toneff Shin-Rong Hwang Vivian Y. H. Hook 《Journal of neurochemistry》1998,70(1):153-163
Abstract: Conversion of prohormones and neuropeptide precursors to smaller, biologically active peptides requires specific proteolytic processing at paired basic residues, which generates intermediate peptides with NH2 and COOH termini extended with Lys or Arg residues. These basic residues are then removed by aminopeptidase and carboxypeptidase activities, respectively. Among the proteases involved in prohormone processing, the basic residue aminopeptidase activity has not been well studied. This report demonstrates arginine and lysine aminopeptidase activities detected with Arg-methylcoumarinamide (Arg-MCA) and Lys-MCA substrates in neurosecretory vesicles of bovine adrenal medulla [chromaffin granules (CG)], which contain endoproteolytic processing enzymes co-localized with [Met]-enkephalin and other neuropeptides. These arginine and lysine aminopeptidase activities showed many similarities and some differences. Both arginine and lysine aminopeptidase activities were stimulated by the reducing agent β-mercaptoethanol (β-ME) and inhibited by p-hydroxymercuribenzoate, suggesting involvement of reduced cysteinyl residues. The arginine aminopeptidase activity was stimulated by NaCl (150 mM), but the lysine aminopeptidase activity was minimally affected. Moreover, characteristic β-ME/NaCl-stimulated Arg-MCA cleaving activity and β-ME-stimulated Lys-MCA cleaving activity were detected only in CG and not in other subcellular fractions; these findings indicate the localization of these particular basic residue aminopeptidase activities to secretory vesicles. The arginine and lysine aminopeptidase activities showed pH optima at 6.7 and 7.0, respectively. Km(app) values for the arginine and lysine aminopeptidase activities were 104 and 160 µM, respectively. Inhibition by the aminopeptidase inhibitors bestatin, amastatin, and arphamenine was observed for Arg-MCA and Lys-MCA cleaving activities. Inhibition by the metal ion chelators indicated that metalloproteases were involved; Co2+ stimulated the arginine aminopeptidase activity but was less effective in stimulating lysine aminopeptidase activity. In addition, the lysine aminopeptidase activity was partially inhibited by Ni2+ and Zn2+ (1 mM), whereas the arginine aminopeptidase activity was minimally affected. These results demonstrate the presence of related arginine and lysine thiol metalloaminopeptidase activities in CG that may participate in prohormone processing. 相似文献
3.
Interaction of Opiates with Opioid Binding Sites in the Bovine Adrenal Medulla: II. Interaction with K Sites 总被引:3,自引:1,他引:3
E. Castanas N. Bourhim P. Giraud F. Boudouresque P. Cantau C. Oliver 《Journal of neurochemistry》1985,45(3):688-699
Abstract: In this study we examined the interaction of opiates with K binding sites in the bovine adrenal medulla. [3H]Ethylketocyclazocine (EKC), [3H]etorphine, and [3H]bremazocine stereoselective bindings were used to assay these interactions. The K sites were found to be heterogeneous: [3H]bremazocine identified with high affinity all subtypes of these sites. [3H]EKC, in the presence of saturating concentrations of [D-Ala2, D-Leut]-enkephalin (DADLE) (5μM), was used to identify K1 sites, on which dynorphin A (1–13) bound with high affinity. Either [3H]EKC or [3H]etorphine in the presence of 5μM DADLE identified the K2 subtype. This subtype was found to interact with β-endorphin and especially with the octapeptide Met5-enkephalyl-Arg6-Gly7-Leu8. Furthermore, [3H]etorphine identified in the bovine adrenal medulla a third high-affinity component, in the presence of 5 μM DADLE. This residual interaction was found to be equally stereoselective and presenting K selectivity. Met5-enkephalyl-Arg6-Phe7 interacted preferentially with this site. The three K subtypes interacted differentially with monovalent (Na+, K+, and Li+) and divalent (Ca2+, Mg2+, and Mn2+) ions by modification of the apparent concentration of the accessible sites and/or by changes of the apparent KD for radioligands. Modifying agents (proteolytic enzymes, thiol-modifying reagents, and A2-phospholipase) produced different effects on each subtype of the K site, suggesting a different protein (or protein-lipid?) composition. 相似文献
4.
Hiroshi Gomi Satomi Morikawa Naoki Shinmura Hiroaki Moki Tadashi Yasui Azuma Tsukise Seiji Torii Tsuyoshi Watanabe Yoshinori Maeda Masahiro Hosaka 《The journal of histochemistry and cytochemistry》2015,63(5):350-366
The expression of secretogranin III (SgIII) in chicken endocrine cells has not been investigated. There is limited data available for the immunohistochemical localization of SgIII in the brain, pituitary, and pancreatic islets of humans and rodents. In the present study, we used immunoblotting to reveal the similarities between the expression patterns of SgIII in the common endocrine glands of chickens and rats. The protein–protein interactions between SgIII and chromogranin A (CgA) mediate the sorting of CgA/prohormone core aggregates to the secretory granule membrane. We examined these interactions using co-immunoprecipitation in chicken endocrine tissues. Using immunohistochemistry, we also examined the expression of SgIII in a wide range of chicken endocrine glands and gastrointestinal endocrine cells (GECs). SgIII was expressed in the pituitary, pineal, adrenal (medullary parts), parathyroid, and ultimobranchial glands, but not in the thyroid gland. It was also expressed in GECs of the stomach (proventriculus and gizzard), small and large intestines, and pancreatic islet cells. These SgIII-expressing cells co-expressed serotonin, somatostatin, gastric inhibitory polypeptide, glucagon-like peptide-1, glucagon, or insulin. These results suggest that SgIII is expressed in the endocrine cells that secrete peptide hormones, which mature via the intragranular enzymatic processing of prohormones and physiologically active amines in chickens. 相似文献
5.
Interaction of Opiates with Opioid Binding Sites in the Bovine Adrenal Medulla: I. Interaction with δ and μ Sites 总被引:1,自引:1,他引:1
E. Castanas N. Bourhim P. Giraud F. Boudouresque P. Cantau C. Oliver 《Journal of neurochemistry》1985,45(3):677-687
In the present study we examined the interaction of opiates with the delta and mu opioid binding sites in the bovine adrenal medulla. [3H][D-Ala2, D-Leu5]-enkephalin ( [3H]DADLE) in the presence of saturating concentrations of morphiceptin was used to analyze delta site interactions, whereas either [3H]DADLE in the presence of saturation concentrations of [D-Ser2, Leu5]-enkephalin-Thr6 (DSLET) or [3H][D-Ala2, Me-Phe4, Gly5-ol]-enkephalin ( [3H]DAGO) was used for the determination of mu sites. Both binding sites were found to interact stereoselectively with opiates. The binding was affected differentially by proteolytic enzymes (trypsin, alpha-chymotrypsin, pepsin), N-ethylmaleimide, and A2-phospholipase. Kinetic and equilibrium binding studies revealed that in each case radiolabeled opiates interact with one class of binding sites, following simple second-order bimolecular kinetics. Competition for binding by opiates and opioid peptides confirmed the delta and mu selectivity of these sites. Monovalent (Na+, Li+, K+) and divalent (Mg2+, Mn2+, Ca2+) ions interacted differentially with these two binding sites: In general, monovalent cations affected preferentially the apparent number of binding sites, whereas divalent ions modified the equilibrium dissociation constant. Furthermore, positive or negative cooperativity and an apparent heterogeneity of binding sites were detected under some ionic conditions. 相似文献
6.
Ilia Leviev Michael Williamson Cornelis J. P. Grimmelikhuijzen 《Journal of neurochemistry》1997,68(3):1319-1325
Abstract: The simple, freshwater polyp Hydra is often used as a model to study development in cnidarians. Recently, a neuropeptide, 2 , has been isolated from sea anemones that induces metamorphosis in a hydroid planula larva to become a polyp. Here, we have cloned a preprohormone from Hydra magnipapillata containing 11 (eight different) immature neuropeptide sequences that are structurally related to the metamorphosis-inducing neuropeptide from sea anemones. During the final phase of our cloning experiments, another research team independently isolated and sequenced five of the neuropeptides originally found on the preprohormone. Comparison of these mature neuropeptide structures with the immature neuropeptide sequences on the preprohormone shows that most immature neuropeptide sequences are preceded by Ser or Asn residues, indicating that these residues must be novel processing sites. Thus, the structure of the Hydra prepro-hormone confirms our earlier findings that cnidarian pre-prohormones contain unusual or novel processing sites. Nearly all neuropeptide copies located on the Hydra preprohormone will give rise to mature neuropeptides with a C-terminal Gly-Leu-Trp-NH2 sequence (the most frequent one being Gly-Pro-Pro-Pro-Gly-Leu-Trp-NH2 ; Hydra-LWamide I; three copies). Based on their structural similarities with the metamorphosis-inducing neuropeptide from sea anemones, the mature peptides derived from the Hydra-LWamide preprohormone are potential candidates for being developmentally active neurohormones in Hydra . 相似文献
7.
Kathrin Textoris-Taube Christin Keller Juliane Liepe Petra Henklein John Sidney Alessandro Sette Peter M. Kloetzel Michele Mishto 《The Journal of biological chemistry》2015,290(51):30417-30428
MHC class I-restricted epitopes, which carry a tumor-specific mutation resulting in improved MHC binding affinity, are preferred T cell receptor targets in innovative adoptive T cell therapies. However, T cell therapy requires efficient generation of the selected epitope. How such mutations may affect proteasome-mediated antigen processing has so far not been studied. Therefore, we analyzed by in vitro experiments the effect on antigen processing and recognition of a T210M exchange, which previously had been introduced into the melanoma gp100209–217tumor epitope to improve the HLA-A*02:01 binding and its immunogenicity. A quantitative analysis of the main steps of antigen processing shows that the T210M exchange affects proteasomal cleavage site usage within the mutgp100201–230 polypeptide, leading to the generation of an unique set of cleavage products. The T210M substitution qualitatively affects the proteasome-catalyzed generation of spliced and non-spliced peptides predicted to bind HLA-A or -B complexes. The T210M substitution also induces an enhanced production of the mutgp100209–217 epitope and its N-terminally extended peptides. The T210M exchange revealed no effect on ERAP1-mediated N-terminal trimming of the precursor peptides. However, mutant N-terminally extended peptides exhibited significantly increased HLA-A*02:01 binding affinity and elicited CD8+ T cell stimulation in vitro similar to the wtgp100209–217 epitope. Thus, our experiments demonstrate that amino acid exchanges within an epitope can result in the generation of an altered peptide pool with new antigenic peptides and in a wider CD8+ T cell response also towards N-terminally extended versions of the minimal epitope. 相似文献